
© Oxford University Press 2014 1

Sequence Analysis

Faster sequence alignment through GPU-accelerated
restriction of the seed-and-extend search space
Richard Wilton1,*, Tamas Budavari1, Ben Langmead2, Sarah Wheelan3, Steven L. Salzberg4 and
Alex Szalay1
1Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
2Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
3Center for Computational Genomics, Johns Hopkins University, Baltimore, Maryland 21218, USA
4McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT
Motivation: In computing pairwise alignments of biological se-
quences, software implementations employ a variety of heuristics
that decrease the computational effort involved in computing poten-
tial alignments. A key element in achieving high processing
throughput is to identify and prioritize potential alignments where
high-scoring mappings can be expected. These tasks involve list-
processing operations that can be efficiently performed on GPU
hardware.
Results: We implemented a read aligner called A21 that exploits
GPU-based parallel sort and reduction techniques to restrict the
number of locations where potential alignments may be found.
When compared with other high-throughput aligners, this approach
finds more high-scoring mappings without sacrificing speed or accu-
racy. A21 running on a single GPU is about 10 times faster than
comparable CPU-based tools; it is also faster and more sensitive in
comparison with other recent GPU-based aligners.
Availability: The A21 software is open source and available at
https://github.com/RWilton/A21.
Contact: rwilton@pha.jhu.edu
Supplementary information: Supplementary results are available
at <<<TBD>>>

1 INTRODUCTION
The cost and throughput of DNA sequencing have improved

rapidly in the past several years (Glenn, 2011), with recent advanc-
es reducing the cost of sequencing a single human genome at 30-
fold coverage to around $1,000 (Hayden 2014). It is increasingly
common for consortia, or even individual research groups, to gen-
erate sequencing datasets that include hundreds or thousands of
human genomes. The first and usually the most time-consuming
step in analyzing such datasets is read alignment. A read aligner
will, for each sequencing read, attempt to determine its point of

*To whom correspondence should be addressed.

origin with respect to a reference genome. The continued dramatic
growth in the size of sequencing datasets creates a crucial need for
efficient and scalable read alignment software.

To address this need, a number of attempts have been made to
develop read-alignment software that exploits the parallel pro-
cessing capability of general-purpose graphics processing units, or
GPUs. GPUs are video display devices whose hardware and sys-
tem-software architecture support their use not only for graphics
applications but also for general purpose computing. They are
well suited to software implementations where computations on
many thousands of data items can be carried out independently in
parallel, and several high-throughput read aligners that use GPU
acceleration have been developed in the past few years.

Experience has shown, however, that it is not easy to build use-
ful GPU-based read alignment software. The salient problem is
that the most biologically relevant sequence-alignment algorithm
(Smith and Waterman, 1981; Gotoh, 1982) involves dynamic pro-
gramming dependencies that are awkward to compute efficiently in
parallel. For this reason, developers of read-alignment software
have traditionally focused on optimized parallel implementations
of the Smith-Waterman-Gotoh algorithm (Carriero and Gelernter,
1990; Manavski and Valle, 2008; Liu et al, 2013). Although the
algorithm has been adapted to cooperative parallel-threaded GPU
implementations (Khajeh-Saeed et al, 2010), the fastest GPU im-
plementations of the algorithm have relied on task parallelism,
where each thread of execution computes an entire pairwise align-
ment independently of all other parallel threads.

There is, however, another significant barrier to the implementa-
tion of high-throughput GPU-based alignment software. In a typi-
cal pairwise sequence alignment problem, a short query sequence
(100 to 250 bp) must be aligned with a comparatively long (109 bp
or longer) reference sequence. Since a brute-force search for all
plausible alignments in this setting would be computationally in-
tractable, read aligners typically construct a "search space" (a list
of reference-sequence locations) within which potential alignments
might be discovered. This aspect of the sequence alignment prob-

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 1, 2014. ; https://doi.org/10.1101/007641doi: bioRxiv preprint

https://doi.org/10.1101/007641
http://creativecommons.org/licenses/by-nc-nd/4.0/

R. Wilton et al.

2

lem can account for a significant proportion of the computational
effort involved in read alignment.

1.1 Seed and extend
The best-known algorithmic approach to exploring a reference-

sequence search space is known as "seed and extend" (Lipman and
Pearson, 1985).

