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Abstract 

The avian bacterial pathogen Mycoplasma gallisepticum is a good model for 
transcriptional regulation studies due to its small genome and relative simplicity. In this study, 
we used RNA-Seq experiments combined with MS-based proteomics to accurately map coding 
sequences (CDSs), transcription start sites (TSSs) and transcription terminators (TTs) and to 
decipher their roles in stress-induced transcriptional responses. We identified 1061 TSSs at an 
FDR (false discovery rate) of 10% and showed that almost all transcription in M. gallisepticum is 
initiated from classic TATAAT promoters, which are surrounded by A/T-rich sequences and 
rarely accompanied by a -35 element. Our analysis revealed the pronounced complexity of the 
operon structure: on average, each coding operon has one internal TSS and TT in addition to 
the primary ones. Our new transcriptomic approach based on the intervals between the two 
closest transcription initiators and/or terminators allowed us to identify two classes of TTs: 
strong, unregulated and hairpin-containing TTs and weak, heat shock-regulated and hairpinless 
TTs. Comparing the gene expression levels under different conditions (such as heat, osmotic 
and peroxide stresses) revealed widespread and divergent transcription regulation in M. 
gallisepticum. Modeling suggested that the structure of the core promoter plays a major role in 
gene expression regulation. We have shown that the heat stress activation of cryptic promoters 
combined with the suppression of hairpinless TTs leads to widespread, seemingly non-
functional transcription. 
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Introduction 
 

Mycoplasma gallisepticum belongs to the Mollicutes class – a specialized branch of 
microorganisms related to Gram-positive bacteria (Davis et al. 2013). M. gallisepticum is an 
important pathogen in poultry and wild birds, in which it causes chronic respiratory disease 
(Levisohn and Kleven 2000). Mollicutes feature reduced genomes with an average size of 1 Mb, 
and they lack a cell wall (Razin and Yogev 1998). Consequently, their cell physiology is 
considerably simplified compared with that of most bacteria, making Mollicutes a good model for 
systemic studies and, in particular, for studying the complex response to stress.  

M. gallisepticum, along with most Mollicutes, shows a reduced repertoire of transcription 
factors (TFs) compared with that of related bacteria, such as B. subtilis (Moreno-Campuzano et 
al. 2006). The only TF whose mechanism is known in M. gallisepticum is a heat-shock repressor 
(HrcA) that binds a palindromic sequence (CIRCE) in the promoters of several chaperone genes 
(Chang et al. 2008), whereas other common bacterial TFs, such as the LexA repressor of the 
SOS response (Carvalho et al. 2005), are lacking. Recent studies that have demonstrated 
widespread differential expression in response to a variety of stresses in the Mycoplasma 
species (Güell et al. 2009; Weiner III et al. 2003; Gorbachev et al. 2013) raise questions about 
the underlying regulation of these responses. Experimental identification of transcription start 
sites (TSSs) and transcription terminators (TTs) could help to resolve this “regulation without 
regulators” puzzle. 

Classic views on bacterial transcription assume that coding sequences are organized 
into operons – genomic regions that are transcribed as a single RNA (Jacob and Monod 1961). 
On the contrary, recent genome-wide transcriptomics studies on several bacterial species (E. 
coli (Cho et al. 2013), B. subtilis (Kobayashi et al. 2007), Listeria monocytogenes (Toledo-Arana 
et al. 2009), Helicobacter pylori (Sharma et al. 2010) and Mycoplasma pneumoniae (Güell et al. 
2009)) demonstrated that operons frequently include internal promoters and TTs that lead to the 
so-called “staircase” transcription (Güell et al. 2009). These results cast doubts on the operon 
paradigm and call for a new, more realistic approach. 

Common RNA-Seq experiments do not allow for the precise identification of TSSs; 
however, several techniques that address this problem have recently been developed. These 
techniques include either tagging of the 5`-ends by the ligation of a specific adapter (Cho et al. 
2013) or 5`-end enrichment procedures using a 5`-phosphate-dependent nuclease (Sharma et 
al. 2010).  

In the current work, we systematically investigated transcription and translation in M. 
gallisepticum under several conditions using common RNA-Seq experiments, 5`-end enriched 
RNA-Seq and mass spectrometry-based proteomics. We introduced a new approach to study 
bacterial transcription that is based on intervals (genomic regions between the two nearest 
TSSs and/or TTs) instead of operons. By combining both experimental evidence and in silico 
prediction, we identified hundreds of promoters, ribosome-binding sites (RBS), TTs, operons 
and non-coding RNAs (Fig. 1A). 
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Results 
 

In this study, we strand-specifically sequenced two batches of samples (16 samples in 
each batch) of the total RNA extracted from M. gallisepticum that was cultured under different 
conditions (exponential and stationary growth phases; heat shock, osmotic and oxidative 
stresses) in at least two biological replicates using a SOLiD 4 sequencer (Life Technologies). 
The sequencing produced 989 million reads, 44% of which could be mapped to the genome. 
Although most of these reads correspond to rRNA and tRNA, 17% are mapped to CDSs and 
2.6% are mapped to intergenic regions (Supplementary Table S1). In addition to common RNA-
Seq experiments, we employed a 5’-end enrichment procedure (see Methods) to precisely 
identify the 5`-ends of the transcripts (5’-enriched RNA sequencing, 5’-ERS). Correlation 
analysis shows good sample clustering ruled by the biological conditions rather than by 
technical variations (Fig. 1B, Supplementary Fig. S1). Our analysis shows a close agreement 
between the gene expression changes under heat shock measured in the two datasets (the 
Spearman correlation coefficient between the log fold changes is 0.92; Fig. 1C). Additionally, we 
performed RT-PCR for 98 selected genes under the same conditions (Supplementary Table 
S2). The gene expression levels as well as the fold changes measured by these two techniques 
show high correlation (rho>0.7, Fig. 1D, Supplementary Figs. S2 and S3). We used mass-
spectrometry (see below) to assess the protein abundance index (PAI) under the heat shock 
and control conditions. The correlation between the PAI and mRNA abundance (RPKM) is 
approximately 0.5 for the control conditions (Fig. 1E), which is comparable to the estimates 
obtained in other works (Maier et al. 2011). The foregoing results confirm the high quality of our 
data and support their application in characterizing the transcription organization in M. 
gallisepticum strain S6. 
 
