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ABSTRACT 
Motivation:  In computing pairwise alignments of biological se-
quences, software implementations employ a variety of heuristics 
that decrease the computational effort involved in computing poten-
tial alignments.  A key element in achieving high processing 
throughput is to identify and prioritize potential alignments where 
high-scoring mappings can be expected.  These tasks involve list-
processing operations that can be efficiently performed on GPU 
hardware. 
Results:  We implemented a read aligner called A21 that exploits 
GPU-based parallel sort and reduction techniques to restrict the 
number of locations where potential alignments may be found.  
When compared with other high-throughput aligners, this approach 
finds more high-scoring mappings without sacrificing speed or accu-
racy.  A21 running on a single GPU is about 10 times faster than 
comparable CPU-based tools; it is also faster and more sensitive in 
comparison with other recent GPU-based aligners. 
Availability:  The A21 software is open source and available at 
https://github.com/RWilton/A21. 
Contact:  rwilton@pha.jhu.edu 
Supplementary information:  Supplementary results are available 
at <<<TBD>>> 

1 INTRODUCTION 
The cost and throughput of DNA sequencing have improved 

rapidly in the past several years (Glenn, 2011), with recent advanc-
es reducing the cost of sequencing a single human genome at 30-
fold coverage to around $1,000 (Hayden 2014).  It is increasingly 
common for consortia, or even individual research groups, to gen-
erate sequencing datasets that include hundreds or thousands of 
human genomes.  The first and usually the most time-consuming 
step in analyzing such datasets is read alignment.  A read aligner 
will, for each sequencing read, attempt to determine its point of 

  
*To whom correspondence should be addressed.  

origin with respect to a reference genome.  The continued dramatic 
growth in the size of sequencing datasets creates a crucial need for 
efficient and scalable read alignment software. 

To address this need, a number of attempts have been made to 
develop read-alignment software that exploits the parallel pro-
cessing capability of general-purpose graphics processing units, or 
GPUs.  GPUs are video display devices whose hardware and sys-
tem-software architecture support their use not only for graphics 
applications but also for general purpose computing.  They are 
well suited to software implementations where computations on 
many thousands of data items can be carried out independently in 
parallel, and several high-throughput read aligners that use GPU 
acceleration have been developed in the past few years. 

Experience has shown, however, that it is not easy to build use-
ful GPU-based read alignment software.  The salient problem is 
that the most biologically relevant sequence-alignment algorithm 
(Smith and Waterman, 1981; Gotoh, 1982) involves dynamic pro-
gramming dependencies that are awkward to compute efficiently in 
parallel.  For this reason, developers of read-alignment software 
have traditionally focused on optimized parallel implementations 
of the Smith-Waterman-Gotoh algorithm (Carriero and Gelernter, 
1990; Manavski and Valle, 2008; Liu et al, 2013).  Although the 
algorithm has been adapted to cooperative parallel-threaded GPU 
implementations (Khajeh-Saeed et al, 2010), the fastest GPU im-
plementations of the algorithm have relied on task parallelism, 
where each thread of execution computes an entire pairwise align-
ment independently of all other parallel threads. 

There is, however, another significant barrier to the implementa-
tion of high-throughput GPU-based alignment software.  In a typi-
cal pairwise sequence alignment problem, a short query sequence 
(100 to 250 bp) must be aligned with a comparatively long (109 bp 
or longer) reference sequence.  Since a brute-force search for all 
plausible alignments in this setting would be computationally in-
tractable, read aligners typically construct a "search space" (a list 
of reference-sequence locations) within which potential alignments 
might be discovered.  This aspect of the sequence alignment prob-
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lem can account for a significant proportion of the computational 
effort involved in read alignment. 

1.1 Seed and extend 
The best-known algorithmic approach to exploring a reference-

sequence search space is known as "seed and extend" (Lipman and 
Pearson, 1985).   

Figure 1. Seed-and-extend strategy for identifying potential alignments.  
Fixed-length subsequences ("seeds") are extracted from the query sequence 
and hashed.  Each hash value (e.g., "0xDEA5D502") is used to probe a 
lookup table of reference locations (e.g., "01:14353363" for chromosome 1, 
offset 14353363) where the corresponding seed occurs.  These seed loca-
tions are prioritized and full alignments between the query sequence and 
the reference sequence are explored in priority order. 

