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Abstract

Cross-frequency coupling (CFC) has been proposed to coordinate neural dynamics across spatial

and temporal  scales.  Despite  its  potential  relevance  for  understanding healthy and pathological

brain function, critical evaluation of the available methods for CFC analysis has been lacking. Here

we aim to unravel several fundamental problems with the current standard analysis for CFC that

make it non-specific and difficult to interpret physiologically. We show that apparent CFC can arise

because of spectral correlations due to common non-stationarities and non-linear effects that might

be  unrelated  to  a  true  interaction  between  frequency  components.  After  reviewing  common

problems in CFC analysis, we discuss how different statistical/modeling approaches to CFC can be

conceptually  organized  according  to  their  biophysical  interpretability  and  statistical  inference

approach. This classification provides a possible road-map towards mechanistic understanding of

cross-frequency coupling. We end with a list of practical recommendations to avoid common errors

and enhance the interpretability of the analysis.
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Cross-frequency coupling: How much is that in real money?

One of the central questions in neuroscience is how neural activity is coordinated across different

spatial and temporal scales. An elegant solution to this problem could be that the activity of local

neural populations is modulated according to the global neuronal dynamics. As larger populations

oscillate  and  synchronize  at  lower  frequencies  and  smaller  ensembles  are  active  at  higher

frequencies  (Buzsaki,  2006),  cross-frequency coupling  would  facilitate  flexible  coordination  of

neural activity simultaneously in time and space.  In line with this  proposal,  many studies have

reported such cross-frequency relationships (Bragin et al., 1995; Canolty et al., 2006; Canolty and

Knight, 2010). Especially phase-amplitude CFC, where the phase of the low frequency component

modulates  the  amplitude  of  the  high  frequency  activity,  has  been  claimed  to  play  important

functional  roles  in  neural  information  processing  and  cognition,  e.g.  in  learning  and  memory

(Axmacher et al., 2010; Canolty and Knight, 2010; Lisman and Idiart, 1995; Lisman and Jensen,

2013). Furthermore, changes in CFC patterns have been linked to certain neurological and mental

disorders such as Parkinson's disease (Lopez-Azcarate et al.,  2010), schizophrenia (Allen et  al.,

2011; Moran and Hong, 2011) and social anxiety disorder (Miskovic et al., 2011). Therefore, CFC

is potentially essential for normal brain function and understanding of CFC patterns can be crucial

for diagnosing and eventually treating various disorders.

The classical analysis of CFC seems very straightforward (Figure 1) and is widely used. However,

not all signatures of CFC as detected by this analysis method need to be due to interactions between

different physiological processes occurring at different frequencies, as is commonly reported. It has

been previously shown that signals with abrupt changes lead to spurious CFC results (Kramer et al.,

2008) (see Supplementary results: Examples of spurious CFC for a related example). The roots of

this problem are much more general. Let us take as an example the Van der Pol oscillator, which is a

very simple non-linear relaxation oscillator. Conducting the CFC analysis on this oscillator would

indicate  that  the  phase  of  the  low frequency components  modulates  the  activity  of  the  higher

frequencies. However, despite strong CFC signal there is no simple physical interpretation for the

different frequency components of the oscillator, and even less for their interaction. Indeed, any

interpretation  in  terms  of  modulating  or  causally  interacting  frequencies  is  misleading  as  the

spectral  correlations  are  related  to  the  non-linear  characteristics  of  a  single  oscillator  (see

Supplementary results: Examples of spurious CFC for a thorough description of this example).  
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Figure 1. Typical approach to analyze phase-amplitude cross-frequency coupling. Step 1: Extracting the
relevant components. This step is implemented by band-pass filtering and extraction of phase and amplitude
dynamics for the relevant frequency bands. Step 2: Assessing correlations between components. This stage
requires the computations of appropriate correlation or dependency measures between amplitude and phase.
Therefore, a general measure of phase-amplitude coupling is to precisely quantify how much the histogram
of  mean  amplitude  versus  phase  deviates  from  a  uniform  distribution.  Step  3:  Statistical  evaluation.
Parametric or non-parametric approaches comparing to suitable surrogate data can be used to assign a p-
value to the observed coupling strength.  

This hints that the current analysis of CFC is inherently ambiguous regarding the nature and origin

of the observed correlations between the frequency components. A significant CFC measure can be

observed in case there are true modulations between subsystems oscillating at different frequencies.

However, it can be also observed under very generic conditions that imply no coupling. Similarly to
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the example above, any non-linear response where fast components are short-lived compared to the

slow components of the signal would produce a significant CFC.  In particular this  means that

current  CFC  measures  of  phase-to-amplitude  coupling  are  not  specific  enough  for  one  to

automatically conclude, as it is almost invariably done in the literature, that the phase of a low

frequency oscillation modulates the power of high-frequency activity.  The same holds for CFC

measures of amplitude-to-amplitude, or phase-to-phase coupling.

We wish to emphasize that we do not question the possible importance of CFC as a phenomenon. In

fact,  we believe that  such a  mechanism would be an elegant  solution to several  computational

demands the brain has to cope with (Buzsaki, 2006). However, precisely because of the potential

relevance of CFC for understanding the healthy and the pathological brain it is necessary to be

aware of the pitfalls and misinterpretations in the methodology currently applied. We hope that the

careful  assessment  of  concerns  will  eventually  strengthen  the  power  of  CFC  analysis  as  an

experimental tool. 

The outline of the rest of the paper is as follows: First, we shall point out fundamental caveats and

confounds in the current methodology of assessing CFC. Some of these points are original and

some others have been known in other fields for years, yet all share the characteristic of being

unattended in many of the current studies. Our literature review of the phase-amplitude CFC studies

from the years 2010-2014 shows that these issues are relevant and timely (see literature review in

the Supplementary material). Second, we propose an organization of different approaches to CFC

analysis according to their biophysical interpretability and statistical inference approach. Finally, we

outline some practical recommendations for CFC analysis. 

Caveats and confounds of the CFC analysis

In this section we concentrate on what we call the classical CFC analysis – it is illustrated and ex-

plained in Figure 1. Any result of this analysis can be used to classify different conditions but only

as a marker that is devoid of concrete and clear physiological interpretation. To give a physiological

interpretation to CFC, one needs to know the set of potential mechanisms responsible for neural

coupling. This set of mechanisms is only beginning to emerge (discussed below). We now discuss

some main methodological confounds that make it difficult to build connections between the CFC

measure and the underlying neurophysiological processes. More caveats and confounds and spuri-

ous examples can be found in the Supplementary results. 
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Instantaneous phase and amplitude: when are they meaningful and when not?

Standard phase-amplitude CFC analysis proceeds by first selecting two frequency bands followed

by the computation of some index for the correlation or dependency between the phase of one band

and the amplitude of the other (Fig. 1). The phase and amplitude values extracted from filtered

signals can unfortunately only be interpreted in a meaningful way, i.e. as representing physiological

oscillations, if a number of basic requirements are met. The same holds for CFC analyses based on

them. In Supplementary discussion: Conditions for a meaningful phase we present a short but rather

thorough review of the conditions that must be met for a meaningful interpretation of phase and

amplitude values. The main conclusion is – not that surprisingly - that a clear peak in the power

spectrum of the low frequency component is a prerequisite for a meaningful interpretation of any

CFC pattern.  Our literature review shows that even these well-known conditions were and are not

always met in the literature, resulting in a strong over-interpretation of phase and amplitude (see

literature review in the Supplementary material). 

The importance of the bandwidth

The  two  components  entering  a  phase-amplitude  CFC  analysis  after  filtering  the  signal,  are

determined  by the  center  frequencies  and  bandwidths  of  the  filters  used  to  isolate  them.  Our

literature review shows that majority of studies proceed by scanning the center frequencies for the

phase and amplitude components while keeping a fixed bandwidth of a few Hz. However,  this

choice of bandwidth is important because it defines what is considered as a component and how the

component´s power or group phase changes in time (Figure 2). Thus, it is not the same thing to scan

a center frequency from 20 Hz to 60 Hz with a bandwidth of 2 Hz or to consider at once the band

centered at 40 Hz with a width of 21 Hz – different effects will be observed. Unfortunately, little or

no justification is given to the choice of parameters in most analyses. The choice of bandwith for

the phase component is constrained by the condition of having a meaningful phase and is therefore

often correctly chosen to be narrow. However, one also needs to be careful with the bandwith size

for amplitude - if the bandwidth of the higher frequency component (f2) does not include the side

peaks produced by the lower frequency (f1), then CFC cannot be detected even if it  is present

(Figure  2A).  Thus  certain  parameter  values  usually  chosen  in  the  literature  can  bias  the  CFC

measures towards obtaining false negative results (see Supplementary Discussion: The importance

of the bandwidth). 
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Figure 2. Mathematical decomposition and filtering bandwidth are key parameters to infer and interpret the
presence  of  CFC.  A)  (Signal)  The  very same  signal  can  be  decomposed  into  different  mathematically
equivalent representations ([*] or [**]). The choice of the representation leads to different interpretations
regarding  the  interactions  of  the  components  (Filtering  and  Component).  Different  filtering  bandwidths
around the  same  frequency can  lead  to  different  results  depending on  whether  the  bandwidth  includes
modulating  sidebands  or  not.  B)  For  a  fixed  bandwidth  of  the  modulated  frequency,  only  a  range  of
modulating frequencies can be captured. For example, in the simplified harmonic case, a bandwidth of 14 Hz
around a frequency of 40 Hz would allow detection of a potential modulation from a 6 Hz rhythm, but not
from a 20 Hz oscillation. C) When scanning the modulating (f1) and modulated (f2) frequencies, a fixed
bandwidth biases CFC analysis and favors low frequencies for f1. 