Operon organization in M. gallisepticum 

Traditionally, bacterial transcription is considered to be organized into operons, which 
are genomic regions with a single promoter and several coding sequences that are transcribed 
as a single mRNA (Jacob and Monod 1961). In fact, bacterial transcripts seem to overlap with 
each other (Toledo-Arana et al. 2009; Cho et al. 2013), resulting in a complex structure with 
internal TSSs and/or TTs. Here, we define operons as a set of overlapping transcripts. Operons 
can be divided into the intervals between two nearest TSSs or TTs. Theoretically, the read 
coverage in such intervals should follow a Poisson distribution, but practically, their distribution 
is much more variable due to the differences in nucleotide composition, RNA secondary 
structure and sequencing biases (Khrameeva and Gelfand 2012). We used generalized linear 
models (GLMs) with a quasi-Poisson distribution to model the read coverage. We applied a 
quasi-log likelihood test to divide the M. gallisepticum transcriptome into 1059 equally covered 
intervals (see Methods, Fig. 2A and Supplementary Table S3). The borders between the 
intervals are formed by either up- or down-coverage steps (up-CSs or down-CSs), which should 
theoretically correspond to TSSs and TTs, respectively. In total, we observed 499 up-CSs and 
558 down-CSs. We assigned annotated features (CDS, tRNA and rRNA) to the intervals if the 
overlap was greater than 50% of the length of the gene. Of 877 annotated genes, 868 could be 
assigned to intervals and 586 reside completely within a single interval. The read coverage 
strikingly differed between the intervals that contained genes and those that did not (Fig. 2B). 
Assuming that 95% of the gene-containing intervals are expressed, we set the coverage 
threshold for expressed intervals to 2.38 read per position. The 372 intervals with a coverage 
value below the threshold were considered to be unexpressed. Most of the intervals overlap 
with just a few genes. The longest (in terms of the number of overlapped genes) expressed 
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interval (12,638 nt) contains 24 genes that encode ribosomal proteins (Fig. 2C). The definition 
of an operon as a continuous sequence of expressed intervals results in 208 operons, 125 of 
which overlap 839 genes (in total) by at least 50% of the gene length. Furthermore, 772 genes 
reside completely within an operon. In addition to the 208 primary up-CSs and down-CSs, the 
operons contain 218 and 261 internal up-CSs and down-CSs, respectively. Most of these CSs 
are observed within gene-containing operons, most likely because the latter are usually much 
longer than the operons that do not contain genes (Fig. 2D). We compared our prediction for 
each consecutive pair of genes that resided within the same or in different intervals with the 
operon prediction obtained from proOpDB (Taboada et al. 2012) and observed a high and 
significant overlap (Fisher exact test p<1e-14). The excess of positive correlation values for the 
gene expressions across the different conditions for the CDSs from the same interval (and, to 
some degree, from the same operon) compared with the correlation for the genes from different 
operons (Fig. 2E) confirms the robustness of our procedure. 
 
Promoter structure in M. gallisepticum 

To further understand the transcription organization in M. gallisepticum, we used our 5’-
ERS samples to identify the exact locations of TSSs. Briefly, we looked for the local maxima 
(peaks) in the 5’-ERS coverage, optimized the position weight matrix (PWM) for the upstream 
region and then used the PWM to identify the peaks with a significantly better PWM match than 
expected by chance (see Methods). The procedure resulted in 1061 TSSs at an FDR<10% 
(Supplementary Table S4). All of the identified promoters are sigma 70 promoters with a 
TA[T/A]AAT -10 element surrounded by an A/T-rich region. We searched for the TRTGN 5’-
extension of the Pribnow box that was previously reported for B. subtilis and other Gram-
positive bacteria (Voskuil and Chambliss 2002). We found 25 TSSs (out of 1061) with such an 
extension; this result is 5-fold greater than expected by chance (see Methods). The primary 
sigma factor of M. gallisepticum (RpoD) along with the Pribnow box-binding domain contains the 
-35 element-binding domain (Supplementary Fig. S4). To test whether M. gallisepticum 
promoters contain the -35 element, we searched up to 100 nt upstream of TSSs for a 
consensus TTGACA sequence (Hinton 2007). The results indicated that 122 TSSs (2-fold more 
than expected by chance) have a TTGACA sequence with no more than two mismatches at the 
-35 position. An analysis of the M. gallisepticum genome revealed one putative sigma factor-like 
transcription factor (GCW_00440) that may function as an alternative sigma factor. However, 
the regions around the 5’-ERS peaks did not exhibit the enrichment of motifs that were 
dissimilar to TATAAT, leading us to the conclusion that M. gallisepticum has only one functional 
sigma factor and that the observed TATAAT-lacking 5’-ERS peaks represent experimental 
noise. An analysis of the promoter structure revealed that the -10 element is separated by a 6 nt 
(or, rarely, a 7 or 5 nt) spacer from the TSS (see Methods, Fig. 3A and Supplementary Fig. S5). 
Similarly to transcription in Mycobacterium tuberculosis (Cortes et al. 2013), transcription in M. 
gallisepticum is initiated solely from an A or G nucleotide. If the 7th position from the -10 
element is occupied by a C or T, transcription initiates one nucleotide downstream, resulting in a 
7 nt spacer. Unfortunately, there is no such simple explanation for the most rare spacer, the 5 nt 
spacer (Fig. 3A). The promoters predicted based on 5’-ERS are located significantly closer to 
the up-CSs than the same promoters that are randomly shifted by no more than 200 nt 
(Wilcoxon test, p<1e-8, Fig. 3B). Although only 35% of the up-CSs have promoters that are 
predicted from 5’-ERS within a ±20 nt interval, most of them (62%) have a good PWM match in 
the same region. Interestingly, most of the TSSs identified by 5’-ERS (857 TSSs, 81%) are not 
associated with up-CSs. Although some of these 857 TSSs might be false positives, 69% of 
them are associated with the increase in read coverage and are likely to contribute to 
transcription. The 5’-ERS-identified TSSs that are not associated with up-CSs have a low 
relative step size and coverage by 5’-ERS reads (six-fold lower on the average than the 
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coverage of the up-CSs associated TSSs) and constitute only 43% of the overall transcription 
initiation activity. Similarly, the up-CSs that lack 5’-URS-identified TSSs have a lower step size 
than the up-CSs that have a TSS within 20 nt (Fig. 3C). 

We observed that 39% of the predicted TSSs reside in close proximity (<200 nt) to a 
start codon. The distribution of the 5’ UTR length has a mode near 15 nt, and nine transcripts 
appear to be leaderless (Fig. 3D). For eight of these transcripts, we detected peptides from the 
corresponding proteins in the proteomic data; three of these proteins are the first ORFs in 
polycistronic transcripts.  
 
Structure of transcription terminators in M. gallisepticum 

Because no ORF-encoding Rho factor was found in the M. gallisepticum genome, the 
transcription termination in M. gallisepticum should occur in a Rho-independent manner and is 
likely to be associated with RNA secondary structures, such as hairpins (intrinsic terminators)  
(Farnham and Platt 1981). We predicted 256 hairpins genome-wide using the RNIE program 
(Gardner et al. 2011). Our results suggest that the stems of the terminator hairpins in M. 
gallisepticum are reduced compared to those of the default RNIE models and usually consist of 
5 A-T pairs and just two G-C pairs near the loop (Fig. 3E). 

The predicted hairpins cluster near down-CSs (Fig. 3F) as well as near the stop codons. 
We observed a weak but significant (rho=-0.18, p<0.002) correlation between the hairpin score 
and the relative coverage step size. The hairpins that cannot be associated with a down-CS 
have a significantly lower score (one-sided Wilcoxon test, p<0.03) than that of the hairpins that 
reside within a ±200 nt interval from a down-CS. Interestingly, whereas most of the down-CSs 
with a relative step size close to -1 have a hairpin (102 of 166 down-CSs with a step size below 
-0.9), a large class of down-CSs with a step size distributed around -0.7 mostly lacks hairpins 
(only 47 of 392 down-CSs with a step size above -0.9 have a hairpin; Fig. 3G). Both classes of 
down-CSs are accompanied by a sufficient decrease in the GC content (from 32% in the 
upstream region to 27% in the downstream region; Supplementary Fig. S6). 
 