Figure 1. Seed-and-extend strategy for identifying potential alignments.
Fixed-length subsequences ("seeds") are extracted from the query sequence
and hashed. Each hash value (e.g., "0xDEA5D502") is used to probe a
lookup table of reference locations (e.g., "01:14353363" for chromosome 1,
offset 14353363) where the corresponding seed occurs. These seed loca-
tions are prioritized and full alignments between the query sequence and
the reference sequence are explored in priority order.

An aligner that uses seed-and-extend relies on a precomputed
index or lookup table to identify locations in the reference where a
subsequence ("seed") extracted from the query sequence matches
the same-length subsequence in the reference. The aligner then
performs a sequence-alignment computation at one or more of the
reference-sequence locations it has obtained from the lookup table.
In effect, the partial alignment implied by the seed match at each
reference location is "extended" to arrive at a full pairwise align-
ment between the query sequence and the reference sequence.

1.2 Frequency distribution of seed locations
Most seed sequences occur rarely in the human reference ge-

nome, but a few seed sequences inevitably occur at hundreds or
thousands of different locations in the reference sequence. This is
not only because certain portions of the reference are internally
repetitive (e.g., homopolymers or tandem repeats) but also because
short sequences occasionally occur at two or more non-overlapping
positions in the reference genome (e.g., because of transposon-
induced duplication). This can be illustrated for the human refer-
ence genome by plotting the frequency with which 20mers (20 bp
subsequences) occur (Figure 2).

Figure 2. The number of different positions at which the 30,000 most
frequently repeated 20mers occur in the human reference genome, ranked
in descending order.

Although the mean frequency of human 20mers is only 10.7,
high-frequency 20mers account for a disproportionate percentage
of reference-sequence locations in a lookup table. For example,
only 0.1% of the 20mers in the human reference genome appear in
200 or more different locations, but they account for about 10% of
the 20mers in the reference sequence. In contrast, 71.7% of the
20mers in the human genome occur exactly once.

For a read aligner that implements a seed-and-extend strategy,
this long-tailed distribution of seed frequencies is a computational
obstacle for reads that contain one or more "high-frequency" seeds.
To avoid searching for potential alignments at an inordinate num-
ber of locations in the reference sequence, an aligner must limit the
number of locations at which it computes alignments.

1.3 Limiting the search space
Read aligners address this problem by using several heuristics,

all of which limit the number of potential alignments computed:

• Limit the number of high-scoring mappings reported per read.

• Limit the number of seeds examined per read.

• Limit the number of reference locations examined per seed.

These heuristics trade throughput for sensitivity. An aligner
spends less time computing potential alignments simply because it
does not examine the entire search space (all reference locations
for all seeds in each read). For the same reason, however, the
aligner is less likely to identify all of the high-scoring mappings
for each read. The A21 aligner implements two different heuristics
to mitigate this problem.

1.3.1. Reference-location sampling. In highly repetitive re-
gions of the human genome, adjacent, overlapping 20mers in the
reference sequence hash to a large number of locations in the refer-
ence sequence. A repetitive region is typically associated with
long hash-table lists ("big buckets") because the 20mers corre-
sponding to those lists refer to numerous repetitive regions else-
where in the reference. The A21 lookup tables are constructed by
sampling adjacent "big bucket" hash-table lists in repetitive regions
so that only one such list in 10 contains a reference-sequence loca-
tion that lies within the region (Figure 3).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 1, 2014. ; https://doi.org/10.1101/007641doi: bioRxiv preprint

https://doi.org/10.1101/007641
http://creativecommons.org/licenses/by-nc-nd/4.0/

Faster sequence alignment through GPU-accelerated restriction of the seed-and-extend search space

3

Figure 3. Adjacent reference-sequence locations are removed from the
hash table when they are found in "big buckets" (hash-table lists whose
cardinality exceeds a user-configurable threshold).

This sampling strategy decreases the size of large hash-table
lists. The tradeoff is that a read that potentially aligns to a particu-
lar repetitive region must be seeded in up to 10 adjacent locations
to guarantee that a reference location within the region will be
found in a hash-table list for the read.

1.3.2. Seed-coverage prioritization. At run time, A21 imple-
ments a heuristic that prioritizes alignments where a read contains
two or more seeds that map to adjacent or nearby locations in the
reference. This heuristic is reminiscent of the "spanning set meth-
od" used to compute alignments in the GSNAP aligner (Wu and
Nacu, 2010), although A21 uses multiple neighboring seed hits
only to identify high-priority locations for subsequent dynamic-
programming alignment.