Non-stationarity and spectral correlations: two sides of the same coin

Most neuronal signals that we measure are non-stationary. Time-varying sensory stimuli, top-down

influences, neuromodulation, endogenous regulatory processes and changes in global physiological

states render neuronal dynamics non-stationary. In contrast to a stationary process, a non-stationary

process in general exhibits spectral correlations between components of its Fourier expansion (Lii

and Rosenblatt, 2002). These correlations may be misinterpreted as CFC. The underlying reason for

these spectral correlations is that in constructing the spectrum, we decompose a process which is by

definition not time-invariant (non-stationary) into the eigenvectors of the time-shift operator, i.e.,

the complex exponentials in the Fourier expansion. Therefore, in the non-stationary case, there are

two possible scenarios leading to positive CFC measures:

One scenario is that physiological processes indeed interact.  This interaction then leads to non-

stationarities, and at the same time we observe spectral correlations in the Fourier representation.

For example, if the phase of a neural input oscillating at theta frequency modulates the amplitude of

local gamma oscillations, both obtained from the same LFP recording, the statistical properties of

the gamma oscillation amplitude series will change in time, as does theta phase. Specifically, their
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properties will vary in time only to be repeated after a full cycle of the slow oscillation, and thus

exhibiting a particular type of non-stationarity called cyclo-stationarity (Gardner et al., 2006).

The other and problematic scenario is that unspecific non-stationarities (that is, any kind of change

of the statistical properties of the signal), not related to or caused by coupling of neural processes,

will also be reflected in spectral correlations which could be over-interpreted as the result of causal

interactions among frequency specific neuronal processes. This second scenario can occur if non-

stationary input to a given area simultaneously affects the phase of a low frequency component and

increases high-frequency activity (common drive to frequency components of the same signal). For

example, typical evoked potentials affect a broad range of frequency components (Makeig et al.,

2002). In this case, high-frequency amplitude increases occur preferentially for certain phases of

slow oscillations even without any need of interaction between the two rhythms. 

Figure 3. A) Time series of stimulus and recorded activity in the retina and optic tectum. The rest of the
panels are based on the electroretinogram only but similar results hold for the optic tectum.  B) Phase locking
values  as  a  function  of  frequency for  a  period  following (blue)  or  preceding  (red)  the  onset  of  visual
stimulation.  C)  Amplitude  of  high-frequency  activity  (80-200  Hz)  locked  to  stimulus  onset  (mean  is
represented in blue while mean plus/minus standard deviation are in grey). D) Amplitude-phase histogram
for the whole time series (100 seconds). E) Power locked to the trough of a low-frequency band (4-8 Hz). F)
Jitter from the peak of high-frequency (80-200 Hz) power to stimulus onset (71 ms; grey line) is always
smaller than to the trough of the phase of lower frequency bands closest to their maximal power (blue line).
This means that most likely input simultaneously affected both the phase of the low frequency component
and the amplitude of the high frequency component, thus generating a false-positive CFC. 
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To illustrate the latter case, we analyzed the CFC patterns of the electroretinogram (ERG) and LFP

recorded  in  the  optic  tectum of  a  turtle  (Pseudemys  scripta  elegans)  during  visual  stimulation

(Figure 3A and  supplementary methods).  The comparison of phase locking values for windows

placed before and after the stimulus onset revealed an increase of phase locking preferentially for

lower  frequencies  (Figure  3B). At  the  same  time,  the  stimulus  elicited  an  increase  in  power,

including the power of high-frequency bands, 80-200 Hz (Figure 3C). The combination of increased

activity at high-frequencies and phase-locking to the stimulus of lower frequencies is sufficient to

obtain significant measures in standard CFC analysis (Figure 3D-E). However, we can gain more

insight into this issue by studying the difference in relevant locking strengths: if the high-frequency

amplitude were indeed modulated by the phase of slower oscillations, we should expect that the

locking  between  these  frequency  components  exceeds  the  one  between  the  amplitude  and  the

stimulus onset. For our recorded data it turned out that the jitter between the peak of the amplitude

of high-frequency activity and stimulus onset was always smaller than the jitter between the peak

amplitude and any phase of the slower rhythm (Figure 3F; we also replicated these results in a

human intracranial recording: see Supplementary Figure 3). This indicates that it was not the phase

of the slower rhythm that controlled the amplitude of the high-frequency activity, but simply the

input which affected both the phase of the low frequency oscillation and the amplitude of the high

frequency activity. 

Therefore, the key issue is to distinguish whether the observed phase-amplitude correlation between

two  bands  is  due  to  common  effect,  generated  by  external  or  internal  input  or  whether  the

correlation is due to a causal interaction between rhythms (which, of course, could also be triggered

by the  input).  Recently,  a  new approach (Voytek  et  al.,  2013)  has  been developed to  measure

transient  phase-amplitude  coupling  directly  in  an  event-related  manner.  Whereas  ideally,  their

approach of analyzing phase-amplitude relations with respect to the stimulus onset should avoid

some event-related artifacts, it is questionable whether the marker actually works as intended (see

Supplementary results:Phase-amplitude coupling for event-related potentials). Ultimately solving

these questions requires a formal causal analysis between the spectral variables of different bands

(see also Supplementary discussion: Causality methods).

The above observations suggest that non-stationary input to a given area can generate correlations

between bands,  which are not  necessarily a  signature of  interactions between these bands.  The

argument goes well beyond the relationship between sensory stimulation and CFC in sensory areas:

if a brain area under a recording electrode receives time-varying input from any other brain area,
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this  input  might  generate  similar  dependencies  across  frequency components  (Figure  4A). The

problem is that usually one has no control over the timing of the internal input to the examined

brain area  (Figure 4B). Thus, phase-amplitude coupling measured anywhere in the brain can be

potentially explained by common influence on the phase and amplitude, without the phase of a low

frequency oscillation modulating the power of high frequency activity.

Figure 4. Illustration of how time-varying input can lead to false-positive CFC. A) Illustration of recordings
in a cortical sensory area (blue) and a higher cortical area (red). B) Importantly, both can be subject to non-
stationary neuronal input but its timing can only be determined for the sensory area. C) Knowing the input
timing is necessary to perform phase locking analysis, distinguish between evoked/induced responses and to
disambiguate the origin of CFC. Without this additional information the results of the CFC analysis remain
ambiguous.   

In conclusion,  the above considerations imply that the current phase-amplitude CFC measure is

constitutive for the non-stationary responses of driven systems and therefore is not a very specific

marker  of  biophysical  coupling.  From  a  mathematical  perspective  the  key  aspect  is  that  any

consistent  response  to  input,  whatever  its  shape,  implies  a  certain  phase  locking  between  its

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 4, 2014. ; https://doi.org/10.1101/005926doi: bioRxiv preprint 

https://doi.org/10.1101/005926
http://creativecommons.org/licenses/by-nc-nd/4.0/


different Fourier components (Gardner, 1986; Mitra & Bokil, 2007). Thus, if the power of any of

the fast components lasts a bit more or a bit less than the period of a slow component, then its

amplitude will accumulate preferably at certain phases of the slow component. This is all that is

needed to give rise to phase-amplitude CFC, as measured for example by the modulation index

(Tort et  al.,  2010).  It  is therefore necessary to recognize that beyond the phase-amplitude CFC

index, which is just an index at the signal level, additional information about how the process under

study reacts to input and the statistics of the input itself are needed to better resolve the origin of

such correlations. Analyses of surrogate data can help to remove some of the ambiguity but only

offers partial remedies to the problem, as we shall discuss next.

Surrogate data: none are perfect but some are better than others

After some index of CFC has been estimated one needs to rely on statistical inference to reach a

conclusion about the statistical significance of the measure. Currently, most studies of CFC rely on

the  frequentist  approach  of  using  surrogate  data  to  estimate  a  p-value.  Some issues  related  to

generation of the surrogate data are discussed here. For the state of some Bayesian approaches see

Figure 5 in the section “Organization of modeling/statistical approaches to CFC”. 