Transcriptional response of M. gallisepticum to stress 

We used annotated CDSs to assess the differential expression in M. gallisepticum. All 
normalizations used in RNA-Seq-based transcriptomics assume that only a tiny fraction of the 
genes change their expression or, at least, that the numbers of up- and down-regulated genes 
are approximately equal (Dillies et al. 2013). Here, we used RLE normalization from the edgeR 
package (Robinson et al. 2010) to scale the library sizes. When applied to all samples but the 
stationary phase, the calculated normalization factors are within the 0.82-1.2 interval, and their 
effect is below our fold change threshold (2). However, if the stationary phase samples are 
included, the results change dramatically: the normalization factors for the stationary phase 
samples (0.13-0.32) are approximately ten times lower than the normalization factors for other 
samples (1.9-2.7). Such huge differences may arise if most of the genes are down-regulated in 
the stationary phase. Our RT-PCR experiments confirm this idea: when compared to 23S rRNA 
abundances, the abundances of most mRNAs decrease in the stationary phase (Supplementary 
Fig. S3). Because no normalization could be applied in such circumstances, we did not scale 
the library sizes for differential expression analysis under the stationary phase (see Methods). 
We used the SAJR package (Mazin et al. 2013) to perform a pairwise comparison for the control 
samples and each of the stresses. Genes with a q-value (BH-corrected p-value) below 0.05 and 
fold change above two were considered differentially expressed (for both up- and down-
regulation). 

The most significant change in the transcriptional landscape of M. gallisepticum was 
observed upon the transition to the stationary phase (Fig. 4A, Supplementary Table S5). For the 
stationary phase, we identified 723 down- and 30 up-regulated genes. The up-regulated genes 
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were significantly enriched in genes associated with the “response to stress,” “oxidation-
reduction process” and “glycolysis” (Supplementary Table S6). Only 67 and 118 genes change 
their expression under oxidative and osmotic stresses, respectively, and most of these genes 
are up-regulated (40 and 77, respectively).  

Genes that are up-regulated under oxidative stress are significantly enriched in the “iron-
sulfur cluster assembly” and “oxidation-reduction process” GO terms. These genes encode the 
Fe-S cluster assembly protein (SufB), the scaffold protein for Fe-S clusters assembly (NifU), 
methionine-sulfoxide reductase (MsrB), azoreductase (AsoR), cysteine desulfurase (CsdB), 
flavodoxin and several other proteins involved in ROS protection (Kiley and Beinert 2003; Peña 
et al. 2013; Liu et al. 2009).  

Previously, we demonstrated that M. gallisepticum exhibited significant halotolerance 
and can survive in 1.2 M NaCl solution and grow in 0.5 M NaCl (Gorbachev et al. 2013). The 
adaptation to hyperosmotic conditions usually involves the transport of low-molecular-weight 
osmoprotectors, including proline and/or glycine-betaine, via specialized transporters: ProP in E. 
coli (MacMillan and Alexander 1999), BetP in Corynebacterium glutamicum (Krämer 2009) and 
OpuA in B. subtilis (Patzlaff et al. 2003). These transporters were not detected in the M. 
gallisepticum genome, suggesting an alternative adaptation mechanism. The genes that were 
up-regulated under hyperosmotic conditions are enriched in the "aldehyde dehydrogenase 
[NAD(P)+] activity," "cellular aldehyde metabolic process," "acetyl-CoA metabolic process," 
"endonuclease activity" and "response to stress" terms (Supplementary Table S5). 

Compared with the oxidative and osmotic stresses, the heat stress induced the strongest 
transcription response. Thus, we studied the kinetics of the heat stress response for 5, 15 and 
30 min. The number of heat shock-affected genes increases with the stress duration (Fig. 4A); 
in total, 538 genes show altered expression for at least one time point. To further classify the 
heat shock-related expression changes, we clustered the genes into 9 clusters based on the 
similarity of their expression changes under heat shock (see Methods and Fig. 4B). Most of the 
genes (for a total of 69%) correspond to continuous expression changes. Among them 232 
genes increased expression (clusters 2 and 3) and 136 genes decreased expression (cluster 1). 
GO enrichment analysis revealed that the translation-associated genes as well as the genes 
involved in glycolysis were down-regulated (cluster 1), whereas the genes linked with “serine-
type endopeptidase activity” and “transposase activity” were quickly up-regulated under heat 
shock (cluster 2). The genes that were activated later during the heat stress (cluster 3) are 
involved in “carbohydrate transport” and some other functions. The genes involved in GTP 
catabolism are quickly inactivated under heat shock (cluster 4; Supplementary Table S7). At the 
same time, we observed no significant transcriptional changes during the heat stress applied to 
the cells at the stationary growth phase.  

The analysis described above showed that a sufficient proportion of transcription in M. 
gallisepticum corresponds to non-coding regions. Fifty-six (71%) of the non-coding operons 
overlap with 31 coding operons in the antisense orientation. Most of the antisense operons (47) 
reside completely within the coding operons. We used the intervals identified above to examine 
the differential expression of non-coding transcripts. We repeated the analysis described above 
at the level of intervals, focusing on the 657 expressed intervals that do not overlap with known 
non-coding genes (rRNA, tRNA and tmRNA). Strikingly, under all stress conditions, the non-
coding intervals were significantly more frequently activated than the coding intervals (Fisher 
exact test, p<3e-5, 5e-40, 3e-37, 0.02 and 2e-11 for 5, 15 and 30 min of heat shock and for the 
oxidative and osmotic stresses, respectively).  
 
Analysis of the protein translation in M. gallisepticum 

We used LC-MS/MS mass spectrometry to profile the M. gallisepticum proteins under 
the control conditions and after 5, 15 and 30 min of heat shock, and we obtained 278,615 
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spectra. Using these spectra, we performed an annotation-guided identification of peptides (see 
Methods), resulting in 6619 peptides from 622 genes. We used these data to calculate the PAI 
(Ishihama et al. 2008). Our analysis revealed a relatively high protein-to-RNA correlation 
(pro>0.55): the PAI values measured under both the control and heat shock conditions correlate 
with the control levels of mRNA. The protein-to-RNA correlation drops during heat shock 
because the mRNA abundances change dramatically, whereas the protein levels seem to 
remain unaffected by such short periods (Fig. 1E). 
To identify the peptides that were most likely missed in our annotation, we performed a 
genome-wide peptide search (see Methods). The procedure resulted in 5634 peptides, most of 
which (5475) are tryptic peptides that originate from the known proteins. Thirty-three (of the 159 
remaining) peptides originated from the ORFs of known genes and correspond to an ORF 
extension (by usage of the upstream start codon) of seven genes. In two of these seven genes, 
the extensions are supported by more than one peptide. Most (87) of the remaining 126 
peptides are confirmed by only a single spectrum. Grouping these peptides by ORF revealed 
only four short ORFs supported by more than one peptide. All these ORFs appear to be part of 
known proteins disrupted by a frame shift that can be explained by sequencing errors. 
The results agree with the lack of unannotated CDSs. Consequently, 79 operons with a total 
length of 115,590 nt (1.3% of mapped reads, excluding tRNA or rRNA reads) with no protein-
coding ability are either transcription junk or serve other functions. 