An aligner that uses seed-and-extend relies on a precomputed 
index or lookup table to identify locations in the reference where a 
subsequence ("seed") extracted from the query sequence matches 
the same-length subsequence in the reference.  The aligner then 
performs a sequence-alignment computation at one or more of the 
reference-sequence locations it has obtained from the lookup table.  
In effect, the partial alignment implied by the seed match at each 
reference location is "extended" to arrive at a full pairwise align-
ment between the query sequence and the reference sequence. 

1.2 Frequency distribution of seed locations 
Most seed sequences occur rarely in the human reference ge-

nome, but a few seed sequences inevitably occur at hundreds or 
thousands of different locations in the reference sequence.  This is 
not only because certain portions of the reference are internally 
repetitive (e.g., homopolymers or tandem repeats) but also because 
short sequences occasionally occur at two or more non-overlapping 
positions in the reference genome (e.g., because of transposon-
induced duplication).  This can be illustrated for the human refer-
ence genome by plotting the frequency with which 20mers (20 bp 
subsequences) occur (Figure 2). 

Figure 2. The number of different positions at which the 30,000 most 
frequently repeated 20mers occur in the human reference genome, ranked 
in descending order. 

Although the mean frequency of human 20mers is only 10.7, 
high-frequency 20mers account for a disproportionate percentage 
of reference-sequence locations in a lookup table.  For example, 
only 0.1% of the 20mers in the human reference genome appear in 
200 or more different locations, but they account for about 10% of 
the 20mers in the reference sequence.  In contrast, 71.7% of the 
20mers in the human genome occur exactly once. 

For a read aligner that implements a seed-and-extend strategy, 
this long-tailed distribution of seed frequencies is a computational 
obstacle for reads that contain one or more "high-frequency" seeds.  
To avoid searching for potential alignments at an inordinate num-
ber of locations in the reference sequence, an aligner must limit the 
number of locations at which it computes alignments. 

1.3 Limiting the search space 
Read aligners address this problem by using several heuristics, 

all of which limit the number of potential alignments computed: 

• Limit the number of high-scoring mappings reported per read.  

• Limit the number of seeds examined per read.  

• Limit the number of reference locations examined per seed.  

These heuristics trade throughput for sensitivity.  An aligner 
spends less time computing potential alignments simply because it 
does not examine the entire search space (all reference locations 
for all seeds in each read).  For the same reason, however, the 
aligner is less likely to identify all of the high-scoring mappings 
for each read.  The A21 aligner implements two different heuristics 
to mitigate this problem. 

1.3.1.  Reference-location sampling. In highly repetitive re-
gions of the human genome, adjacent, overlapping 20mers in the 
reference sequence hash to a large number of locations in the refer-
ence sequence.  A repetitive region is typically associated with 
long hash-table lists ("big buckets") because the 20mers corre-
sponding to those lists refer to numerous repetitive regions else-
where in the reference.  The A21 lookup tables are constructed by 
sampling adjacent "big bucket" hash-table lists in repetitive regions 
so that only one such list in 10 contains a reference-sequence loca-
tion that lies within the region (Figure 3). 
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Figure 3. Adjacent reference-sequence locations are removed from the 
hash table when they are found in "big buckets" (hash-table lists whose 
cardinality exceeds a user-configurable threshold). 

This sampling strategy decreases the size of large hash-table 
lists.  The tradeoff is that a read that potentially aligns to a particu-
lar repetitive region must be seeded in up to 10 adjacent locations 
to guarantee that a reference location within the region will be 
found in a hash-table list for the read. 

1.3.2.  Seed-coverage prioritization. At run time, A21 imple-
ments a heuristic that prioritizes alignments where a read contains 
two or more seeds that map to adjacent or nearby locations in the 
reference.  This heuristic is reminiscent of the "spanning set meth-
od" used to compute alignments in the GSNAP aligner (Wu and 
Nacu, 2010), although A21 uses multiple neighboring seed hits 
only to identify high-priority locations for subsequent dynamic-
programming alignment. 

A21 uses an additional heuristic in the case of paired-end reads.  
The aligner prioritizes potential paired-end mappings where a ref-
erence location associated with at least one seed in one of the 
mates  in the pair lies within a user-configurable distance and ori-
entation of at least one seed in the other mate in the pair. 