A suitable surrogate construction should only destroy the specific cyclo-stationarities related to the

hypothesized CFC effect, while keeping all the unspecific non-stationarities and non-linearities of

the original data. Often, it is impossible to construct perfect surrogates that selectively destroy the

effect of interest but some approaches are more conservative than others. In our context a sensible

requirement is to construct surrogates that minimize the distortion of both phase and amplitude

dynamics for each frequency component. If data are organized in detectable repetitive events such

as trials locked to an external stimulus or to saccades, shuffling the full/intact phase or amplitude

components between different events seems the most straightforward approach. Unfortunately, the

very existence  of  an  event-related  potential  implies  that  some frequency components  are  both

locked to the event and between themselves. Consequently, this strategy to obtain surrogates alone

cannot  discern  the  source  of  modulation.  Future  developments  of  methods  to  partial  out  the

common drive effect of the event could help to test the significance of a direct phase-amplitude

modulation.

Finding  appropriate  surrogate  data  for  a  single  continuous  stream of  data  comes  with  its  own

challenges. For example, phase scrambling does not meet the minimal distortion criterion, as the

generated surrogate data are fully stationary after scrambling, i.e. the non-stationarities of interest
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and  the  unspecific  non-stationarities  are  both  destroyed  alike  (Nakamura  et  al.,  2006).  A

significantly  larger  CFC in  the  original  data  may in  this  case  be  due  to  the  removal  of  non-

stationarities not specifically related to physiological CFC. Another approach has been using block

re-sampling (Canolty et al., 2006) where one of the continuous time series (i.e., the instantaneous

phase) is simultaneously cut at several points and the resulting blocks permuted randomly. This

method suffers again from destroying in excess the non-stationary structure of the original series.

More conservative surrogates can be obtained by minimizing the number of blocks by cutting at

single point at a random location and exchange the two resulting time courses (Canolty et al., 2006).

Repeating this procedure leads to a set of surrogates with a minimal distortion of the original phase

dynamics.   

Thus,  while  perfect  surrogate  data  that  selectively  disrupt  phase-amplitude  coupling  might  be

impossible to build (as is the case for most types of non-linear interactions) conservative approaches

that minimize distortion of phase and amplitude dynamics can reduce the number of false positives.

 

CFC modulation across conditions

Several studies have reported significant changes in phase-amplitude CFC with variations of experi-

mental parameters or across two different conditions. The modulation of CFC by the task or experi-

mental condition has then been taken as an indication of its physiological role (Axmacher et al.,

2010; Canolty and Knight, 2010; Tort et al., 2009; Voytek et al., 2010). However, for now there is

only little reason to believe that this modulation could not be due to side-effects of more basic

changes between the conditions. 

Since the power of bands directly influences the range within which they can modulate or be modu-

lated, it is possible that changes in CFC correlations are a direct consequence of changes in power

spectra. For example, changes in the observed CFC can have their origins in the fact that power

changes affect the signal-to-noise ratio of phase and amplitude variables and their correlations (e.g.-

Muthukumaraswamy & Singh, 2011). It is thus necessary to control whether correlations between

CFC and other behavioral or physiological variables might be simply due to changes in, for exam-

ple,  the strength or frequency of oscillations.  Unfortunately,  our literature review shows that in

around half of the reviewed studies where conditions are compared, changes in the power spectrum

across the conditions are not considered. If the data permit, it is therefore highly recommended to

rely on stratification techniques (e.g. Schoffelen et al., 2005) to obtain a subset of matched trials in

which the distribution of power across trials is identical for both the phase and amplitude frequency
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bands in the two conditions to be compared. 

In general, as CFC is a statistic based on the correlation of certain variables, it is necessary to con-

trol for the explanatory power of these variables themselves, before a specific role for the correla-

tion might be distilled.

Organization of modeling/statistical approaches to CFC 

Until now we have focused on what we call the classical approach (see Figure 1) to assess phase-

amplitude  CFC  effects  consisting  of:  i)  isolating  frequency  components,  ii)  assessing  their

dependencies, and iii) computing p-values based on surrogates. We have described how difficult it

is  at  this  stage  to  draw  any  conclusions  about  the  biophysical  mechanisms  underlying  these

measures.  However, different frameworks exist to assess relationships among rhythmic processes

from  experimental  time  series.  A short  description  of  some  frameworks  can  be  found  in  the

Supplementary discussion.  For the purpose of understanding the role of different frameworks in

gaining physiological understanding of CFC, we have found it useful to organize them according to

their biophysical interpretability and statistical inference approach (Figure 5). 

We believe the location of the method along those axes (Figure 5) has to be taken into account to

avoid over-interpretations of the results of a CFC analysis. The first section of this paper can be in

fact seen as an explanation as to why some models including the classical approaches are positioned

very close to the “marker” section. For example, a simple correlation-based quantifier as provided

by classical approaches is probably all that is needed, if the sole purpose of CFC analysis is to have

a marker to classify different conditions (e.g. disease states). If one insists that this marker should

be more specific than say just changes in the power-spectrum, already more work is needed, as

discussed  above.  Finally,  if  the  aim  is  to  attach  a  well-defined  physiological  meaning  to  the

observed CFC pattern,  it  is  imperative to have either a generative model or additional external

information,  such  as  obtained  from  a  direct  perturbation  of  the  putative  physiological  CFC

mechanism,  to  link  signal  and  underlying  processes.  Both  of  these  latter  approaches  require  a

biophysical theory to be put forward as to how a neuron or an ensemble of neurons physically

implements  the  coupling.  For  the  moment,  potential  biological  mechanisms  of  cross-frequency

coupling are only starting to be discovered.
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Figure  5. Organization  of  approaches  to  CFC.  (A)  The  process  by which  a  researcher  obtains  a  CFC
measure. “D” signifies the biological dynamical system (that may or may not have biological CFC). “M”
signifies the physical transduction and measurement process, including all physical (unavoidable) filtering
distortion, instrument noise and potentially mixing processes. The measurement process can generate CFC in
absence of biological CFC. “A” signifies the mathematical algorithm applied to the measured data to obtain a
figure of merit for CFC. Typically this step involves filtering or a time-frequency decomposition, and a linear
or nonlinear correlation measure.  As shown in the main text,  also this process can give rise to CFC in
absence of biological coupling, e.g. by ignoring the limits of time-frequency analysis in the face of non-
stationarities. (B) Two-dimensional organization of CFC approaches. The x-axis sorts the approaches by the
statistical inference technique that is used. Frequentist H0 based approaches just test for presence of absence
of CFC in the measured data,  while maximum likelihood or Bayesian approaches perform inference on
coupling parameters in models – and hence only appear for dynamic models with coupling parameters. The
y-axis indicates the part(s) of the process in (A) that are modelled: “A” – just extracting a CFC measure from
measured data is equivalent to modelling this extraction process itself. “M+A” – the generative model now
comprises the measurement process and the measure extraction. “D+M+A” – the modelling comprises a
dynamic model of the biological process, either via a dynamic proxy process that models only the bare
essentials of the dynamics (like a Kuramoto model for phase-phase coupling), or has biological detail (like a
Hodgkin-Huxley model with some explicit  mechanisms implementing CFC). Approaches that  were only
published  for  phase-phase  or  amplitude-amplitude  coupling  are  highlighted  in  blue  text,  conceivable
approaches, that have to our knowledge not been implemented at all yet are highlighted in red. 
(1) The fact that we use some numbers (measured data) and feed them to a mathematical algorithm to obtain
other numbers (the CFC measure) can be modelled by just executing the algorithm. Nevertheless it is a part
of the CFC process model.
(2) By source reconstruction we mean any inversion of the measurement process, e.g. unmixing via ICA,
electromagnetic source reconstruction in electro- or magnetoencephalography, or removal of measurement
noise.
We provided some representative references on the figure: Besserve, M., Scholkopf, B., Logothetis, N.K. &
Panzeri, S. Causal relationships between frequency bands of extracellular signals in visual cortex revealed by
an information theoretic  analysis.  Journal  of  Computational  Neuroscience  29,  547-566 (2010).  Canolty,
R.T., et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science 313, 1626-
1628 (2006). Chen, C.C., et al. A dynamic causal model for evoked and induced responses. Neuroimage 59,
340-348 (2012). Popov, T., Steffen, A., Weisz, N., Miller, G.A. & Rockstroh, B. Cross-frequency dynamics
of neuromagnetic oscillatory activity: Two mechanisms of emotion regulation. Psychophysiology 49, 1545-
1557 (2012). Srinivasan, R. Thorpe, S. & Nunez, P.L. Top-down influences on local networks: basic theory
with experimental implications. Front Comp Neuroscience 7, 1:15 (2013). Wulff, P., et al. Hippocampal theta
rhythm  and  its  coupling  with  gamma  oscillations  require  fast  inhibition  onto  parvalbumin-positive
interneurons. Proc Natl Acad Sci U S A 106, 3561-3566 (2009).