A21 uses an additional heuristic in the case of paired-end reads.
The aligner prioritizes potential paired-end mappings where a ref-
erence location associated with at least one seed in one of the
mates in the pair lies within a user-configurable distance and ori-
entation of at least one seed in the other mate in the pair.

Notably, these heuristics are implemented using a series of sort-
ing and reduction operations on an aggregated list of seed loca-
tions. In a CPU-based implementation, the amount of computation
required for these operations would be impractical with a reference
genome the size of the human genome. In a GPU-based imple-
mentation, however, these list-based operations can be performed
efficiently with a combination of cooperative parallel threading
(sort, stream compaction) and task parallelism (computing seed
coverage, filtering using paired-end criteria). For example, an
NVidia GTX480 GPU can sort over 300 million 64-bit integer
values per second.

The A21 aligner was designed to evaluate the performance of
these "GPU-friendly" heuristics. In effect, A21 implements a pipe-
line in which the following operations are performed on GPU
hardware for each read:

• Define the "search space" for the read; that is, compute the set
of reference locations that correspond to the seeds in the read.

• Adjust the reference locations so that they correspond to the
location of the seed within the read.

• Sort the list of reference locations.

• For paired-end reads, identify pairs of reference locations that
lie within a predefined distance and orientation of each other.

• Coalesce adjacent seed locations so that they are covered by a
minimum number of alignment computations.

• Compute alignments to identify and record high scoring map-
pings.

2 METHODS
The A21 aligner is written in C++ and compiled for both Win-

dows (with Microsoft Visual C++) and Linux (with the Gnu C++
compiler). The implementation runs on a user-configurable num-
ber of concurrent CPU threads and on one or more NVidia GPUs.
The implementation pipeline uses about 30 different CUDA ker-
nels written in C++ (nongapped and gapped alignment computa-
tion, application-specific list processing) and about 100 calls to
various CUDA Thrust APIs (sort, reductions, set difference, string
compaction).

The development and test computers were each configured with
dual 6-core Intel Xeon X5670 CPUs running at 2.93GHz, so a total
of 24 logical threads were available to applications. There was
144GB of system RAM, of which about 96GB was available to
applications. Each computer was also configured with three NVid-
ia Tesla series GPUs (Kepler K20c), each of which supports 5GB
of on-device "global" memory and 26624 parallel threads. The
internal expansion bus in each machine was PCIe v2.

Throughput (as query sequences aligned per second) was meas-
ured only when no other user applications were using the machines
so that all CPU, memory, and I/O resources were available. For
experiments with simulated data, we used Mason (Holtgrewe,
2010) to generate 1 million 100bp paired-end reads. For experi-
ments with Illumina data, we used 100bp paired-end Illumina Ge-
nome Analyzer data from the YanHuang genome (Li et al, 2009).

2.1 Software implementation
The A21 implementation is a pipeline in which batches of reads

are processed by a sequence of discrete software modules, each of
which operates on a separate CPU thread that is allocated for the
lifetime of the module and then discarded. When multiple GPUs
are used, each GPU is associated with its own CPU thread. Mod-
ules are designed to execute concurrently on CPU threads and on
the GPU. Data common to multiple CPU threads is shared; data
common to a sequence of GPU operations resides in GPU device
memory without being transferred to or from CPU memory.

Figure 4. The A21 pipeline implementation consists of one-time-only
initialization (memory allocation, loading of lookup tables and reference
data) followed by iterative batched processing of reads (query sequences).
Within each batch, nongapped alignments are discovered using GPU-based
spaced seed alignment. Gapped alignments, using GPU-based seed-and-
extend alignment, are computed only for reads for which a satisfactory

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 1, 2014. ; https://doi.org/10.1101/007641doi: bioRxiv preprint

https://doi.org/10.1101/007641
http://creativecommons.org/licenses/by-nc-nd/4.0/

R. Wilton et al.

4

number of nongapped alignments are not found. All mappings are finalized
(scored and mapped), classified, and reported in multiple concurrent CPU
threads.

The execution of the A21 pipeline consists of iterative pro-
cessing of batches of reads (query sequences), where the number
of reads in a batch is constrained by the amount of available GPU
memory. Within each batch iteration, the GPUs are used for list
processing and for the computation of alignments, while CPU
threads are used concurrently for scoring, classification, and for-
matting of alignment results as well as for input and output. GPU
code executes concurrently with CPU code wherever possible. For
example, the classification, reporting, and final output of the
alignment results for a batch overlaps with the beginning of pro-
cessing of the subsequent batch.

