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Abstract 

The host immunological pathways are re-organized to get a clear picture. There are 

four acute immune responses: TH1/TH2/TH22/THαβ which are corresponding to four 

chronic immune responses: TH1Like/TH9/TH17/TH3. TH1/TH1like is immunity 

against intracellular bacteria or protozoa and is related to type4 delayed-type 

hypersensitivity. TH1 immunity includes M1 macrophage, CTL (Tc1/EM4), IFNg CD4 T 

cell, and IgG3 B cells. TH1Like immunity includes M2 macrophage, suppressive 

CTL(EM3), IFNg/TGFβ CD4 T cell, and IgA1 B cells. TH2/TH9 is immunity against 

helminthes and is related to type1 immediate allergy. TH2 immunity includes 

eosinophils(iEOS), mast cells, IL-4 CD4 T cells, and IgE/IgG4 B cells. TH9 immunity 

includes eosinophils (rEOS), basophils, IL-9 CD4 T cells, and IgA2 B cells. TH22/TH17 is 

immunity against extracellular bacteria or fungi and is related to type3 immune-

complex hypersensitivity. TH22 immunity includes neutrophils(N1), IL-22 CD4 T cells, 

and IgG2 B cells. TH17 immunity include neutrophils(N2), IL-17 CD4 T cells, and IgA2 

B cells. THαβ/TH3 is immunity against viruses and is related to type2 antibody 

dependent cytotoxic hypersensitivity. THαβ immunity includes stimulatory NK 

cells(NK1), CTL(Tc2/EM1), IL-10 CD4 T cells, and IgG1 B cells. TH3 immunity includes 

regulatory NK cells(NK2), suppressive CTL(EM2), IL-10/TGFβ CD4 T cells, and IgA1 B 

cells. THfh is the stimulatory pathway to initiate adaptive acute immunity. Another 

inhibitory pathway Treg is the key player to shift acute immune responses to chronic 

immune responses for generating milder cytokines and other immune mediators to 

avoid severe destruction of tissue-organ during chronic large scale infection. This 

4x2+2 is the diagram of host immunological pathways. 
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Introduction 

 

There are many discovered host immunological pathways including traditional TH1, 

TH2, TH3, TH17, TH22, THfh, Treg, TH9, and Tr1(THαβ). These identified pathways are 

not logically organized. Here, I will propose a detailed picture about the whole 

context of host immunological pathways. (Figure 1) 

 

The traditional TH1/TH2 paradigm was proposed by Dr. Mosmann in 1986.(55) TH1 

was thought the host immunity against viruses and intracellular bacteria. TH2 is the 

host immunity against multicellular parasites (helminthes). In my PhD thesis, I 

proposed a new THαβ immunological pathway against viruses that is divided from 

traditional TH1 immunity.(36) The TH1 immunity is then focusing on intracellular 

bacteria and protozoa. Then, TH3 immunity and Tr1 immunological pathways were 

identified later.(44,45) Recently, additional immune responses are discovered 

including TH17, TH22, THfh, Treg, and TH1-like immunological 

pathways.(13,20,22,31,35)  

 

 

Results and discussion 

 

Acute immune responses 

 

Follicular helper T cells (THfh) is thought to be the key helper cells for the B cell 

germinal centers in lymph nodes.(83) THfh cells are characterized by IL-21 producing 

T cells(23,50). BCL6 is a key transcription factor for THfh. TGF beta with STAT5 signal 

can constrain the differentiation of the IL-21 producing helper T cells(49,51). IL-21 

production is also related to STAT1 and STAT3 activation as well as STAT5 activation. 

Since immunosuppressive prolactin can induce STAT5a to suppress BCL6 

expression.(40,77) On the contrary, STAT5b can up-regulate BCL6.(73) STAT5a and 

STAT5b have distinct target genes in immune responses.(81) The transcription factor 

to induce THfh should be STAT5b. BCL6 is key in THfh development.(7,47,60) 

Follicular helper T cell can induce B cells to start to produce IgM antibody.(9) Thus, it 

is the earliest T lymphocytes to begin the adaptive host immunity.(12,58,72) 

Different STAT proteins regulate different immunological pathways.(74)  

 

TH1 immunity is driven by IL-12. It is the host immunity against intracellular bacteria 

or protozoa. The main effector cells of TH1 immunity are stimulatory macrophages 

(M1), IFNg secreting cytotoxic CD8 T cells (EM4 CD27-CD28+ Tc1), IFNg secreting CD4 
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T cells, and IgG3 producing B cells.(3,28,38,69) The key transcription factors for TH1 

immunity is STAT4. T-bet also plays a vital role in TH1 immunological pathway. TH1 

immunity against self antigen is Type 4 Delayed-type hypersensitivity such as type1 

diabetes mellitus.(41,54)  