Indeed, whilst there is extensive knowledge about the physiological mechanisms responsible for

different frequency components (Buzsaki, 2006), not much is known about the cellular and network

mechanisms  of  the  interactions between  these  components  (Canolty  and  Knight,  2010).  Only

recently  some  evidence  about  concrete  mechanisms  of  interaction  has  been  obtained  from

intervention studies in physiological systems and computational models. For example,  by using

transgenic mice it has been shown on the level of LFPs that hippocampal theta-gamma coupling

depends on fast synaptic inhibition (Wulff et al., 2009) and NMDA receptor-mediated excitation of

parvalbumin-positive interneurons (Korotkova et al.,  2011). CFC at the LFP level has also been

observed  between  alpha  oscillations  at  the  infragranular  layer  and  gamma  activity  at  the

supragranular  layers  (Spaak et  al.,  2012).  Recently,  it  was  also  shown that  feedback inhibition

enables CFC at the level of membrane potential fluctuations (Pastoll et al., 2013). Thus, biological
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mechanisms for CFC can occur at the population level, at the single neuron level, or both. The most

parsimonious explanation to account for these findings is that the low frequency oscillation reflects

periodic  fluctuations  of  the  membrane  potential  and  thus  excitability,  which  in  turn  gate  the

occurrence of higher frequency activity in a phase specific manner (Pastoll et al., 2013). Typically

this  higher  frequency activity  reflects  spikes  which  could  display a  rhythmic  pattern  (possibly

reflected as gamma oscillations).

 

Along plausible biological mechanisms, one also needs to take into account possible alternative

explanations for non-zero CFC measures. In this perspective we have tried to aid the interpretation

of  CFC  by  demonstrating  that  although  CFC  patterns  are  typically  interpreted  as  reflecting

physiological coupling, they can be also generated 1) by biological processes unrelated to direct

coupling between different neural processes, and 2) by methodological pitfalls. In the following

section we compiled some practical recommendations to help to avoid some of these errors. Taking

these  alternative  explanations  into  account  and  controlling  for  them  experimentally  will  help

towards a clear interpretation of CFC results.

When intervention is not possible another principled approach to test for the presence of biophysical

CFC is a formal comparison of computational models that do or do not incorporate biophysical

CFC mechanisms with respect to their ability to explain the observed data. This could be done for

example  using  sufficiently detailed  Dynamical  Causal  Models  and Bayesian  model  comparison

(Friston and Dolan, 2010). If neither intervention nor formal model comparison are feasible, the

researcher would have to limit the interpretation of observed CFC patterns (see Fig. 5) to that of a

marker. 

To further exemplify the hierarchy of approaches illustrated in Figure 5, we turn to a different, well-

known measure -spectral power analysis. For example, measures of LFP power in the gamma band

can  simply be  used  as  markers  to  classify different  conditions  (lower  left  corner  in  Fig.  5B).

However,  we  also  have  several  reasonable  biophysical  models  (conceptual  and  computational)

about  the  generating  mechanisms  of  hippocampal  and  cortical  gamma  oscillations.  These

mechanisms  were  ultimately  identified  by  interventional  approaches  (pharmacological,  genetic,

lesion) in a variety of physiological systems, as well  as in computational models (Buzsaki and

Wang, 2012). This means the field of spectral power analysis can draw on interventional approaches

as well as formal model comparisons (upper row / right column of Fig. 5B). Nevertheless, we note

that even for the mature field of spectral power analysis a change in LFP power in the gamma band

can  be  due  to  several  biophysical  mechanisms  (change  in  the  number  of  neurons  engaged  in
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oscillations, their synchrony, etc) and these are not mutually exclusive. However, we can still map

changes in gamma activity to a limited number of mechanistic options, each of them relatively well

understood.  Furthermore,  since  we  are  aware  of  several  alternative  explanations  such  as  eye-

movement artifacts that might contribute to gamma-band power changes we can design experiments

to control for them (Yuval-Greenberg et al., 2008). We believe that similar steps will be required

before CFC patterns in a signal can be confidently linked to any concrete biophysical mechanism.

Practical recommendations

As previously discussed we will need progress in several directions to establish phase-amplitude or

other types of CFC as a fundamental mechanism in coordinating neuronal activity. Together with

experimental  and  modeling  advances,  stricter  standards  in  the  use  of  CFC  metrics  are  also

necessary. Below we list practical recommendations to avoid some of the mentioned caveats and

increase the specificity of the most popular phase-amplitude CFC metric (see Fig. 1). Rather than a

comprehensive algorithm this list should be thought as a check list that should help to minimize

technical pitfalls and over-interpretation of phase-amplitude CFC measures in macroscopic signals. 

1 Presence  of  oscillations. Signatures  of  oscillatory processes  with clear  peaks  in  a  time-

resolved power spectrum are indispensable prerequisites. The frequency component for defining the

instantaneous phase should include one of the peaks. 

2 Selection of bandwidths. The frequency band used to define the instantaneous phase should

isolate  energy associated  with  the  oscillatory component  of  interest.  If  the  center  frequency is

relatively stable a natural choice for the bandwidth can be directly obtained from the width of the

corresponding peak in the power spectrum. The latter can be estimated by subtracting from the real

power spectrum that of the background (defined by either a fit or proper baseline). Note that the

band defining the instantaneous amplitude at the higher frequency must be large enough to fit the

sidebands caused by the assumed modulating lower frequency band (figure 2A) and the lower

frequency band should be narrow enough to define a meaningful phase. Therefore, adaptive rather

than fixed bandwidths might be necessary when scanning the modulating frequency in explorative

analyses.

3 Interpretation of instantaneous phase. A meaningful interpretation of instantaneous phase

requires its monotonic growth in time. The presence of phase slips or reverses (also observed as

negative instantaneous frequencies) must be checked and justified. 

4 Precision. The precision of the method used to assign an instantaneous phase and amplitude
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to a signal should be determined for each analysis. The precision of the computation of the Hilbert

transform of a signal  s(t) can be estimated from the variance of  s(t)+H2(s(t)), which analytically

should be identical to zero. Given the non-locality of Hilbert (or wavelet) transforms, edge effects

can be severe. It is recommended to discard at least a few characteristic periods of the signal at the

beginning and end of each segment of interest.

5 Testing for non-linearities. Non-linear responses to input or nonlinearities during the signal

transduction  can  contribute  to  phase-amplitude  CFC.  The  presence  of  harmonics  in  the  signal

should  be  tested  by  a  bicoherence  analysis  and  its  contribution  to  CFC should  be  discussed.

Partialization of phase-phase and amplitude-amplitude coupling is necessary to assess the role of

non-linearities in generating spectral correlations (see also Supplementary results).

6 Testing  for  input-related  non-stationarities. When  the  timing  of  neuronal  input  to  the

recorded area is available, an analysis of relative locking between phase, amplitude and input can

inform about the origin of the correlations. 

7 Temporal  structure. Information  about  the  temporal  structure  of  the  putative  interaction

(e.g., sustained during many cycles versus a transient coupling) can be helpful to better characterize

a presumed CFC and to disambiguate its  origins. The modulation index only offers an average

measure  of  CFC  by  computing  the  distance  from  a  phase-amplitude  histogram  to  a  uniform

distribution.  However,  such  histogram can  be  used  to  identify the  phase  at  which  the  average

amplitude  of  high-frequency  activity  is  maximal.  The  time  series  obtained  by  sampling  the

amplitudes  of  high-frequency  activity  at  that  particular  phase  can  be  used  to  provide  some

information about the temporal dynamics of the coupling.

8 Surrogates. Surrogate data should be created that minimally interfere with the phase and

amplitude dynamics.  For continuous recordings random point  block-swapping is  preferred over

phase scrambling or cutting at several points.

9 Specificity of effects. Differences of CFC indices across conditions should be controlled for

the differences in power at the presumed bands of interaction. The specific role of the coupling can

be better assessed once the explanatory level of the power spectrum has been accounted for: When

trial-based measures are available,  stratification techniques should be used to compare subsets of

trials for which the distributions of power at the bands of interest are identical across the conditions.

Conclusions

Cross-frequency  coupling  (CFC)  might  be  a  key  mechanism  for  the  coordination  of  neural

dynamics. Several independent research groups have observed cross-frequency coupling and related
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it  to information processing,  most notably to learning and memory (Canolty and Knight,  2010;

Lisman  and  Jensen,  2013).  Recently,  CFC has  also  been  used  to  investigate  neurological  and

psychiatric disorders (Allen et al., 2011; Lopez-Azcarate et al., 2010; Miskovic et al., 2011; Moran

and Hong, 2011). Thus, CFC analysis is potentially a promising approach to unravel brain function

and some of their pathologies. 

In the present manuscript we have reviewed some confounds that hamper phase-amplitude CFC

analysis.  Importantly,  these  confounds  have  not  been considered  in  a  significant  percentage  of

recent publications and may have contributed to over-interpretations. This is a serious issue that

needs to be resolved because CFC analysis is potentially a powerful tool to reveal fundamental

features of neural computations. An obvious first step is to adopt stricter standards and canonical

procedures for CFC analysis. To this end we suggested a – probably incomplete – list of controls

that  should  be  routinely  checked.  We  have  also  attempted  to  organize  the  current

modeling/statistical approaches to CFC in order to better identify their respective advantages and

pitfalls and to point out where further methodological advances are required. 
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Supplementary Materials

Materials and Methods

Analysis of CFC

All  analyses  were  performed  using  custom built  MATLAB routines.  To  extract  the  frequency

components, all signals were band-filtered with a two-way least-squares FIR filter (eegfilt.m from

the EEGLAB toolbox [1]). For each component of interest, instantaneous phase and amplitude were

estimated  by the  analytical  signal  approach.  The  Hilbert  transform was  applied  to  the  filtered

signals in order to define the imaginary part of the complex-valued time series (with real part being

the  filtered  signal).  The  polar  coordinates  of  these  analytical  signals  define  the  instantaneous

amplitudes and phases. 