To determine the strength of ribosome-binding sites (RBS), we used the RNAduplex 
program to search for the best (in terms of free energy) RNA duplex that was formed by the 3’-
terminal region of 16S rRNA (UUACCUCCUUUCU, homologous to slightly extended Shine-
Dalgarno sequence-binding region of E. coli (Shine and Dalgarno 1974)) and 100 nt regions 
upstream of annotated CDSs. Duplexes with a free energy below -8 kcal/mol show pronounced 
enrichment in the (-25,-1) region (Supplementary Fig. S7). We used the (-100,-76) region as a 
negative control to estimate the false-discovery rate (FDR), and we found RBSs for 160 ORFs 
at an FDR of 40%. When the number of RBSs was restricted to 100, the FDR dropped to 30%. 
The duplex free energy exhibits a weak but significant correlation with the average abundance 
of both protein and mRNA (rho=-0.22 and -0.27; p<2e-7 and 1e-10, respectively). 
 
Transcription regulation 

Molecular mechanisms must be responsible for the observed dramatic changes in 
mRNA abundance under heat and other stresses. In the Mycoplasma species, the only TF with 
a known binding site is a heat-shock repressor, HrcA (GCW_02005), that binds a conserved 
inverted repeat TTAGCACTC-N9-GAGTGCTAA known as CIRCE (controlling inverted repeat of 
chaperone expression) (Zuber and Schumann 1994; Chang et al. 2008). A genome-wide scan 
for CIRCE elements that allowed up to two mismatches revealed five CIRCE elements in M. 
gallisepticum S6 (Supplementary Table S8). Four of these elements are located upstream of the 
chaperone gene promoters (clpB, dnaK, lon and dnaJ_2). The remaining element is located in a 
pseudogene (dnaJ homolog split into three ORFs) promoter region. Logically, the respective 
genes are up-regulated under heat stress (Fig. 4C). However, their expression fold changes are 
not significantly higher than those of the other heat-shock up-regulated genes.  

We applied the edgeR (Robinson et al. 2010) package to the 5’-ERS read counts to 
identify TSSs with significant activity changes (BH-corrected p<0.05 and fold change above two) 
under heat shock (see Methods). We divided all TSSs into six non-overlapping classes by the 
mean activity (high or low) and by the change direction: up, not significant and down (Fig. 5A). 
We applied the MEME suite (Bailey and Elkan 1994) to the sequences that were within 100 nt 
up- or downstream of CDS-associated TSSs from all six groups but, unfortunately, found no 
enriched motifs. Even the CIRCE elements discussed above could not be identified, most likely 
due to their low abundance.  
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Comparing the six TSS groups revealed that the TSSs activated under heat shock differ 
strikingly from the down-regulated TSSs independently of the mean activity. The heat shock-
activated TSSs usually are not associated with CDSs, have a non-canonical spacer (5 or 7 nt) 
between the -10 element and the TSS, have a lower AT content in the -10 element extension 
and frequently have a canonical (TAWAAT) -10 element with a preference for TAAAAT (unlike 
the down-regulated promoters that prefer TATAAT and have a high fraction of noncanonical -10 
elements). Additionally, heat-shock-activated transcription is usually initiated from guanosine, 
whereas the preferred first nucleotide of most down-regulated transcripts is adenosine (Fig. 5B). 
These observations suggest that a sufficient part of the heat-shock-related expression variation 
can be explained by these few factors. We used the random forests algorithm (Liaw and Wiener 
2002) to predict the log fold change based on the -10 element sequence, the first nucleotide of 
the transcript, the spacer length and the A/T richness of -10 element extensions (see Methods). 
The model explained 27% and 14% of the total variance and achieved a Pearson correlation 
equal to 0.62 and 0.4 in self- and cross-validation, respectively. The correlation reaches 0.52 for 
cross-validation when only heat-shock-related TSSs are considered (Fig. 5C). 

In addition to the transcription initiation that is usually considered a major contributor to 
transcription regulation, other steps of mRNA synthesis, such as elongation and termination, 
may also play a role. For example, a change in the efficiency of imperfect TTs might change the 
expression levels of downstream intervals. In our data, we observed a sufficient drop (by 15%, 
from -0.72 to -0.56) in efficiency of the hairpinless, but not the hairpin-containing, down-CSs 
(Fig. 5D). To further investigate the contribution of TTs to transcription regulation, we modeled 
the read coverage in each interval that resulted from the additive contributions of up-CSs and 
the multiplicative contribution of down-CSs (see Methods and Fig. 5E). This modeling allowed 
us to decompose the effects of TSSs and TTs on the expression change of each interval. The 
results show that for most of the intervals (71% of the 657 expressed intervals that do not 
overlap with tRNA or rRNA), a single factor (either a TSS or TT) explains more than 80% of the 
expression variability under heat shock. In general, 87-92% of the transcription variability under 
heat and other stresses could be explained solely by changes in TSS activity, but there are still 
many intervals with low expression that are mainly regulated by TTs. In most of the intervals 
(490), more than 50% of the observed expression variability under heat shock could be 
attributed to TSSs, whereas in the remaining 167 intervals, the effect of TTs dominates. Of 
these 167 intervals, 100 change expression significantly under heat shock, and most of them 
(84%) are activated. The 86 intervals regulated by TTs include 158 CDSs. Of these, 114 
change their expression significantly under heat shock. Most of these CDSs (77%) belong to 
clusters 2 and 3 (Fig. 4B). The genes that are up-regulated under heat shock due to the TT 
activity change are involved in the process of “carbohydrate transport,” whereas the TSS-
regulated genes play a role in transposition, "response to stress" and proteolysis 
(Supplementary Table S9). 

Interestingly, although under most conditions, the hairpin-containing TTs have nearly 
perfect efficiency (~ -0.95), their efficiency drops by 8% under osmotic stress (Fig. 5D).  
 
Discussion 
 

Here, for the first time, we present a genome-wide analysis of the regulation of 
transcription initiation and termination in M. gallisepticum strain S6. An analysis of 5’-ERS 
libraries allowed us to identify 1061 TSSs genome-wide and to decipher their promoter 
structure. We present a new approach to the analysis of bacterial transcriptomes that is based 
on the genomic intervals between the two nearest TSSs and/or TTs. This analysis allowed us to 
separate the genome into 1059 intervals with equal expression levels, to group them into 208 
operons and to decompose the effects of transcription initiation and termination on the mRNA 
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concentrations. We have shown a dramatic reorganization of transcription under different 
biological conditions, such as heat shock or the stationary growth phase. However, other than 
CIRCE, which was found using a priori knowledge, we found no regulatory sequence motifs that 
could be responsible for the observed regulation. We speculate that other motifs, even if they do 
exist, would not be found due to their low abundance and thus cannot be responsible for the 
observed dramatic transcription changes under heat stress. 

TAWAAT sequences are avoided in M. gallisepticum (they are two-fold less abundant 
than expected by chance), but their number (3088) is still greater than both: the number of 
annotated genes and the number of detected TSSs. Only a subset of these sequences is likely 
to constitute functional promoters. How does the M. gallisepticum transcription machinery 
distinguish the functional promoters from the cryptic ones? We believe that the A/T-richness of 
the surrounding region, the correct spacer length and the first nucleotide of the transcript play 
major roles. Increased temperatures may facilitate the recognition of cryptic promoters via the 
enhanced melting of the DNA in the promoter region. Indeed, heat-shock-activated promoters 
have a lower AT content, a spacer whose length is not 6 nt and an alteration in the first 
nucleotide of the transcript (G instead of A). Modeling revealed that these features explain a 
substantial proportion of the transcription variation under heat shock. 