Notably, these heuristics are implemented using a series of sort-
ing and reduction operations on an aggregated list of seed loca-
tions.  In a CPU-based implementation, the amount of computation 
required for these operations would be impractical with a reference 
genome the size of the human genome.  In a GPU-based imple-
mentation, however, these list-based operations can be performed 
efficiently with a combination of cooperative parallel threading 
(sort, stream compaction) and task parallelism (computing seed 
coverage, filtering using paired-end criteria).  For example, an 
NVidia GTX480 GPU can sort over 300 million 64-bit integer 
values per second. 

The A21 aligner was designed to evaluate the performance of 
these "GPU-friendly" heuristics.  In effect, A21 implements a pipe-
line in which the following operations are performed on GPU 
hardware for each read: 

• Define the "search space" for the read; that is, compute the set 
of reference locations that correspond to the seeds in the read. 

• Adjust the reference locations so that they correspond to the 
location of the seed within the read.  

• Sort the list of reference locations.  

• For paired-end reads, identify pairs of reference locations that 
lie within a predefined distance and orientation of each other.  

• Coalesce adjacent seed locations so that they are covered by a 
minimum number of alignment computations. 

• Compute alignments to identify and record high scoring map-
pings. 

2 METHODS 
The A21 aligner is written in C++ and compiled for both Win-

dows (with Microsoft Visual C++) and Linux (with the Gnu C++ 
compiler).  The implementation runs on a user-configurable num-
ber of concurrent CPU threads and on one or more NVidia GPUs.  
The implementation pipeline uses about 30 different CUDA ker-
nels written in C++ (nongapped and gapped alignment computa-
tion, application-specific list processing) and about 100 calls to 
various CUDA Thrust APIs (sort, reductions, set difference, string 
compaction). 

The development and test computers were each configured with 
dual 6-core Intel Xeon X5670 CPUs running at 2.93GHz, so a total 
of 24 logical threads were available to applications.  There was 
144GB of system RAM, of which about 96GB was available to 
applications.  Each computer was also configured with three NVid-
ia Tesla series GPUs (Kepler K20c), each of which supports 5GB 
of on-device "global" memory and 26624 parallel threads.  The 
internal expansion bus in each machine was PCIe v2. 

Throughput (as query sequences aligned per second) was meas-
ured only when no other user applications were using the machines 
so that all CPU, memory, and I/O resources were available.  For 
experiments with simulated data, we used Mason (Holtgrewe, 
2010) to generate 1 million 100bp paired-end reads.  For experi-
ments with Illumina data, we used 100bp paired-end Illumina Ge-
nome Analyzer data from the YanHuang genome (Li et al, 2009). 

2.1 Software implementation 
The A21 implementation is a pipeline in which batches of reads 

are processed by a sequence of discrete software modules, each of 
which operates on a separate CPU thread that is allocated for the 
lifetime of the module and then discarded.  When multiple GPUs 
are used, each GPU is associated with its own CPU thread.  Mod-
ules are designed to execute concurrently on CPU threads and on 
the GPU.  Data common to multiple CPU threads is shared; data 
common to a sequence of GPU operations resides in GPU device 
memory without being transferred to or from CPU memory. 

Figure 4. The A21 pipeline implementation consists of one-time-only 
initialization (memory allocation, loading of lookup tables and reference 
data) followed by iterative batched processing of reads (query sequences). 
Within each batch, nongapped alignments are discovered using GPU-based 
spaced seed alignment.  Gapped alignments, using GPU-based seed-and-
extend alignment, are computed only for reads for which a satisfactory 
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number of nongapped alignments are not found.  All mappings are finalized 
(scored and mapped), classified, and reported in multiple concurrent CPU 
threads. 

The execution of the A21 pipeline consists of iterative pro-
cessing of batches of reads (query sequences), where the number 
of reads in a batch is constrained by the amount of available GPU 
memory.  Within each batch iteration, the GPUs are used for list 
processing and for the computation of alignments, while CPU 
threads are used concurrently for scoring, classification, and for-
matting of alignment results as well as for input and output.  GPU 
code executes concurrently with CPU code wherever possible.  For 
example, the classification, reporting, and final output of the 
alignment results for a batch overlaps with the beginning of pro-
cessing of the subsequent batch. 