The power plots locked to phase-troughs of slow components used to create Figure 3 (panel E),

Supplementary Figure 1 (bottom panel),  Supplementary Figure 2 (panel C), and Supplementary

Figure 4, were implemented as described in the supporting information of Ref.[2]. 

The modulation index used in Figure 5 (bottom panels), Supplementary Figure 2 (panel D), and

Supplementary Figure 4 (bottom panels) followed the original formulation by Tort et al. [3]. All

modulation indices and histograms of mean amplitudes were computed for 20 equally-sized bins for

the phase variable.

Data collection for Figure 3 in the main text

We recorded neuronal  activity from the retina  and the  tectum of  the turtle  (Pseudemys  scripta

elegans) to analyze the effect of stimulus input on cross-frequency coupling. 

Preparation. Experiments were approved by the German local authorities (Regierungspraesidium,

Hessen,  Darmstadt).  One  turtle  (Pseudemys  scripta  elegans)  was  anesthetized  with  15  mg

Ketamine, and 2 mg Medetomidinhydrochloride and decapitated. The entire brain with the eyes

attached was removed as described in Ref.[4]. The brain was placed in a petri dish and superfused

with oxygenated ringer.  The ringer consisted of (in mM) 96.5 NaCl,  2.6 KCl,  2.0 MgCl2,  31.5

NaHCO3, 20 D-glucose, 4 CaCl2 at pH 7.4 and was administered at room temperature (22 C). 

Electrophysiological recordings. The electroretinogram was recorded with a chlorided silver wire in

a Vaseline well that was built around the right eye. The tectal signal was recorded in a superficial

layer at the center of the left tectum with a quartz/platinum-tungsten electrode (Thomas Recordings,

Giessen, Germany) with impedance 1 MΩ at 1 kHz. Data were amplified and filtered (1 Hz to 6
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kHz) before being digitized at 32 kHz. For the analysis, data were low-pass filtered with 240 Hz,

down sampled to 500 Hz and cut into 60 trials with 50 s each. 

Visual stimulation. A sequence of red LED light pulses with random duration (uniform distribution

between 1 ms and 2 s) and random inter pulse interval (uniform distribution between 1 ms and 5 s)

was triggered via the parallel port using MATLAB and the Psychophysics Toolbox extension [5,6].

A light guide projected the full field flashes onto the retina.

Data collection for the Supplementary Figure 3

Recordings. We analyzed electrocorticograms from 2 subjects with pharmacoresistant epilepsy who

had  implanted  strip  electrodes  (AD-Tech)  on  their  visual  cortex  for  diagnostic  purposes.  The

electrodes were referenced to linked mastoids, amplified (Schwarzer GmbH), and recorded at  a

sampling rate of 1000 Hz. The location of electrode contacts was ascertained by MRI. 

Visual stimulation. The subjects were presented with brief (150 ms) noisy images containing or not

containing a person on them. The subjects had to indicate via a button press whether they had

perceived a person on the image or not and whether  the person was male or female.  The pre-

stimulus time window was from -1000 ms to 0 as aligned to the stimulus onset and post-stimulus

epoch corresponded to the time interval 0 to 1000 ms. The response screen appeared only after that,

thus our analysis time window did not contain motor responses. Supplementary Figure 2 shows the

results of the CFC analysis for one of the representative electrodes in the vicinity of the extrastriate

body area (MNI coordinates -56, -67, -8).

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 4, 2014. ; https://doi.org/10.1101/005926doi: bioRxiv preprint 

https://doi.org/10.1101/005926
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Results

Literature review

To assess the prevalence of the critical issues presented in the current manuscript we conducted a

literature review. In particular, we evaluated papers that appeared over the recent years (2010-2014)

to demonstrate that the caveats discussed in the main text are timely. To show that the problems are

prevalent also in the key journals of the field of neuroscience, we analyzed papers from journals

Science, PNAS, Neuron, Journal of Neuroscience and Neuroimage (our search terms did not yield

papers in Nature or Nature Neuroscience). We searched for articles in PubMed with terms “cross-

frequency coupling”, “phase-amplitude coupling”, “cross frequency interactions” and “nested phase

amplitude”. We added manually one high-ranking paper that did not come up with those searchers.

We excluded three papers that came up in the search but focused on phase-phase or amplitude-

amplitude coupling. A total of 22 articles were evaluated according to five criteria, each related to

one of the main issues discussed in the main text, and detailed as follows.

- Phase interpretability. As stated in the main manuscript and the supplementary discussion, a

meaningful interpretation of a phase variable, and thus of a phase-amplitude CFC pattern,

requires a clear peak in the power spectrum. Therefore, we first assessed whether the paper

provides  evidence  for  a  spectral  peak  for  the  modulating  frequency  component.  We

concluded that the paper did that if there either was a remark about a respective spectral

peak in the main text or in the supplementary material or if any of the figures presented

either a power spectrum or a time-frequency representation which allowed us to conclude

that  there is  a  spectral  peak.  We categorized  the paper  as  not  providing evidence  for  a

spectral  peak  when  there  was  no  remark  about  a  peak  and  when  there  was  no  figure

depicting either power spectrum or time-frequency decomposition or when the respective

figure did not contain evidence for a spectral peak.  We also categorized the paper as not

having evidence for a spectral peak, when more than 50 different channels were analyzed

and it was not stated in the text that the authors took care that each channel which had or

was part of a significant coupling had a spectral peak for the modulating frequency. 

- Selection of bandwidth. We studied how the bandwidth selection or scanning was done. This

was usually straightforwardly reported in the methods section. In particular, we evaluated

whether the bandwidth met the condition that should allocate sidebands of the modulating

(phase) frequency. When the paper just scanned the whole frequency band with some fixed

frequency  step  without  further  discussion,  the  paper  was  classified  as  not  providing  a

justification for the chosen bandwidth. 
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- Non-stationarity. As explained in the main text, non-stationary input to a given area can

create CFC patterns even when there is no physiological coupling. We assessed whether the

paper discussed the effects of non-stationary inputs potentially leading to the observed CFC

measure. 

- Surrogates. We considered how the surrogate distribution was created. As reported in the

main text, most conservative surrogates are obtained by minimizing the number of blocks by

cutting at single point at a random location. The computation of the surrogates was usually

reported in the methods  section. We classified the paper as having tried to construct most

conservative  surrogates  if  for  event-related  data  trial-shuffling  was  used  and  if  for

continuous data the data were cut in one point. Otherwise, e.g. if phase scrambling was used

or if continuous data was cut in many points, we classified the paper as not constructing the

most conservative surrogates. If the paper did not use a surrogate distribution, e.g. when the

effect was computed by comparing two conditions, we did not count the paper.

- Control for spectral changes across conditions. We assessed whether the effects of potential

differences of the power spectrum were taken into account or controlled for while analyzing

CFC differences between conditions. As explained in the main text, differences in spectral

power  can  lead  to  differences  in  CFC without  a  true  change  in  coupling  strength.  We

classified the paper as not having a control for the effects of the power spectrum if it was

reported that the power spectrum differed between the analyzed conditions but it was not

evaluated  the  impact  of  such difference  on  the  CFC measure.  When  the  paper  did  not

analyze differences between conditions or the conditions did not differ in the magnitude of

CFC, we did not count the paper. We classified the paper as taking care of the differences in

the power spectrum when the authors acknowledge that differences in the power spectrum

could lead to differences in CFC and take steps to deal with the issue.

Results of the literature review

Issue Yes No % Yes Papers not
counted

Are spectral peaks identified
for the (modulating) low
frequency component?

10 12 45.45%

Is there justification for the
chosen bands? 

3 19 13.36%

Is the possibility of non- 3 19 13.36%
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stationary input leading to
observed CFC patterns

discussed?

Are the surrogates constructed
in the most conservative way?

10 4 71.43% 8

Are the differences in the
power spectrum accounted for?

8 7 53.33% 7

Examples of spurious cross-frequency coupling (CFC)

Cross-frequency coupling analysis is aimed at detecting specific spectral correlations. However, the

origins of such correlations are diverse and not always reflect interactions across frequencies. Here

we first show that a single oscillator can readily exhibit cross-frequency coupling features simply by

virtue of its non-linear properties. We illustrate this case with the well-known Van der Pol system

which is a generic model of non-linear relaxation oscillators. Its evolution is given by the following

differential equation

where  represents a non-linear dumping coefficient. Top panel in Supplementary Figure 1 shows

the  time  series  of  the  oscillator  for  .  Bottom  panel  shows  the  power  of  high-frequency

components  when  locked  to  the  trough  of  the  phase  of  a  low  frequency  band  around  the

fundamental  period  of  the  oscillation.  In  both  panels  a  phase  dependent  modulation  of  high-

frequency power (phase-amplitude CFC) is observed. 