Most of the heat-shock-activated promoters are not associated with CDSs. Because the 
major fraction of the M. gallisepticum genome encodes proteins, the activation of cryptic 
promoters leads to widespread antisense expression. Interestingly, under the control conditions, 
the sense and antisense expression exhibit a significant negative Pearson correlation (95% 
confidence interval is [-0.39, -0.46]), but after 30 min of heat shock, the correlation drops 
dramatically to [-0.14, -0.27]. Thus, the sense and antisense transcriptions seem to be less 
coordinated under heat shock, confirming the idea of cryptic promoter activation. We speculate 
that the down-regulation of promoters during heat stress may be the result of promoter 
competition for RNA polymerase. 

Our analysis of transcription termination reveals two classes of TTs: strong, hairpin-
containing TTs and weak, hairpinless terminators. Whereas the former are mostly not regulated 
during 30 min of heat shock, the efficiency of the hairpinless TTs drops dramatically, apparently 
contributing to the “promiscuous transcription” described above. A significant portion of the up-
regulated CDSs during heat stress can be attributed to regulated TTs. In addition, 39% of the 
genes from clusters 2 and 3 are regulated predominantly by TTs. As we demonstrated above, a 
set of the genes coding for carbohydrate uptake proteins is regulated by TTs rather than TSSs. 
Carbohydrate transport under heat stress may be adaptive, as carbohydrates are a source of 
ATP for chaperones. We speculate that the gene expression regulation by TTs may represent a 
novel mechanism of adaptive regulation in genome-reduced bacteria. 

Most of the transcripts activated under heat shock do not encode proteins and, thus, 
seem to be non-functional. This finding suggests that a significant part of the heat-induced 
transcription changes is non-adaptive. In contrast, CDSs, whose expression follows specific 
patterns during heat shock or changes under oxidative stresses, are enriched in the relevant 
biological functions; this finding indicates a tight balance between the transcription noise and 
regulation. 

The HrcA-CIRCE regulatory system is conserved among Mycoplasmas, and this 
conservation implies its functional importance. However, under heat-stress conditions, CIRCE-
dependent promoters behave similarly to numerous CIRCE-less up-regulated promoters, raising 
questions about the true function of CIRCE. Non-adaptive stress-induced expression changes 
were previously identified in different bacterial species (Price et al. 2013). We speculate that 
under heat shock in M. gallisepticum, a few adaptive changes, most likely guided by specific 
transcription factors, occur on the background of a noise-like response. 
 Our proteomic study shows that the mRNA and protein concentrations correlate well 
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under the control conditions. However, during heat shock, the mRNA, but not protein, levels 
change dramatically, resulting in a strong decrease in the mRNA-protein correlation. Such a 
discrepancy might be explained by the different time scales of mRNA and protein turnover 
(Maier et al. 2011).   

One of the greatest weaknesses of current RNA-Seq techniques is their strong 
dependence of the sequencing efficiency on the sequence and, especially, on the secondary 
structure of RNA, resulting in a highly variable read coverage depth (Khrameeva and Gelfand 
2012). In the current work, we attempted to address this issue by pooling all samples together 
to minimize the noise during operon prediction and allowing for overdispersion by using a quasi-
Poisson distribution. As a side effect of this approach, we have likely lost certain condition-
dependent information. The relatively low agreement between the TSSs predicted using up-CSs 
and those predicted using 5’-ERS might also be explained by a high coverage variability that 
may lead to both the identification of false up-CSs and the loss of correct TSSs (type I and type 
II errors, respectively). 

In summary, we have taken a step toward understanding the stress-response 
mechanisms in M. gallisepticum and in genome-reduced bacteria in general. Our interval-based 
approach allowed us to look beyond the operon concept, identify two classes of transcription 
terminators and decipher their roles in transcription regulation. We believe that the constructed 
transcription map together with a comprehensive list of TSSs and TTs in M. gallisepticum will 
enhance future research. 
 
Methods 
 
Cell culturing 

Mycoplasma gallisepticum S6 was cultivated on a liquid medium containing tryptose (20 
g/L), Tris (3 g/L), NaCl (5 g/L), KCl (5 g/L), yeast dialysate (5%), horse serum (10%) and 
glucose (1%) at pH=7.4 and 37°C in aerobic conditions and exposed to stress conditions as 
described previously (Gorbachev et al. 2013). 
 
RNA extraction 

Aliquots of the cell culture were directly lysed in TRIzol LS reagent (Life Technologies) at 
a 1:3 ratio of culture medium:TRIzol LS (v/v). The lysates were extracted with chloroform, and 
the aqueous phase was purified with a PureLink RNA Mini Kit (Ambion) to remove tRNA or was 
used directly to precipitate RNA by the addition of an equal volume of isopropanol. 
 
Real-time PCR 

RNA was treated by DNAse I (Thermo Scientific), and cDNA was synthesized from 
random hexamer primers by H-minus Mu-MLV reverse transcriptase (Thermo Scientific). Real-
time PCR was performed using iQ SYBR Green Supermix (Bio-Rad) and a CFX96™ Real-Time 
PCR Detection System (Bio-Rad) PCR machine. Quantitative data were normalized to the 23S 
rRNA transcript as described previously (Gorbachev et al. 2013). 
 
Preparation of libraries for RNA-Seq 

RNA (either total or tRNA-depleted) was fragmented into 200 bp by chemical 
fragmentation (100 mM ZnSO4, 100 mM Tris, pH=7.0 at 70°C for 15 min). The fragmentation 
reaction was stopped with 20 mM EDTA (pH=8.0). The fragmented RNA was treated with T4 
polynucleotide kinase (Thermo). Strand-specific double-stranded cDNA libraries for standard 
RNA-Seq on a SOLiD platform were prepared according to the manufacturer’s protocol using a 
Total RNA-Seq Kit and a SOLiD RNA Barcoding Kit (Ambion). The quality of the RNA, 
fragmented RNA and cDNA libraries was assayed with an Agilent 2100 Bioanalyzer system 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 9, 2014. ; https://doi.org/10.1101/004960doi: bioRxiv preprint 

https://doi.org/10.1101/004960


(Agilent).  
Amplified ds-cDNA was subjected to a normalization procedure with DSN (double-strand 

specific nuclease, Evrogen). First, 400-1000 ng of ds-cDNA (12 μL) was mixed with 4 μL of 
hybridization buffer (200 mM HEPES, 2 M NaCl, pH=7.5). The procedure was performed in a 
PCR thermocycler. The samples of ds-cDNA were denatured at 98°C for 2 min and then re-
annealed at 68°C for 5 hours. Then, 32 μL of DSN 2X master-buffer (Evrogen) that was 
prewarmed to 68°C was added. The mixture was incubated at 68°C for 10 min. Subsequently, 
0.5 μL of DSN enzyme was added, and the samples were incubated at 68°C for 15 min. The 
reaction was stopped by the addition of 64 μL of 200 mM EDTA (pH=8.0). Then, an equal 
volume of isopropanol was added, the samples were incubated at -20°C overnight and the 
cDNA was recovered by centrifugation (20 min at 4°C, 16,000 rcf). Subsequently, the cDNA 
was amplified and purified using a PureLink PCR Micro Kit (Invitrogen). Then, the procedure 
was repeated, resulting in two rounds of normalization in total. The normalized cDNA was 
selected for size by agarose gel electrophoresis (2% agarose, 1xTBE, 4 V/cm). Sample cDNA in 
the 200-300 bp range was extracted from the agarose blocks using a SOLiD Library Quick Gel 
Extraction Kit (Life Technologies; E1 buffer from the SOLiD Library Column Purification Kit was 
used for cDNA elution) and used for downstream preparations according to the standard 
protocol. 