2.2 Nongapped alignment
The nongapped aligner uses periodic spaced seeds to identify

potential mappings (Chen et al., 2009). The seed value used in
A21 covers 84 adjacent positions with 30 "care" positions. It is
fully sensitive to nongapped alignments containing up to two mis-
matches when seven overlapping seed comparisons are used. Both
the seed value and the query sequences are encoded in 64-bit
packed binary values to facilitate bitwise operations between the
seed value and the binary representation of each query sequence.

For each of the first seven positions in each query sequence, the
result of the bitwise AND between the seed value and the query
sequence is packed into a 30-bit value that is used to probe a
lookup table of potential alignment locations in the reference se-
quence. For each such location, mappings between the query se-
quence and the reference sequence are identified by bitwise com-
parison of the entire query sequence with the corresponding refer-
ence.

Nongapped mappings with mismatches near one or both ends
are examined for potential soft clipping. A21 soft-clips a
nongapped mapping whenever its alignment score is higher than it
would be without soft clipping. The nongapped aligner assigns a
numerical score to each mapping by applying the user-specified
parameters for Smith-Waterman-Gotoh affine-gap alignment.

2.3 Gapped alignment
A21 performs gapped alignment only on reads for which it does

not find a sufficient number of nongapped alignments. The mini-
mum number of satisfactory nongapped alignments required for a
read to be excluded from further processing is a user-configurable
parameter.

The gapped aligner is a straightforward implementation of the
seed-and-extend strategy. To facilitate parallel computation, mul-
tiple seed locations are examined concurrently within each read.
Groups of seed locations are selected iteratively. The first group of
seeds is chosen so as to cover the entire read without overlapping
seeds; subsequent groups are selected so as to overlap the seed
positions examined in previous groups.

In each iteration, the seed subsequences are extracted from the
read and hashed to 30 bits. The 30-bit hash values are used to
probe a hash table of reference-sequence locations. The reference
locations are prioritized and Smith-Waterman-Gotoh local align-

ment is computed at the highest-priority locations. Reads for
which a user-configured number of satisfactory mappings have
been found are excluded from subsequent iterations.

Each iteration examines seed locations that straddle the locations
that were processed in previous iterations; seeds are chosen at loca-
tions that are halfway between those examined in all previous it-
erations. (This is similar to the behavior of Bowtie 2's -R option.)
In this way the cumulative number of seeds examined doubles with
each iteration, but the actual number of reference locations consid-
ered remains relatively stable. Because A21 uses fixed-length
20bp seeds (20mers), six "seed iterations" are required to examine
every seed location in the query sequence.

2.4 Restricting the seed-and-extend search space
To facilitate GPU-based list operations, the A21 implementation

encodes reference locations as 64-bit bitmapped values that can be
represented in one-dimensional arrays. These arrays are main-
tained exclusively in GPU device memory where multiple CUDA
kernels can access them. CUDA kernels are used to reorganize
and triage reference-location lists:

• Prioritize reference locations that lie within paired-end dis-
tance and orientation constraints.

• Prioritize reference locations where overlapping and adjacent
seeds cover the largest number of adjacent positions in the
reference sequence.

• Exclude reference locations that have been examined in pre-
vious seed iterations.

• Identify reference locations for which acceptable mappings
exist and for which criteria for paired-end mapping are met.

2.5 Specific concerns for GPU implementation
Available memory and computational resources on GPU devices

constrain the implementation of the A21 pipeline. Although the
compiled code is not "tuned" to a particular GPU device, the
source-code implementation follows programming practices that
experience has shown lead to higher performance: judicious use of
GPU memory and use of data-parallel algorithms and implementa-
tion methods.

2.5.1. Memory size. The limited amount of on-device GPU
memory constrains the amount of data that can be processed at any
given time on a GPU. Because GPU memory requirements vary as
data moves through the implementation pipeline, it is impossible to
provide for full usage of available GPU memory at every pro-
cessing step.

The approach taken in A21 is to let the user specify a batch size
that indicates the maximum number of reads that can be processed
concurrently. In computations where available GPU memory is
exceeded (for example, in performing gapped local alignment),
A21 breaks the batch into smaller sub-batches and processes the
sub-batches iteratively.