However,  such  systems  are  not  necessarily  decomposable  into  two  subsystems  oscillating  at

different  frequencies  and  causally  interacting.  Instead,  the  spectral  correlations  can  be  simply

related to the shape of the oscillatory orbit and the non-linear characteristics of a single oscillator. In

particular, the non-linear damping (damping dependent on the state of the oscillator) is responsible

for an increasing slope for certain states of the oscillator which is reflected in high-frequency power

being associated with certain phases of the fundamental oscillatory frequency.
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Supplementary Figure 1. Cross-frequency coupling can arise in a single non-linear oscillator. Top panel:
time series of a Van der Pol  oscillator with non-linear dumping coefficient =  3. Bottom Panel:  power
locked to the trough of the phase of a low frequency component (frequency band (0.005-0.02 cycles/time
unit)). CFC analysis can confound non-linear features of oscillations as interaction across frequencies. 

A second example of how CFC does not need to imply interactions across frequencies is given by a

simulated spiking process. For the time series we have taken numbers 1, 2 ... 30000 and set them to

1 if the number is prime and 0 otherwise. The sampling rate of this signal was nominally set to 1000

Hz. With this procedure we constructed a point process in which spikes occur at the bins that are

prime numbers. As CFC analysis is performed for continuous signals and not for point processes as

in  the  example  above,  we  convolved  our  time  series  with  a  smooth  kernel  (an  alpha-function

mimicking  the  conductance  response  of  a  synapse  to  incoming  spikes).  As  evidenced  in

Supplementary Figure 2 and confirmed by calculating the CFC measures, the artificial series also

shows  very  strong  CFC.  In  this  example,  the  spiking  events  anchor  both  the  phase  of  slow

frequency bands and the high-frequency components of the kernel function, which automatically

leads to CFC. 
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Supplementary Figure 2.  Point processes (even when convolved with a smooth kernel) lead to CFC.  A)
Point  process  where spiking events  occur  at  bins  that  are  prime numbers.  B) Convolution of  this  point
process with an alpha function with a time constant of 5 ms. C) Power of high-frequency activity locked to
the trough of low-frequency activity (4-8 Hz). D) Kullback-Leibler divergence between the amplitude-phase
distribution of the time series and the uniform distribution (modulation index). 

Another curious time series for which we found CFC effects are the intervals between consecutive

zeros of the Riemann Zeta function (only zeros on the axis with real part  ½ were considered).

Results not shown.

Effect of input on CFC in human intracranial recordings

As in the turtle  case (Figure 3 in the main text),  the brief  visual  stimulation led to an overall

increase of power (Supplementary Figure 3, panels A and C). Concomitant with the stimulus phase

was reorganized predominantly at low frequencies, as measured by phase locking value, (panel B).

As a consequence of power and phase adjustments, the mean amplitude-phase histogram following

stimulation is non-uniform (panel D). The pairing amplitude and phase of different trials renders the

histogram uniform (panel E). To determine whether the observed cross-frequency coupling is due to

an interaction across frequencies or simply an effect of the stimulus, a jitter analysis is presented in

panel F. Jitter (as measured by the standard deviation of a series of time differences) from the peak

of high-frequency power (80-200 Hz) to stimulus onset is around 80 ms (grey line). The black line

represents the jitter from the peak of high-frequency power to the trough of the phase of the slow

components closest to their maximal power. For a range of frequencies, the jitter between power

and stimulus onset is smaller (more locked) than the one between power and phase (less locked).
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This suggests that a common drive from the time-varying input is a more plausible explanation for

the correlation than a putative interaction between frequency components.

Supplementary Figure 3. Analysis of human ECoG in a high order visual area showing that non-stationary
input leads to positive measures of CFC. A) Power Spectra for a period following (blue) or preceding (red)
the onset of visual stimulation.  B) Phase locking values as a function of frequency (colors as in A).  C)
Amplitude of high-frequency activity (80-200 Hz) locked to stimulus onset (mean is represented in blue
while mean plus/minus standard deviations are in grey). D) Amplitude-phase histogram for the time window
of 500 ms following stimulation. E) Same as D, but pairing amplitude and phase from different trials. F) The
jitter from the high-frequency (80-200 Hz) power peaks to the stimulus onset (77 ms; grey line) is always
smaller than the jitter measured from the lower frequency trough closest to the maximal high frequency
power (blue line).

Phase-amplitude coupling for event-related potentials (ERPAC)

Recently, a new approach [7] has been developed to measure transient phase-amplitude coupling di-

rectly in an event-related manner. Whereas ideally, this approach of analyzing phase-amplitude rela-

tion with respect to the stimulus onset should avoid some event-related artifacts [7], we find that

some extra works is needed to show to the marker actually works as it is meant to. Indeed, for the

moment we have found that important confounds would need to be controlled for before assigning
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any role to the variance explained by a phase variable (see below, Supplementary Figure 4). The ex-

tent of the influence of this and other types of confounds is not clear and should be more carefully

examined.

The problem seems to lie in the fact that the underlying model is too unspecific: it is looking for one

correlation relation, where as it is well possible that both phase and amplitude vary commonly due

to some other third factor that is not accounted for. This is indeed a common problem in neuro-

science and many other fields. However, in our specific case it seems that generically many other

variables of the recorded signal besides the phase of a low-frequency band will have explanatory

power of the variance across trials. For example, some variability in the response latency to input

together with the phase locking of some frequency components to the response will already give

rise to high ERPAC measure. The origin of such jitter can be manyfold, and the associated variance

across trials can be carried by many other spectral variables than the phase of a low-frequency band.

It is highly questionable whether it is helpful to interpret all jittered input with the capability to lock

some frequency components as a phase-amplitude coupling.  

In Supplementary Figure 4 below we illustrate this case and compared to those of purely evoked

and induced ERPs. Note that p-value for panel C in Figure 4 is smaller than 10-11 for extended re-

gions near the stimulus response. 

Supplementary Figure 4. Event-related phase-amplitude coupling (ERPAC) as detected by the method of
Voytek et al.  A) One representative trial (top) and ERPAC (bottom) measure for a signal with oscillatory
components phase locked to a fixed onset (at 1000 ms). B) One representative trial and ERPAC measure for
a signal with oscillatory components not phase locked over trials. C) One representative trial and ERPAC
measure for a signal with oscillatory components phase locked to a jittered input response (simulated by a
Gaussian amplitude profile). In all cases the signal is composed by white noise plus two sinusoidal compo -
nents (6 Hz and 50 Hz) that were modulated by a Gaussian profile (mean = 1320 ms; standard deviation =
100 ms) whose center is randomly jittered over trials (jitter = 40 ms). ERPAC measures were obtained from
the code available at http://darb.ketyov.com/professional/publications/erpac.zip
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We also observed that in the concrete example above, as expected, already the amplitude of low fre-

quency component explains the variance of the amplitude of high frequency component. It is thus

plausible and possible that replacing the bivariate generalized linear model used in the article with a

multivariate model (for example including the amplitude of the low frequency component), could

point down a more specific statistical relation between a high-band amplitude and low-band phase

at any fixed time-point more specifically. 

However, even if the method can be cleaned to avoid some confounds, i.e. made more specific in

terms of relating amplitude and phase, any interpretation of this time-point wise amplitude-phase

coupling already presupposes that phase-amplitude coupling as a mechanism exists.  Ultimately,

since causality and mechanisms develop over time not trials the lack of time as a regressor in a

model can lead to serious over-interpretations as with the example mentioned above.  

Atmospheric noise shows CFC after squaring the signal

Another concern with interpreting cross-frequency interactions is role of non-linearities in creating

such correlations.  The signal  provided by a  neurophysiological  recording can be influenced by

different non-linearities. Some of them are intrinsic to basic neuronal processing such as nonlinear

dendritic summation caused by voltage-gated conductances. Others, however, might be of a more

mundane origin. These non-linearities can include the electrical properties of the neuronal tissue

(e.g., activity-dependent resistivity changes [8]) or small deviations from linearity occurring at any

stage of the transduction from the neuronal generators to the final output signal that is subject to

analysis. 

To test the effect of static non-linearities in CFC analyses, we compared the CFC patterns of a

random time series and its square. The random time series is composed of uniformly distributed

random numbers taken from a physical source (10000 samples of atmospheric noise were taken

from www.random.org). As shown in Supplementary Figure 5, random noise does not contain any

evident structure of phase-amplitude coupling. However, the square of this random signal displays a

clear modulation. Therefore, non-linearities can confound the CFC measures.
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Supplementary  Figure  5. Non-linearities  can  generate  specific  patterns  of  CFC even for  random data
(atmospheric  noise,  10000  samples,  nominal  sampling  rate  1000  Hz).  Top  panel:  power  at  different
frequencies locked to the trough of phase of a low frequency component (4-8 Hz). Bottom panel:  same
analysis as in top panel but for the signal obtained by point-wise squaring the atmospheric noise time series.