2.2 Nongapped alignment 
The nongapped aligner uses periodic spaced seeds to identify 

potential mappings (Chen et al., 2009).  The seed value used in 
A21 covers 84 adjacent positions with 30 "care" positions.  It is 
fully sensitive to nongapped alignments containing up to two mis-
matches when seven overlapping seed comparisons are used.  Both 
the seed value and the query sequences are encoded in 64-bit 
packed binary values to facilitate bitwise operations between the 
seed value and the binary representation of each query sequence. 

For each of the first seven positions in each query sequence, the 
result of the bitwise AND between the seed value and the query 
sequence is packed into a 30-bit value that is used to probe a 
lookup table of potential alignment locations in the reference se-
quence.  For each such location, mappings between the query se-
quence and the reference sequence are identified by bitwise com-
parison of the entire query sequence with the corresponding refer-
ence. 

Nongapped mappings with mismatches near one or both ends 
are examined for potential soft clipping.  A21 soft-clips a 
nongapped mapping whenever its alignment score is higher than it 
would be without soft clipping.  The nongapped aligner assigns a 
numerical score to each mapping by applying the user-specified 
parameters for Smith-Waterman-Gotoh affine-gap alignment.   

2.3 Gapped alignment 
A21 performs gapped alignment only on reads for which it does 

not find a sufficient number of nongapped alignments.  The mini-
mum number of satisfactory nongapped alignments required for a 
read to be excluded from further processing is a user-configurable 
parameter. 

The gapped aligner is a straightforward implementation of the 
seed-and-extend strategy.  To facilitate parallel computation, mul-
tiple seed locations are examined concurrently within each read.  
Groups of seed locations are selected iteratively.  The first group of 
seeds is chosen so as to cover the entire read without overlapping 
seeds; subsequent groups are selected so as to overlap the seed 
positions examined in previous groups. 

In each iteration, the seed subsequences are extracted from the 
read and hashed to 30 bits.  The 30-bit hash values are used to 
probe a hash table of reference-sequence locations.  The reference 
locations are prioritized and Smith-Waterman-Gotoh local align-

ment is computed at the highest-priority locations.  Reads for 
which a user-configured number of satisfactory mappings have 
been found are excluded from subsequent iterations. 

Each iteration examines seed locations that straddle the locations 
that were processed in previous iterations; seeds are chosen at loca-
tions that are halfway between those examined in all previous it-
erations.  (This is similar to the behavior of Bowtie 2's -R option.)  
In this way the cumulative number of seeds examined doubles with 
each iteration, but the actual number of reference locations consid-
ered remains relatively stable.  Because A21 uses fixed-length 
20bp seeds (20mers), six "seed iterations" are required to examine 
every seed location in the query sequence. 

2.4 Restricting the seed-and-extend search space 
To facilitate GPU-based list operations, the A21 implementation 

encodes reference locations as 64-bit bitmapped values that can be 
represented in one-dimensional arrays.  These arrays are main-
tained exclusively in GPU device memory where multiple CUDA 
kernels can access them.  CUDA kernels are used to reorganize 
and triage reference-location lists: 

• Prioritize reference locations that lie within paired-end dis-
tance and orientation constraints. 

• Prioritize reference locations where overlapping and adjacent 
seeds cover the largest number of adjacent positions in the 
reference sequence. 

• Exclude reference locations that have been examined in pre-
vious seed iterations. 

• Identify reference locations for which acceptable mappings 
exist and for which criteria for paired-end mapping are met. 

2.5 Specific concerns for GPU implementation 
Available memory and computational resources on GPU devices 

constrain the implementation of the A21 pipeline.  Although the 
compiled code is not "tuned" to a particular GPU device, the 
source-code implementation follows programming practices that 
experience has shown lead to higher performance:  judicious use of 
GPU memory and use of data-parallel algorithms and implementa-
tion methods. 

2.5.1.  Memory size. The limited amount of on-device GPU 
memory constrains the amount of data that can be processed at any 
given time on a GPU.  Because GPU memory requirements vary as 
data moves through the implementation pipeline, it is impossible to 
provide for full usage of available GPU memory at every pro-
cessing step. 