All samples were prepared in two biological replicates with one technical replicate per 
biological replicate. 
 
Preparation of libraries for 5`-ERS 

To prepare 5’-enriched libraries, at least 20 μg of total RNA was fragmented, end-
repaired (as described above) and treated with Terminator exonuclease (Epicentre). This 
process resulted in the degradation of the non-5’ RNA fragments, whereas the 5’-fragments 
were protected by the pyrophosphate groups on their 5’-ends. Then, the RNA was precipitated 
by isopropanol and treated with tobacco acid phosphatase (Epicentre) to remove the 
pyrophosphate groups. Next, the RNA was precipitated by isopropanol and used for strand-
specific ds-cDNA preparation according to the standard protocol for SOLiD libraries. The 
sample cDNA was normalized in one round as described above and used to prepare SOLiD 
libraries according to the standard protocol. 
 
Sequencing 
 Sequencing was performed on a SOLiD 4 (Life Technologies) platform using SOLiD EZ 
Bead  E80 System Consumables and SOLiD ToP Sequencing Kit, MM50 (Applied Biosystems). 
 
Protein extraction and 1D electrophoresis 

Cells harvested by centrifugation at 10,000 ×g at 4°С for 10 min were washed twice in a 
wash buffer (150 mM NaCl, 50 mM Tris-HCl, 2 mM MgCl2, pH=7.4). The cells were lysed in 20 
µL of 1% SDS in 100 mM NH4HCO3 and incubated in an ultrasonic bath for 15 min followed by 
centrifugation at 10,000 ×g at 4°С for 5 min. The supernatant was extracted, and the protein 
concentration was determined using a Bicinchoninic Acid Protein Assay Kit (Sigma).  Next, 20 
µL of 2x Laemmli reagents was added, and the samples were incubated at 95°С for 5 min. 
Then, 50 µg of protein was loaded onto a polyacrylamide gel (10x0.1 cm, 12% polyacrylamide), 
and electrophoresis was performed as described by Laemmli (Laemmli 1970) (10 mA current). 
The electrophoresis was stopped when the front dye reached 1.5 cm in the separating gel. 
  
Trypsinolysis in polyacrylamide gel 

The polyacrylamide gel was fixed in a fixation buffer (20% CH3OH and 10% CH3COOH) 
for 30 min and washed twice in H2O. The gel was cut into 1x1 mm pieces, transferred into tubes 
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and treated with 10 mM DTT and 100 mM NH4HCO3 for 30 min at 56°С. Then, the proteins 
were alkylated with 55 mM iodoacetamide in 100 mM NH4HCO3 for 20 min in the dark. Next, 
water was removed from the gel pieces by the addition of 100% acetonitrile. 
The dehydrated samples were treated with a 150 µL of trypsin solution (40 mM NH4HCO3, 10% 
acetonitrile, 20 ng/µL Trypsin Gold, mass spectrometry grade; Promega). The samples were 
incubated for 60 min at 40°С and for 16-18 h at 37°С. Peptides were extracted once by 5% 
formic acid and twice by 50% acetonitrile with 5% formic acid. The extracts were joined and 
dried in a vacuum centrifuge at 45°С. The precipitate was diluted in 50 µL of 5% acetonitrile with 
0.1% formic acid. 
  
Chromato-mass spectrometry 

The peptides were analyzed using a TripleTOF 5600+ (ABSciex) mass spectrometer 
with a NanoSpray III ion source and a NanoLC Ultra 2D+ chromatograph (Eksigent). 
Chromatographic separation was performed in a gradient of acetonitrile in water (5 to 40% of 
acetonitrile in 120 min) with 0.1% formic acid on 75x150 µm columns with a Phenomenex Luna 
C18 3 µm sorbent and a flow rate of 300 nL/min. 
  The IDA mode of the mass spectrometer was used to analyze the peptides. Based on 
the first MS1 spectrum (the mass range for the analysis and subsequent ion selection for MS2 
analysis was 300-1250 m/z; the signal accumulation was 250 ms), 50 parent ions with 
maximum intensity in the current spectrum were chosen for the subsequent MS/MS analysis 
(the resolution of the quadrupole unit was 0.7 Da, the mass measurement range was 200-1800 
m/z, the ion beam focus was optimized to obtain maximal sensitivity, and the signal 
accumulation was 50 ms for each parent ion). Nitrogen was used for collision dissociation with a 
fixed average energy of 40 V. The collision energy was linearly increased from 25 to 55 V 
during the signal accumulation time (50 ms). The parental ions that had already been analyzed 
were excluded from the analysis for 15 sec. 
  The mass spectrometry proteomics data have been deposited in the ProteomeXchange 
Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository 
(Vizcaíno et al. 2009) with the dataset identifier PXD000922 and DOI 10.6019/PXD000922. 
  
Analysis of mass spectrometry data 

Raw data files (.wiff file format) were converted to the Mascot generic format (.mgf file 
format) using AB SCIEX MS Data Converter version 1.3 and were searched using Mascot 
version 2.2.07 against a database of all proteins (836 amino acids sequences) of M. 
gallisepticum S6 (GI:604957178). The Mascot searches were performed with the following 
parameters: tryptic and semi-tryptic peptides; maximum of one missed cleavage; a peptide 
charge state limited to 1+, 2+ and 3+; a peptide mass tolerance of 10 ppm; a fragment mass 
tolerance of 0.5 Da; and variable modifications caused by oxidation (M) and 
carbamidomethylation (C). Protein scores greater than 6 for protein-trypsin, 17 for protein-
semitrypsin, 32 for genome-trypsin and 24 for genome-semitrypsin were assumed to be 
significant. 

The proteogenomic profiling of M. gallisepticum was performed using the database of 
the chromosomal DNA sequence (GenBank) split by 3000 nucleotides with a shift of 1000 
nucleotides (493 nucleotides sequences). We used the Protein Abundance Index to evaluate 
the protein concentrations (as described elsewhere (Ishihama et al. 2008)). 
 
Read mapping 

All reads from DS1 with average quality values below 15 were discarded. Because many 
reads contain an adapter sequence in the 5’-end, we truncated all reads from both datasets to 
the first 25 read bases. Then, the reads were mapped to the M. gallisepticum strain S6 genome 
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(GI:604957178) using Bowtie software (Langmead et al. 2009) with the following parameters: 
bowtie --trim3 23 -f -C -v 3 -y -a --best --strata -S. Each match for the reads that was mapped to 
multiple positions was treated as an independent read. The results were nearly the same when 
only the uniquely mapped reads were used. 
 