Small static non-linearity in ECoG data generates CFC

Adding a statistically negligible contribution (Pearson coefficient of correlation between original

and distorted signal ~0.99) of a squared signal to an ECoG signal not showing any significant CFC,

will render CFC highly significant (Supplementary Figure 6). 
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Supplementary Figure 6. Left panels: original ECoG time series (top) and modulation index from REF.
[14] (bottom). Right panels: the same signal after the addition of 10% of its square, and the corresponding
modulation index. Notice that the signals (top panels) look very similar, but the modulation index on the
right is much stronger. This result shows that even small non-linearities can create significant false-positive
CFC patterns.

This result is natural as even small non-linearities readily create harmonics which can spread over

the whole spectrum and, thus,  generate long-distance spectral  correlations for a continuous and

large range of frequencies. Importantly, such non-linearities can create specific CFC patterns, where

the greatest amplitude of the high-frequency component is related to a specific phase of the low

frequency component. For a simple mathematical example of a non-linearity see next section. 

Mathematical example of a non-linearity

For a simple mathematical example of a non-linearity consider a harmonic wave with frequency f 
given by:

and a non-linear version of x that to a second-order approximation is given by: 

with the approximation holding if a << 1. Now let us show that in this case the Hilbert amplitude of 

y is a function of the Hilbert phase of x. Hence if we imagine that we filter y first only narrowly 

around the frequency f (thereby isolating x) for extracting the phase, and then widely around 

frequency 2f (thereby isolating y) for computing the amplitude, then we will get perfect phase-

amplitude coupling. 

The proof proceeds as follows. The Hilbert phase of x is by definition seen to be 2ft modulus 2. 

The Hilbert amplitude of y can be found by constructing the analytic signal of y by just using two 

facts: 1) analytic signal of harmonic oscillation is given by its complex form, and 2) Hilbert 

transform is linear. Hence, the analytical signal of y is 
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Now this can be rewritten as 

.

From here we can see that the Hilbert amplitude of y is equal to 

and hence an exact function of the phase of x.
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Supplementary Discussion

Conditions for a meaningful phase

Intuitively,  a phase is a parameter that tells  us where we are within a cycle of some repetitive

motion or variation. The amplitude informs us about the span of that motion. For a simple harmonic

motion (s(t) = a*cos(t)), the amplitude is constant and the phase indexes the position along the

cycle. Importantly, the phase is useful because it is an index that grows monotonically within a

cycle, i.e., the larger the phase the larger the completed fraction of the current cycle. Geometrically,

amplitude and phase correspond to the distance to origin and the angle subtended by the complex

function a*cos(t)+i a*sin(t), respectively. Notice that the imaginary part is a 90 degrees shifted

copy of the original signal (cosine becomes sine). 

When faced with a less regular signal  s(t), the  task of assigning a phase and amplitude is more

delicate  since  there  are  infinitely  many  pairs  of  functions  a(t)>0 and  (t) that  satisfy  s(t) =

a(t)*cos((t)). Which one to choose? Gabor elegantly proposed the analytical signal approach to

provide a unique and unambiguous solution [9]. The idea is the following: since we know how to

define a phase and amplitude for a single sinusoidal, we can decompose the signal in its Fourier

components  and  repeat  a  similar  procedure  for  each  component.  This  leads  to  the  complex

analytical signal the real part of which is the original signal s(t) and its imaginary part is formed by

90 degrees shifted copies of the original signal’s Fourier components. The Hilbert transform (H)

sums  up  these  decomposition  and  shifting  operations,  and  the  analytical  signal  of  s(t)  is  thus

represented as sa(t)= s(t)+i H(s(t)).

However,  as several  authors have noted [10],  a  clear  interpretation of the phase and amplitude

obtained by this or, indeed, any other method is restricted to narrow-band signals. Thus, although

the  analytical  approach  yields  an  instantaneous  phase  and  amplitude  for  any  signal,  the

interpretation  is  only clear  if  the  signal  does  not  deviate  much  from being  a  smooth  periodic

function. Fortunately, the narrow-band condition covers the presence of moderate noise and smooth

frequency fluctuations  since in that case the signal  will  be still  narrow-band but with a slowly

varying center frequency. The main issue is that for narrow-band signals amplitude and phase can

be considered as separate and independent entities, while this is not the case for broad-band signals.

Take the example of a modulated signal  s(t) = a(t)*cos((t)) in which some physical meaning is

attached to  a(t) and  (t). When  (t) is a smooth function of time and  a(t) changes slow enough

within each cycle (i.e., an increase of (t) by 2), then s(t) will result in a narrow-band signal where

phase and amplitude are separable variables. In this case the estimation of phase and amplitude via
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analytical signal analysis or other approaches can recover the exact modulated values of (t)) and

a(t) from only s(t). The technical reason for this result is known as the Bedrosian theorem [11]. This

theorem also implies that for broad-band modulated signals where the spectra of a(t) and cos(t))

overlap,  the phase and amplitude estimated from the analytical  signal  will  be composed by an

intricate mixture of a(t) and (t). Moreover, values of the estimated instantaneous frequency (seen

as a derivative of the instantaneous phase) could even take negative values. Importantly, this is not a

problem of any particular approach but it reflects the fact that irregular signals might have degrees

of freedom that cannot be faithfully represented by just a smoothly changing phase-amplitude pair.

Indeed,  the analytical  signal  approach can be considered as  the optimal  two-dimensional  delay

embedding of a univariate signal to estimate its phase and amplitude. However, many signals need a

higher  number  of  dimensions  to  be  fully  unfolded  [12].  In  that  case,  insisting  on  the  two

dimensional  description  of  the  signal  (by  phase  and  amplitude  or  any  other  pair)  results  in

projecting  all  the  degrees  of  freedom into  just  two  variables  and  thereby  compromising  their

interpretability. 

It  is  noteworthy  then  that  phase-amplitude  CFC  is  frequently  investigated  for  regions  in  the

spectrum that locally exhibit a power law, i.e., P(f) =1/f-, and thus do not contain a peak [13]. For

these regions, applying a narrow-band filter of a few Hz will render a signal with smooth phase and

amplitude dynamics. However, this apparent smoothness is a simple result of filtering, and not a

sign that there are processes in this spectral range that indeed have a smooth, or even meaningful,

phase. Hence, narrow band filtering in regions exhibiting 1/f-  power spectrum does not lead to an

interpretable  phase,  despite  its  apparent  smoothness.  Thus,  findings  of  spectral  correlations  at

regions exhibiting 1/f-decays should be interpreted extremely carefully. 

In sum, only a natural concentration of power around some center frequency in a time-frequency

decomposition enables a meaningful interpretation of the phase, and, thereby, CFC analysis.

The importance of the bandwidth

The concentration of power around some frequency is a necessary prerequisite for a meaningful

interpretation  of  the  phase  of  a  signal.  Thus,  for  the  phase  variable  the  center  frequency and

bandwidth selected should define a range that includes at least one peak of the spectrum. Even

under such condition the value of the width severely affects the results. A too narrow filter, at least

compared to the natural width of the peak, will result in a smooth and well-behaved phase which,

however, is hardly representative of the underlying oscillatory but variable signal. A too broad filter

can result in an ill-behaved phase with phase slips or reversals by incorporating 1/f components.

Importantly,  both  cases  can  lead  to  a  loss  of  sensitivity  and  interpretability  of  the  analysis.  A
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possible strategy is to precisely exploit the freedom of the bandwidth to look for a sweet point

where the phase dynamics shows maximal robustness against small bandwidths changes. Another

heuristic but natural choice is to select the bandwidth as the range around the peak that clearly

stands  out  from the  background  of  the  power  spectrum.  If  a  good  fitting  for  the  background

spectrum is available, then subtracting the real and interpolated spectra can deliver an estimate of

the width [14]. Finally, if additional physiological information is available it might be possible to

use functional criteria to select bands. For example, if interested in CFC of human occipital alpha

rhythms it is probably more appropriate to find subject specific alpha bands rather than to select a

fixed band ranging from 8 to 12 Hz.

Now we turn to the issue of selecting an adequate bandwidth for the frequency component defining

the instantaneous amplitude. Following the example in Figure 2, suppose it is known that the lower

frequency component is around f1 (frequency for extracting the phase) and the higher oscillatory

component around f2 (frequency for extracting the amplitude). If one would filter with a bandwidth

smaller than 2f1 centered at f2, one would come to the representation [**] and the amplitude of the

higher component would be constantly 1, hence independent of the phase of the lower frequency

component. However, if one filtered with a bandwidth bigger than 2f1, the higher component would

be defined as the first summand in the representation [*] and hence show CFC. Therefore, our

choice of bandwidth defined not only how we should mathematically think of the function, but also

whether we can observe CFC. This hints at the possibility of obtaining false-positive and false-

negative results  in  cross-frequency analysis  depending on the choice of frequency components.