The approach taken in A21 is to let the user specify a batch size 
that indicates the maximum number of reads that can be processed 
concurrently.  In computations where available GPU memory is 
exceeded (for example, in performing gapped local alignment), 
A21 breaks the batch into smaller sub-batches and processes the 
sub-batches iteratively. 

2.5.2.  Memory layout. The A21 implementation pays particu-
lar attention to the layout of data in GPU memory.  Memory reads 
and writes are "coalesced" so that data elements accessed by adja-
cent groups of GPU threads are laid out in adjacent locations in 
memory.  A21 therefore uses one-dimensional arrays of data to 
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store the data elements accessed by multiple GPU threads.  Al-
though this style of in-memory data storage leads to somewhat 
opaque-looking code, the improvement in the speed of GPU code 
is noticeable (sometimes by a factor of two or more). 

2.5.3.  Minimal data transfers between CPU and GPU memory.  
Although data can theoretically move between CPU and GPU 
memory at speeds determined by the PCIe bus, experience has 
shown that application throughput is decreased when large 
amounts of data are moved to and from the GPU.  For this reason, 
A21 maintains as much data as possible in GPU memory.  Data is 
transferred to the CPU only when all GPU-based processing is 
complete. 

2.5.4.  Divergent flow of control in parallel threads. Divergent 
flow of control in adjacent GPU threads can result in slower code 
execution.  Branching logic is therefore kept to a minimum in GPU 
code in A21.  Although this problem was encountered in previous 
GPU sequence-aligner implementations (Schatz et al, 2007), it is 
empirically less important in the A21 implementation than the 
effect of optimized GPU memory access. 

2.6 Analysis of alignment results 
We used the human reference genome release 37 (Genome Ref-

erence Consortium, 2014) for throughput and sensitivity experi-
ments.  We compared A21 results with the output generated by two 
widely-used CPU-based read aligners and two recent GPU-based 
aligners (software versions listed in Supplementary Table T1): 

• Bowtie 2 (Langmead et al, 2013) (CPU) 

• BWA-MEM (Li, 2013) (CPU) 

• SOAP3-DP (Luo et al, 2013) (GPU) 

• NVBIO (NVidia, 2014) (GPU) 

We parsed the SAM-formatted output (SAM/BAM Format 
Specification Working Group, 2013) from each aligner and aggre-
gated the results reported by each aligner for each read.  We exam-
ined the POS (position), TLEN (paired-end fragment length), and 
AS (alignment score) fields to ensure the consistency of the set of 
mappings reported by each aligner.  For SOAP3-DP, which does 
not report alignment scores, we derived scores from the mapping 
information reported in the CIGAR and MD fields.  We used the 
following scoring parameters: match=+2; mismatch=−6; gap 
open=−5; gap space=−3, with a threshold alignment score of 100 
(for 100 bp reads) or 400 (for 250 bp reads). 

We used simulated (Mason) reads to evaluate sensitivity for both 
paired-end and unpaired reads.  For each aligner, we used high 
"effort" parameters so as to maximally favor sensitivity over 
throughput.  For each read mapped by each aligner, we compared 
the POS and CIGAR information reported by the aligner with the 
POS and CIGAR generated by Mason.  We assumed that a read 
was correctly mapped when, after accounting for soft clipping, one 
or both of its ends mapped within 3 bp of the mapping generated 
by Mason.  (Supplementary Table T2 explains our choice of a 3 bp 
threshold.)  To illustrate sensitivity and specificity, we plotted the 
cumulative number of correctly-mapped and incorrectly-mapped 
reads reported by each aligner, stratified by the MAPQ score (Li et 
al, 2008) for each read. 

We used the YanHuang data to measure throughput using both 
paired-end and unpaired reads.  For this analysis, we recorded 

throughput across a range of "effort" parameters chosen so as to 
trade speed for sensitivity.  We defined "sensitivity" as the per-
centage of reads reported as mapped by each aligner with align-
ment score (and, for paired-end reads, TLEN) within configured 
limits. 

Prior to computing alignments, all of the GPU-aware aligners 
spend a brief period of execution time initializing static data struc-
tures in GPU device memory.  We excluded this startup time from 
throughput calculations for these aligners. 