Transcription interval identification 

To divide the M. gallisepticum genome into transcription intervals (intervals with a 
constant expression level), we combined all RNA-Seq samples from DS2 together and 
calculated the number of reads that mapped to each position in the genome (read coverage). A 
read was considered to be mapped to the given position only if its alignment started from that 
position. Then, we looked for local changes in the read coverage using a sliding window. For 
each genome position, we calculated the following function: 

∑
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where cov(j) is the read coverage at a specific position and p is genome position. We 
considered all local maxima and minima of vp as possible borders of transcription intervals. 
Then, we sorted all borders by vp, and, for each  border (starting from borders with highest vp), 
we removed all other borders within 25 nt. We used the intervals between the borders to 
estimate the dependence of the overdispersion parameter on the logarithm of the average 
coverage using generalized linear models (GLMs) and a quasi-Poisson distribution, od(cov). 
Then, we applied the following iterative procedure to merge the intervals with similar coverage 
together: 

1. Use GLM with a quasi-Poisson distribution to model the read coverage in each pair of 
consecutive intervals.   

2. Calculate the overdispersion parameter as a maximum of one, the overdispersion from 
the GLM model calculated in step 1 and the approximation by od(cov) calculated for 
each of two intervals. 

3. Find the pair of intervals with the highest p-value (quasi-log likelihood test). Join these 
intervals if the p-value is lower than 0.05 divided by the genome length. 

4. Repeat steps 1-3 until step 3 results in interval merging. 
Each remaining border was called a coverage step, either up or down (up-CS and down-CS). 
For each coverage step and each sample (all union of samples), we calculated its size: 

))cov(beforeter),max(cov(af

)cov(before-cov(after)
  size step =  

where cov(after) and cov(before) are the average coverage in interval after and before the step, 
respectively. 

To detect the expressed intervals, we defined the coverage cutoff as the 5% quantile of 
the average coverage of the CDS-containing intervals. We defined an operon as a set of 
consecutive expressed intervals. 
 
TSS identification 

To identify TSSs, we used the 5’-ERS data from DS2. Considering each sample 
separately, we searched for a local maximum in the read coverage (defined as described in the 
section on transcription interval identification) that was supported by at least 5 reads. Then, we 
modeled the coverage at each local maximum while considering 5 nt in each direction as 
background using a GLM with a quasi-binomial distribution and controlling the overdispersion 
parameter to be not lower than 1. We used a quasi-log likelihood test to identify significant 
coverage peaks (BH-corrected p-value<0.05). As a result, 32,148 peaks were detected in at 
least one (out of four) 5’-ERS sample from dataset 2. 
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To investigate promoter structure, we focused on the peaks that lie within 300 nt from the 
nearest start codon and are supported by at least 200 reads. We observed a TATAAT-like 
sequence surrounded by an AT-rich region in the upstream peak. We built a PWM for the (-32,-
3) peak region and then optimized it using the following procedure: 

1. For each peak, find the best PWM match in the (-34,-1) region. 
2. Order the peaks by match weight and take the top 60%. 
3. Rebuild the PWM using the matches selected in step 2. 
4. Repeat steps 1-3 until convergence is achieved. 

The optimized PWM matrix is shown in Supplementary Table S9. 
Then, we searched for the best match of the resulting PWM in all peaks. To this end, we 
separated the PWM into two parts: PWM1 corresponded to the TATAAT-like region, and PWM2 
corresponded to the surrounding region. We first looked for positions with the best PWM1 
match; if there was more than one position that had a maximum score, we selected the one with 
the highest PWM2 score. The results (Supplementary Fig. S5) show that the positions that 
correspond to a 5-7 nt spacer between the TATAAT box and the TSS are preferred. Thus, we 
used these positions to predict the best promoter sequence for each peak. To evaluate the 
background distribution of the weight of both PWM parts, we scanned the whole genome. For 
every three consecutive positions, we chose the best PWM match. We divided the whole range 
of PWM1 and PWM2 scores into 20 bins that resulted in a 2D (20x20) PWM score distribution. 
In each bin of PWM1, we set a specific cutoff for the PWM2 score to achieve an FDR below 
10% (Supplementary Fig. S8), resulting in the identification of 1061 TSSs. 
To identify TSSs that have a TRTGN extension or -35 box, we searched for the corresponding 
sequences (TRTG and TTGACA with no more than two mismatches) in the regions upstream of 
the TATAAT box. We compared the numbers of matches in the expected regions (-5 and -23 
from TATAAT) and in the (-86,-36) region.  

CIRCE elements were annotated by a genome-wide search for the TTAGCACTC-N9-
GAGTGCTAA sequence that allowed for up to two mismatches (Supplementary Table S8). 
 
Hairpin prediction 

We used the RNIE (Gardner et al. 2011) program in sensitive mode to predict hairpins in 
the M. gallisepticum genome. 
 
Differential expression analysis 

The read counts and reads per kilobase of transcript per million mapped reads (RPKM) 
for the CDSs and intervals were calculated using SAJR software (Mazin et al. 2013). Each 
location of the reads that mapped to multiple locations was treated independently and in the 
same manner as the locations of uniquely mapped reads. For most of the genes, the results did 
not change when only the uniquely mapped reads were considered. Only the expressed 
intervals that did not overlap with any known non-coding (mtRNA, tRNA and rRNA) genes were 
used. Library sizes were calculated as the sums of the coverage of all CDSs (or intervals). All 
library sizes (except for the two stationary samples) were adjusted by RLE normalization using 
the package edgeR (Robinson et al. 2010). Then, we applied SAJR to detect differentially 
expressed genes while considering the number of reads mapped to a given CDS (or interval) as 
the result of the binomial trials with the number of trials equal to the library size. The CDSs (and 
intervals) with a Benjamini Hochberg (BH)-corrected (Benjamini and Hochberg 2009) p-value 
below 0.05 and with a fold change above two were considered to be significantly differentially 
expressed. 

A similar procedure, with two differences, was used to analyze TSS activity under heat 
shock: first, for each TSS, only the reads that mapped exactly to a transcription initiation site 
were used; second, we used the exact test from the edgeR package to assess the significance 
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of the expression change. 
 
Heat-shock gene clustering 

Genes whose expression changed significantly after at least one heat-shock period were 
clustered using hierarchical clustering with complete linkage and using one minus the Pearson 
correlation between the expression levels (control and heat-shock samples) as a distance 
measure. The expression levels (RPKMs) were averaged between the replicates and were 
logarithmized. The obtained dendrogram was divided to form nine clusters. The resulting 
clusters were reordered by size. For visualization, RPKMs were z-score transformed. The 
boxplots in Fig. 4B represent the distribution of z-scores in the given condition for all genes for a 
particular cluster. 
 
Gene Ontology (GO) enrichment analysis 

GO annotation was conducted using the blast2GO program (Conesa et al. 2005). 
Enrichment analysis was performed using the goseq package (Young et al. 2010), and all 
annotated CDSs were used as the background. Only the terms with more than two genes were 
considered. All terms with a BH-corrected p-value above 0.2 were considered significant. 
 
Modeling of TSS heat-shock response 

We modeled the log fold change of the heat-shock-related TSS activity change using the 
randomForest package (Liaw and Wiener 2002). The sequence of the -10 box (the sequences 
that met less than 10 times were considered a single class), the first nucleotide of the transcript 
and the spacer between the -10 box and the TSS were used as categorical predictors, and the 
AT contents within 20 nt upstream and 3 nt downstream of the Pribnow box were used as 
continuous variables. We fitted the model 500 times to 90% randomly chosen  TSSs and used 
the remaining 10% for cross-validation. 
 