 

TH2 immunity is driven by IL-4. TH2 immunity is against extracellular parasites 

(helminthes). The main effector cells of TH2 immunity are eosinophils (iEOS), mast 

cells, IL-4/IL-5 secreting CD4 T cells, and IgG4/IgE producing B cells.(52) IgG4 

activates eosinophils and IgE activates mast cells such as in acute anaphylaxis, 

respectively.(71) The key transcription factor for TH2 immunity is STAT6. GATA3 also 

plays a vital role in TH2 immunological pathway. TH2 immunity against self antigen is 

Type1 immediate allergy such as food/drug allergy or urticaria.(34) 

 

THαβ is distinguished from the traditional TH1 immunity(36). THαβ immunity is 

against viruses. It was called Tr1 cell by some previous researchers.(45) THαβ 

immunity is driven by IFNa/b or IL-10. The main effector cells of THαβ immunity are 

IL-10 producing stimulatory NK cells(CD56-CD16+ NK1 cells), IL-10/IL-27 secreting 

CD4 T cells, IL-10 secreting cytotoxic CD8 T cells (EM1 CD27+CD28+ Tc2), and IgG1 

producing B cells.(15,38,41,66,69) CD27 molecule is important for virus 

immunity.(33,57) The key transcription factor for THαβ immunity is STAT1 and 

STAT2.(59) THαβ immunity against self antigen is Type 2 Antibody dependent 

cytotoxic hypersensitivity such as acute stage of Myasthenia Gravis. It is worth noting 

that IL-10 is not merely a immunosuppressive cytokine; it can have potent 

stimulatory effects on NK cells, CTLs, and B cells.(56) 

 

TH22 is the host innate immunity against extracellular bacteria and fungi(2,86). TH22 

is driven by IL-6 or TNFa(26,78). The main effector cells for TH22 immunity are 

PMNs(N1), IL-22 secreting CD4 T cells, complements, pentraxins, and IgG2 producing 

B cells.(21,22) The key transcription factor for TH22 is STAT3(88). AP1 and CEBP are 

also important. TGF beta can suppress IL-22 to skew to TH17 immunity.(70) TH22 

against self antigen is Type 3 immune-complex and complement mediated 

hypersensitivity such as Arthus reaction.(90)  

 

It is interesting to know that four IgG subtypes fit the four types of acute 

immunological pathways. Murine IgG antibodies also have four subclasses. There is a 

correlation between murine and human IgG subtypes: Human IgG1<->Murine IgG2a; 

Human IgG2<->Murine IgG3; Human IgG3<->Murine IgG2b; Human IgG4<->Murine 

IgG1.(37) hIgG1/mIgG2a is against viral antigens; hIgG2/mIgG3 is against bacterial 
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antigen, especially polysaccharides; hIgG3/mIgG2b is against intracellular bacteria; 

and hIgG4/mIgG1 is related to parasite antigens.(17,27,75,80)  

 

Chronic immune responses 

 

Treg is the host immune inhibitory mechanism(35). It is driven by IL-2 and TGF beta. 

The main effector cells for Treg are TGFb producing CD4 T cell and IgA producing B 

cell. The key transcription factor for Treg pathway is STAT5, especially STAT5a. But, 

both STAT5a and STAT5b play non-redundant roles in Treg generation.(87) They may 

act sequentially with STAT5b activation first in THfh signaling. Combined STAT5b and 

STAT5a signaling induces the generation of Treg. The combination of Treg and the 

above four immunological pathways is important to shift acute immunity to chronic 

immunity. During the initial infection, acute stage fierce cytokines can rapidly kill 

pathogens as well as infected cells or tissues. However, if the pathogen infects a lot 

of cells in a tissue such as liver, to kill the infected cells will total destroyed the 

organ.(85) Thus, regulatory T cells STAT5 signal combining TH1/TH2/TH22/THαβ will 

make CD4 T cells with less fierce cytokines.(87) Then, TH1like/TH9/TH17/TH3 

immunological pathways will be generated in chronic stage. It is worth noting that 

there are two subtypes of IgA antibodies: IgA1 and IgA2. IgA1 is the dominant IgA 

antibody in serum, and IgA2 is the dominant IgA in mucosa. TGF beta can induce 

either IgA1 or IgA2 which seems to be dependent on lymphoid follicle location.(89) In 

GULTs or Peyer’s Patch, IgA2 is the dominant IgA antibody produced in GI mucosa 

there. In lymph nodes of other body locations, IgA1 is the dominant IgA antibody 

produced there.(1) However, IgA1 is especially related to viral protein antigens and 

IgA2 is especially related to bacterial antigens such as LPS.(32) It is also worth noting 

that IL-13 is also a Treg related cytokine which is pro-fibrogenic and related to TGF 

beta signaling.(63,82)  

 

TH1-like cells (non-classic TH1) are initiated by TGF beta(STAT5 signaling) and 

IFNg(STAT4 signaling). TH1-like cells with Foxp3+ regulatory character are 

identified.(20,61) There is a close relation to TH1 helper cells and TH1-like 

cells.(64,68) TH1-like cells are the chronic host immunity of TH1 immune response. 