Importantly, to characterize CFC patterns one usually scans the center frequencies f1 and f2 while

keeping  the  bandwidth  of  their  components  fixed. However,  a  fixed  bandwidth  is  problematic

because the critical bandwidth to observe modulation (detecting the sidebands around f2) depends

on the  value  of  the  lower  frequency f1. In  particular,  this  restricts  CFC measures  to  find  low

modulating frequencies (f1) where sidebands fit within the chosen bandwidth, and thus creates an

extreme bias against observing potential phase modulations by higher frequencies (Figure 2B,C). A

similar case has recently been raised in [15].

Different model/statistical approaches to assess phase-amplitude CFC 

Different methods exist to attack the problem of assessing relationships among rhythmic processes

from experimental time series.  A possible  historical  classification of different frameworks is  as

follows: non-linear systems analysis, Fourier based methods, classical stationary time series, non-

parametric approaches, and causal statistical modeling. We include below a brief description of each

of the mentioned methods. 
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Notice that in the main text, we find it more helpful to classify concrete methods for CFC analysis

using two almost orthogonal dimensions.

 I) Fourier/wavelet analyses.  These start by projecting the data onto a given basis of oscillatory

functions. This first step is indeed common to most of practical approaches to CFC. Fourier/wavelet

approaches lack an explicit formulation of a model in terms of equations describing the temporal

evolution  of  relevant  variables.  However,  once  a  basis  or  dictionary  of  functions  is  selected

(oscillatory or  not)  the  projection  of  data  onto  such basis  amounts  to  describe  the  signal  as  a

weighted sum of systems, each of them assuming the dynamics of one basis function. Higher-order

spectral  quantities,  such  as  bi-coherence,  aim  to  capture  correlations  between  the  complex

components of an oscillatory basis, and thus, putative CFC relations. The double Fourier transform

of  a  time-  or  phase-dependent  autocorrelation  function  can  also  be  used  to  characterize  cross-

frequency correlations [16]. Unfortunately, higher order functionals are increasingly more difficult

to estimate, and multivariate extensions of such approaches are very limited from a practical point

of view. The most widely used phase-amplitude CFC measures [2,3] can be though to measure

undirected correlations or dependencies between the frequency components of this class of models. 

II) Classical time series techniques. They largely refer to regression techniques such as fitting the

data into models such autoregressive moving average processes and its many and important variants

both in the time and frequency domain. The strong restrictions of the models (e.g. linearity) are

responsible for the extreme data-efficiency and practicality of its multivariate extensions. Models

explicitly incorporating cyclo-stationarity (non-stationary components  that repeat  periodically as

used to model seasonal components of financial and geophysical models [17]) can readily serve to

quantify certain phase-amplitude CFC effects. Other models exist to regress amplitude variables to

non-linear functions of the phase such as the generalized linear models proposed by Penny et al.

[18]. Due to the restrictive assumptions of the models, they can easily fall beyond the range of

interactions actually occurring in complex systems.

III)  Non-linear  systems  analyses. These  analyses  typically  assume  that  a  low  dimensional

dynamical system governs the evolution of variables extracted from measured signals. For example,

the Kuramoto model can be used to describe the non-linear interaction between the phases (phase

coupling) of coupled oscillators. Coupling terms and other coefficients are then fitted/estimated

from the data providing a direct interpretation of the interdependencies between variables. For the

Kuramoto example, given the time series of the phases from the measured signals, one can estimate

the phase-to-phase coupling coefficients between different oscillatory recordings (see [19] for an

efficient implementation of maximum-likelihood inference for Kuramoto networks). Similar models

are conceivable for the phase-amplitude problem (Stuart-Landau equations). In general, this class of

approaches offers an explicit dynamical model of the relations between different variables extracted
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from a signal, and can easily account for multivariate descriptions (e.g., by adding more coupling

terms), and these approaches are data efficient compared to non-parametric approaches. However,

while  certain aspects  of  the model  can  be justified on theoretical  grounds,  they usually lack a

physiological foundation.

IV) Non-parametric  approaches. These aim to estimate relationships between variables without

assuming any specific structure of the model, which makes them ideal for explorative analysis.

Often  they  make  use  of  probability  or  state-space  based  descriptions  of  variables  and  their

relationships, which are sensitive to all nonlinear order interactions as it is the case with information

theory  functionals.  Transfer  entropy  for  example,  aims  to  capture  Wiener/observational  causal

relations  between  variables  (possibly  related  to  processes  at  different  frequency  bands)  by

quantifying the increase of predictability about the future states of one variable once the information

about the present and past states of another variable are included. However, these approaches are

typically highly expensive in terms of data, especially in multivariate settings due to the curse of

dimensionality.  Thus,  practical  estimators  must  rely  on  certain  mild  assumptions  such  as  the

smoothness of probability distributions and the wide-sense stationarity or ergodicity of the time-

series [20]. 

V) Causal statistical modeling. It offers a scheme to compare how much evidence the data provide

about  particular  models  or  hypotheses.  The hypotheses  are  usually  formalized  by a  generative

model that can incorporate experimental manipulations plus some measuring functions, which relate

relevant  physical  variables  to  the  magnitudes  detected  by  the  experimental  apparatus.  Such

procedures typically rely on Bayesian inference to incorporate prior knowledge and estimate the

evidence for  the different  models once new data  has been collected.  Dynamical  causal  models

(DCM) are being developed to account for biophysical descriptions of neuronal interactions [21].

Unfortunately a practical setting for inferring phase-amplitude cross-frequency interactions has yet

to be developed.

Other  possibilities  include  parametric  approaches,  as  for  example  fitting  phase-amplitude

histograms to Von Mises distributions [22].

The transitivity of correlation between phase and amplitude

In non-linear  oscillators,  amplitude and phase are intrinsically coupled and thus simultaneously

influenced  by  generic  perturbations  (e.g.  input).  Thus,  under  natural  conditions  it  is  almost

impossible to selectively modify the amplitude, without changing the phase and vice versa [23].

Moreover, since amplitude and phase can exhibit different susceptibility to perturbations or inertia it

is  not  trivial  to  infer  causal  relationships  from the  timing  of  their  dynamics.  In  addition,  the
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transitivity of correlations makes it hard to distinguish whether the phase of one process and the

amplitude  of  another  are  directly  or  indirectly  linked,  namely  via  phase-phase  or  amplitude-

amplitude  coupling  (Supplementary Figure  5A).  For  example,  the  phase  of  the  low frequency

component (L) might influence the phase of the high frequency component (H) (phase-phase

coupling). Since phase and amplitude of the high frequency process are intrinsically coupled, one

will observe phase-amplitude coupling. Consequently, it is advisable to partial out indirect ways

(e.g. phase-phase coupling) of phase-amplitude modulation in order to assign a functional role to a

specific type of coupling.  Notice that also some of the vertical couplings in the Supplementary

Figure 7A can also appear as a function of the estimators used to define phase and amplitude. For

example,  the  amplitude  and  phase  defined  by  the  analytical  signal  approach  (using  Hilbert

transforms)  are  not  fully  independent  and  even  a  nominal  change  in  one  of  them  induces  a

perturbation in the other (Supplementary Figure 7B).

Supplementary Figure 7. A) For non-linear oscillators phase and amplitude at  the same frequency are
intrinsically linked. Therefore, there are different ways to obtain phase-amplitude coupling between a low
(L) and a high (H) frequency component of different oscillators.  B) Estimation of instantaneous phase and
amplitude can also couple phase and amplitude dynamics. Nominal changes in either the amplitude (left) or
phase (right) of a sinusoidal are simultaneously reflected in both the instantaneous phase and amplitude as
obtained by the analytical approach (Hilbert transform).

Supplementary discussion on causality methods

Currently  applied  observational  causality  approaches  meet  several  difficulties  that  need  to  be

resolved before they can be applied to cross-frequency interactions of neurophysiological data. The

original Granger formalism is restricted to linear relations, disregarding any cross-frequency effects.

Some attempts  have  been  made  to  apply similar  techniques  to  assess  linear  causality  between

instantaneous  phases  and  amplitudes  of  different  spectral  bands  but  these  interactions  may

themselves be mediated by highly non-linear processes and thus remain invisible for the Granger

formalism. On the other hand, non-parametric approaches such as transfer entropy (accounting for
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all orders of non-linear interactions) typically need long stretches of data to be reliably estimated. In

addition, the uncertainty principle of harmonic analysis limits the temporal resolution with which a

spectrally resolved component can be localized. By this principle low frequency components will be

more  temporally  smeared  than  high  frequency components.  Thus,  the  onset  of  low  frequency

components will be advanced more than that of high frequency components if non-causal filtering

procedures such as the Hilbert transform are used. The problem arises even when causal filters are

applied if unequal signal to noise ratios are encountered. This hampers the interpretation of most

causality measures, which rely on temporal asymmetric relations. 
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