Modeling of the interval expression 

We modeled the average coverage in each expressed interval under each condition 
(replicates were merged together, and the coverage was scaled by the sum of adjusted using 
RLE normalization (by intervals; see above) library sizes using the following model: 

1. The coverage (cov) before the start of each operon, was set to 0 
2. At the ith up-CS, the coverage is updated by cov=cov+effect(up-CSi), where effect(up-

CSi) cannot be negative 
3. At the ith down-CS, the coverage is updated by cov=cov*effect(down-CSi), where 

effect(down-CSi) is between 0 and 1 
Such models perfectly explain (with a few negligible exceptions) the interval coverage under 
each condition. To decompose the effects of TSSs (effect(up-CS)) and TTs (effect(down-CS)) 
on the expression changes after 30 min of shock, we built two models – one for the control 
conditions and one for the heat shock. Then, we constructed an intermediate model that utilizes 
the TSS effects from the model built for the heat shock sample and the TT effects from the 
control model and used it to model the interval coverage. We considered the difference between 
the control condition and the results of the coverage prediction by the intermediate model to be 
TSS-related effects, and we considered the difference between the coverage prediction by the 
intermediate model and the interval coverage under heat shock to be TT-related effects. The 
feature with the greatest effect was considered the major driver of the expression change for a 
given interval. The results changed only moderately when the intermediate model was 
constructed in the opposite way (using the TSS effects from the control model and the TT 
effects from the model built for heat-shock samples). 
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Data access 
 M. gallisepticum S6 genome sequence and annotation were deposited in NCBI GenBank 
under GenBank id CP006916.2. Transcriptomics data was uploaded to NCBI SRA database 
under project id PRJNA243934. Proteomics data was uploaded to ProteomeXchange 
Consortium database via the PRIDE partner repository under dataset id PXD000922 and DOI 
10.6019/PXD000922. 
 
Figure legends 
 
Figure 1. (A) Typical RNA-Seq and 5’-ERS coverage profiles near the dnaJ2 gene. The 
diagram of the promoter sequence, the first nucleotide of the transcript, RBS and a schematic 
representation of the TT are shown above the plot. (B) Correlation heatmap (correlation 
increases from 0.65 (blue) to 1 (red); one minus the Spearman correlation coefficient was used 
as the distance metric for clustering) for different conditions (c, h2o2, nacl, hs5, hs15 and hs30 
denote the control, oxidative stress, osmotic stress and heat stress for 5, 15 and 30 min, 
respectively) and datasets (ds1 and ds2). The expression values represent the average values 
of the replicates. (C) Agreement of the heat-shock (15 min)-related expression changes (log2-
fold change) between DS1 (x-axis) and DS2 (y-axis). One dot denotes one CDS. Not significant, 
significant but with a fold change below 2 and significant with a fold change above 2 are shown 
in gray, yellow and red, respectively. (D) Agreement of the heat-shock (15 min)-related 
expression changes between RT-PCR (x-axis, differences in cycle number) and DS2 (y-axis, 
log2-fold change). The same color scheme as in panel C was used. (E) Dependence of the 
Spearman correlation coefficient between the protein abundance (PAI) measured for different 
heat shock durations (shown with different colors) and the mRNA abundance (RPKM) on the 
heat shock duration used for the RNA-Seq experiments. 
 
Figure 2. Operon prediction. A) Example of a predicted operon. Annotated CDSs are shown at 
the bottom; the TSSs identified by 5’-ERS and the hairpins predicted by RNIE are shown above. 
The smoothed coverage (running mean in a 100 nt window; log scale) is shown with a solid line; 
the dashed vertical lines represent up- and down-CSs; and the mean interval coverage is 
represented by the gray area. Classifications of primary and internal CSs by TSS/hairpin 
existence and the coding potential of the operons to which they belong are shown with pie 
charts. B) Distribution of intervals with (red) and without (gray) CDSs by log coverage. The 5% 
quantile of the former is shown as a blue vertical line. C) Distribution of intervals by the number 
of genes. D) Distribution of operons with (red) and without (blue) CDSs by log length. E) 
Distribution of Pearson correlation coefficients for the pairs of genes that belong to the same 
interval (red), same operon (but not interval, green) and genes from different operons (gray). 
 
Figure 3. Structure of M. gallisepticum TSSs and TTs. A) Distribution of TSSs by spacer 
(between the -10 element and the TSS) length (left) and logo-images of the promoter region for 
each spacer length (7 nt to 5 nt from top to bottom). The -10 element and TSS are shown with 
vertical black lines. B) Distribution of distances between the TSSs and the nearest up-CS. C) 
Distribution of up-CSs by step size. The up-CSs that have 5’-ERS-detected TSSs, have only a 
good -10 element (detected by PWM) and have no signs of a TATAAT-like promoter are shown 
in red, green and blue, respectively. D) Distribution of distances from the nearest start codon to 
a TSS (negative values correspond to TSSs placed before the start codon). E) The logo-images 
of alignments of RNIE-predicted TTs to two seeds. The proportion of gaps in a given position is 
shown with a magenta line. F) Distribution of distances between down-CSs and RNIE-predicted 
hairpins. G) Distribution of down-CSs by relative step size. The down-CSs with and without 
hairpins are shown in red and blue, respectively. 
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Figure 4. Transcription regulation. A) Number of CDSs whose expression changes significantly 
under different conditions. The up- and down-regulated genes are shown in red and blue, 
respectively. B) Nine patterns of gene expression changes under heat shock. The patterns are 
ordered by their size (shown in brackets in the panel titles). The normalized log expression of 
individual genes is shown with lines, and the distribution of the normalized log expression at 
each time point is shown with a box. C) Gene expression profiles (RPKM) of four genes that 
have the CIRCE motif in the upstream region. 
 
Figure 5. TSS and TT contributions to gene expression regulation. A) Fold change vs. mean 
activity plot (log scale) for TSSs under heat shock. The TSSs associated with the coding genes 
are shown with filled circles, the TSSs with significant changes and with |FC|>1 are shown in 
red, and the TSSs with significant changes but with |FC|<1 are shown in yellow. The TSSs are 
divided into six groups by the change direction (up, down and not significant (denoted by 
‘!sign’)) and by the average activity (low or high; the vertical line represents the median). B) 
Distributions of TSS properties among the six TSS groups defined in A: type of -10 box, A/T 
content of the -10 element extension, proportion of promoters with a 6 nt-long spacer between 
the -10 element and the TSS and frequencies of first transcript nucleotide. C) Pearson 
correlation, proportion of explained variance and proportion of TSSs with the correct direction of 
change prediction for the self- and cross-validation of the random forest modeling of the heat-
shock fold change. In total, 500 permutations were performed, and in each case, the learning 
and test sets consisted of 90% and 10% of 495 significant TSSs, respectively. D) Distributions 
of down-CS efficiency under different conditions and dependence on the presence of hairpins. 
E) Modeling of the interval expression by additive TSS and multiplicative TT activity. The 
colored areas represent a smoothed read coverage, the interval borders are shown with vertical 
lines, and the mean interval coverage is shown with solid lines. The read coverage profiles 
under the control conditions and heat shock are shown in gray and red, respectively. 
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