3 RESULTS 
Each of these read aligners is able to map tens of millions of 

reads to the human genome in an acceptably short period of time.  
All of the aligners, including A21, were capable of mapping reads 
with high accuracy.  In terms of throughput, however, A21 demon-
strated higher throughput than the other aligners across a wide 
range of sensitivity settings. 

3.1 Evaluation on simulated data 
With simulated Illumina read data, A21mapped paired-end reads 

to their correct origin in the reference genome with sensitivity and 
specificity comparable to all four of the aligners to which we com-
pared it (Figure 5 and Supplementary Figures S1-S8).  Although 
each aligner uses a slightly different computational model for 
MAPQ, all of the aligners maintain a very high ratio of correct to 
incorrect mappings until mappings with relatively low MAPQ 
scores are considered. 

Figure 5. Total correctly mapped versus incorrectly mapped reads, plotted 
for decreasing MAPQ, for 1 million simulated 100 bp paired-end Illumina 
reads (2 million total reads).  Results for unpaired reads and for 250 bp 
reads are very similar (Supplementary Figures S1-S8). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2014. ; https://doi.org/10.1101/007641doi: bioRxiv preprint 

https://doi.org/10.1101/007641
http://creativecommons.org/licenses/by-nc-nd/4.0/


R. Wilton et al. 

6 

3.2 Evaluation on real data 
We used experimental data from the YanHuang human genome 
project to evaluate speed (Figure 6 and Supplementary Figure S9). 

 Figure 6. Speed (measured as the number of 100bp query sequences processed per 
second) plotted versus sensitivity (expressed as the overall percentage of mapped 
pairs).  Data for 10 million 100bp paired-end reads from the YanHuang genome.  
Workstation hardware:  12 CPU cores (24 threads of execution), one NVidia K20c 
GPU.  Results for unpaired reads are similar (Supplementary Figure S9). 

Throughput decreases with increasing sensitivity for all of the 
aligners, with a more rapid decrease near each aligner's maximum 
sensitivity.  This is apparent even with BWA-MEM and SOAP3-
DP, although we were unable to "tune" these aligners across as 
wide a range of sensitivity settings as the others. 

Figure 7. Throughput on one, two, and three GPUs (NVidia K20c) in a single com-
puter for the data shown in Figure 6.  For comparison, 2x and 3x multiples of single-
GPU throughput are also plotted. 

A21's speed on a single GPU is generally about 10 times that of 
the CPU-based aligners to which we compared it.  When compared 
with GPU-based aligners, A21 is about 10 times faster than 
NVBIO and about twice as fast as SOAP3-DP.  When executed 
concurrently on multiple GPUs in a single machine, A21's 
throughput increases in proportion to the number of GPUs (Figure 
7).  At lower sensitivity settings, overall throughput is limited by 

PCIe bus bandwidth.  Scaling improves at higher sensitivity set-
tings, where throughput is limited by the number of dynamic-
programming computations carried out on the GPUs. 

4 DISCUSSION 
Apart from its potential for high throughput, the A21 implemen-

tation demonstrates that an increase in throughput can be achieved 
without losing sensitivity.  Furthermore, by sacrificing throughput, 
A21 can be "pushed" to a comparatively high level of sensitivity. 

4.1 Performance characteristics 
 It is clear from the shape of its speed-versus-sensitivity curve 

that A21 achieves increased sensitivity by exploring a proportion-
ally larger search space per successful mapping.  A21's search-
space heuristics cause it to find high-scoring mappings (that is, 
perfect or near-perfect alignments) rapidly within a relatively small 
search space. For reads that do not map with high alignment 
scores, however, A21 must explore more seed locations and com-
pute more dynamic programming problems before it can report a 
satisfactory mapping.  For example, in the experiment shown in 
Figure 6, A21 computed about 8 times as many dynamic-
programming alignments at the high end of its sensitivity range as 
it did at the low end of the range. 

A21 explores a significantly larger search space for reads that it 
cannot align with a comparatively small number of mismatches or 
gaps.  This mitigates the effect of the heuristics that filter the list of 
potential mapping locations on the reference sequence.  In particu-
lar, gapped mappings that might be missed in an early seed itera-
tion (when seeds are spaced widely) are detected in later seed itera-
tions (when seeds are spaced more closely).  The nature of these 
heuristics, however, implies that the additional mappings that A21 
finds when it is configured for higher sensitivity are generally low-
er-scoring mappings. 