Thus, it could be related to chronic inflammation such as long-term tuberculosis 

infection. The effector cells of TH1-like immunity include suppressive macrophages 

(M2), suppressive CD8 T cells (EM3 CD27-CD28-), IgA1 producing B cells, and 

IFNg/TGFb producing CD4 T cells.(5,28,29,69) TH1-like immunity induces type4 

delayed-type hypersensitivity such as Crohn’s disease.(16) 
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TH9 cell is driven by IL-4 (STAT6 signaling) combining TGF beta(STAT5 

signaling).(18,25,30) Thus, TH9 cell is closely related to TH2 immunological pathway. 

It is characterized by IL-9 secreting CD4 T cell. TH9 cells are found to be important in 

chronic allergic condition such as asthma. Thus, TH9 helper cell is the chronic T 

helper cells related to TH2 immunity. The effector cells of TH9 immunity include 

regulatory eosinophils (rEOS), basophils (for chronic allergy and secretary IgA 

mediated reaction), IL-9 producing CD4 T cells, and IgA2 producing B cells.(39) TH9 

immunity induces type1 allergy including asthma.(6,39,42,52,62,67,76) 

 

TH17 cell is driven by IL-6 / IL-1 combining TGF beta(14,31). Thus, TH17 cell is closely 

related to TH22 immunological pathway. It is characterized by IL-17 secreting CD4 T 

cell. TH17 cells are found to be important in chronic immune-complex mediated 

disease such as rheumatic arthritis. Then, TH17 helper cell is the chronic T helper cell 

related to TH22 immunity. (46) TGF beta with STAT5 can suppress the acute IL-22 

producing cells and enhance the chronic IL-17 producing cells(48,70). Because of the 

role of TGF beta in TH17 immunity, regulatory IL-17 producing cells are noted.(8,84) 

The effector cells of TH17 immunity include regulatory neutrophils(N2), IL-17 

producing CD4 T cells, and IgA2 producing B cells.(24,32) TH17 immunity induces 

type3 immune-complex hypersensitivity including ulcerative colitis.(4,53) 

 

TH3 cells are driven by IL-10 and TGF beta.(11,19) Thus, TH3 cells are closely related 

to THαβ immunological pathway. It also produces IL-10 as well as TGF beta. Thus, 

TH3 helper cell is important to chronic antibody dependent cellular cytotoxic 

hypersensitivity. TH3 cell is the chronic helper T cells corresponding to THαβ helper 

cell. The TH3 immune effector cells include IL-13 producing regulatory NK 

cells(CD56+CD16- NK2 cells), IL-10 and TGF beta secreting CD4 T cells, suppressive 

CD8 T cells ( EM2 CD27+CD28-), and IgA1 producing B cells.(43,66,69,79) IgA1 is 

produced in serum and is against viral protein antigens. TH3 immunity induces type2 

antibody dependent cytotoxic hypersensitivity including chronic stage of SLE.(10,65) 

 

 

Conclusion 

 

This summary diagram: 4x2+2 immunological pathways are the whole pictures of 

host immunological pathways. There are four acute immune responses: 

TH1/TH2/TH22/THαβ which are corresponding to four chronic immune responses: 

TH1Like/TH9/TH17/TH3. It will match the four types of hypersensitivity. Then, we can 

clearly understand the detailed immune response against acute or chronic pathogens 
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as well as acute or chronic allergy/hypersensitivity. 
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Figure legends 

 

Figure 1. The summary diagram of host immunological pathways. In the middle, Tfh 

side (follicular help T cell) initiates the acute immunity; on the other hand, Treg side 

(regulatory T cells) starts the chronic immunity. Acute TH1 and Chronic TH1-

like(TH1k) are related in the diagonal line. Acute TH2 and chronic TH9 are related in 

the diagonal line. Acute TH22 and chronic TH17 are related in the diagonal line. 

Acute THαβ and chronic TH3 are related in the diagonal line.  
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Figure 1. 
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