Abstract
Genome-wide, targeted loss-of-function pooled screens using the CRISPR (clustered regularly interspaced short palindrome repeats)–associated nuclease Cas9 in human and mouse cells provide an alternative screening system to RNA interference (RNAi) and have been used to reveal new mechanisms in diverse biological models1–4. Previously, we used a Genome-scale CRISPR Knock-Out (GeCKO) library to identify loss-of-function mutations conferring vemurafenib resistance in a melanoma model1. However, initial lentiviral delivery systems for CRISPR screening had low viral titer or required a cell line already expressing Cas9, limiting the range of biological systems amenable to screening.
Copyright
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.