The effect of A21's heuristics on the computation of MAPQ 
(mapping quality) for a read is difficult to determine.  In some 
cases, A21 assigns a lower MAPQ (higher probability that the read 
is incorrectly mapped) simply because it computes alignments in 
parallel for the read and therefore tends to find more alternative 
mappings than would a non-parallelized implementation.  On the 
other hand, by excluding many potential reference locations (and 
thus potential alternative mappings) from its search space, A21 
might incorrectly assign a high MAPQ to a read.  In any event, we 
do not observe any notable difference overall in A21's MAPQ 
scoring when compared with other aligners. 

4.2 GPU-accelerated sequence alignment 
Unlike the Smith-Waterman-Gotoh alignment algorithm, parallel 

list-management algorithms — in particular, variations of radix 
sort and of prefix (scan) operations — are amenable to cooperative 
parallel-threaded implementation.  Much of the intermediate pro-
cessing in the sequence-alignment pipeline is thus well suited to 
GPU-based implementation.  We exploited this characteristic of 
the read-alignment process in designing and developing the A21 
software. 

There are two features in the design and implementation of A21 
that distinguish it from other GPU-based read aligners.  First, we 
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adopted a software-design approach that used the GPU as an "ac-
celerator" in a task-parallel pipeline.  CPU threads execute concur-
rently with GPU threads on independent data wherever possible, 
with synchronization points only where the GPU has completed 
processing a set of data.  In practice, this means that overall 
throughput is GPU-bound and thus insensitive to variations in the 
time spent executing CPU threads (including post-processing 
alignments, reading and writing data files, and recording perfor-
mance data). 

Second, we used GPUs for the kinds of computations for which 
they are well suited (stream compaction, radix sort, parallel prefix 
reduction, set difference).  This is a reasonable approach not only 
because it uses GPU hardware in a natural way, but also because 
we were able to leverage the NVidia Thrust library, one of several 
freely-available, well-optimized library implementations of basic 
parallel operations on GPU hardware.  This approach led to an 
emphasis on data structures that can be represented in one-
dimensional arrays of integers as well as list manipulations that 
involve simple, data-independent numerical operations. 

There is a rule of thumb among GPU programmers that states 
that the cost and effort of developing software for GPUs is justified 
only when an order-of-magnitude improvement can be obtained 
relative to a comparable non-GPU implementation.  Our experi-
ments with A21 show that it meets this informal performance crite-
rion. 

We nevertheless recognize that direct comparisons in speed be-
tween CPU-based and GPU-based software implementations are 
fraught with difficulties (Anderson et al, 2011).  We attempted to 
choose comparison hardware that was reasonably similar in terms 
of cost and availability.  As more capable CPU and GPU hardware 
becomes available, we expect A21, like all of the aligners we eval-
uated, to deliver higher throughput. 

  We also foresee further optimization of A21's implementation.  
For example, there are newer, faster, GPU function libraries that 
might be used to replace calls to the Thrust APIs.  Also, we have 
not experimented with low-level optimization of our Smith-
Waterman-Gotoh GPU implementation (Liu et al., 2013).  It is 
likely that such optimizations will appreciably improve A21's 
throughput. 

In an effort to keep up with the increasing amount of sequence 
data used in clinical and research settings, the usual approach to 
designing read alignment software has been to focus on increasing 
throughput.  Experience with both CPU-based and GPU-based 
aligner implementations suggests that the most expeditious way to 
improve throughput is to add additional computational hardware, 
that is, to compute read alignments concurrently in multiple 
threads of execution.  In this regard, therefore, GPU hardware is an 
attractive platform for high-throughput sequence-alignment im-
plementations. 

Nonetheless, the highly data-parallel nature of GPU hardware 
makes it difficult to re-use CPU-based techniques in a GPU im-
plementation.  A different approach to exploiting GPU parallelism 
is to use it for computational tasks that are particularly well suited 
to the hardware, that are difficult to perform efficiently on sequen-
tial CPU threads, and that can improve throughput and accuracy.  
We see A21 as a first step in this direction. 
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