2.5.2. Memory layout. The A21 implementation pays particu-
lar attention to the layout of data in GPU memory. Memory reads
and writes are "coalesced" so that data elements accessed by adja-
cent groups of GPU threads are laid out in adjacent locations in
memory. A21 therefore uses one-dimensional arrays of data to

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 1, 2014. ; https://doi.org/10.1101/007641doi: bioRxiv preprint

https://doi.org/10.1101/007641
http://creativecommons.org/licenses/by-nc-nd/4.0/

Faster sequence alignment through GPU-accelerated restriction of the seed-and-extend search space

5

store the data elements accessed by multiple GPU threads. Al-
though this style of in-memory data storage leads to somewhat
opaque-looking code, the improvement in the speed of GPU code
is noticeable (sometimes by a factor of two or more).

2.5.3. Minimal data transfers between CPU and GPU memory.
Although data can theoretically move between CPU and GPU
memory at speeds determined by the PCIe bus, experience has
shown that application throughput is decreased when large
amounts of data are moved to and from the GPU. For this reason,
A21 maintains as much data as possible in GPU memory. Data is
transferred to the CPU only when all GPU-based processing is
complete.

2.5.4. Divergent flow of control in parallel threads. Divergent
flow of control in adjacent GPU threads can result in slower code
execution. Branching logic is therefore kept to a minimum in GPU
code in A21. Although this problem was encountered in previous
GPU sequence-aligner implementations (Schatz et al, 2007), it is
empirically less important in the A21 implementation than the
effect of optimized GPU memory access.

2.6 Analysis of alignment results
We used the human reference genome release 37 (Genome Ref-

erence Consortium, 2014) for throughput and sensitivity experi-
ments. We compared A21 results with the output generated by two
widely-used CPU-based read aligners and two recent GPU-based
aligners (software versions listed in Supplementary Table T1):

• Bowtie 2 (Langmead et al, 2013) (CPU)

• BWA-MEM (Li, 2013) (CPU)

• SOAP3-DP (Luo et al, 2013) (GPU)

• NVBIO (NVidia, 2014) (GPU)

We parsed the SAM-formatted output (SAM/BAM Format
Specification Working Group, 2013) from each aligner and aggre-
gated the results reported by each aligner for each read. We exam-
ined the POS (position), TLEN (paired-end fragment length), and
AS (alignment score) fields to ensure the consistency of the set of
mappings reported by each aligner. For SOAP3-DP, which does
not report alignment scores, we derived scores from the mapping
information reported in the CIGAR and MD fields. We used the
following scoring parameters: match=+2; mismatch=−6; gap
open=−5; gap space=−3, with a threshold alignment score of 100
(for 100 bp reads) or 400 (for 250 bp reads).

We used simulated (Mason) reads to evaluate sensitivity for both
paired-end and unpaired reads. For each aligner, we used high
"effort" parameters so as to maximally favor sensitivity over
throughput. For each read mapped by each aligner, we compared
the POS and CIGAR information reported by the aligner with the
POS and CIGAR generated by Mason. We assumed that a read
was correctly mapped when, after accounting for soft clipping, one
or both of its ends mapped within 3 bp of the mapping generated
by Mason. (Supplementary Table T2 explains our choice of a 3 bp
threshold.) To illustrate sensitivity and specificity, we plotted the
cumulative number of correctly-mapped and incorrectly-mapped
reads reported by each aligner, stratified by the MAPQ score (Li et
al, 2008) for each read.

We used the YanHuang data to measure throughput using both
paired-end and unpaired reads. For this analysis, we recorded

throughput across a range of "effort" parameters chosen so as to
trade speed for sensitivity. We defined "sensitivity" as the per-
centage of reads reported as mapped by each aligner with align-
ment score (and, for paired-end reads, TLEN) within configured
limits.

Prior to computing alignments, all of the GPU-aware aligners
spend a brief period of execution time initializing static data struc-
tures in GPU device memory. We excluded this startup time from
throughput calculations for these aligners.

3 RESULTS
Each of these read aligners is able to map tens of millions of

reads to the human genome in an acceptably short period of time.
All of the aligners, including A21, were capable of mapping reads
with high accuracy. In terms of throughput, however, A21 demon-
strated higher throughput than the other aligners across a wide
range of sensitivity settings.

3.1 Evaluation on simulated data
With simulated Illumina read data, A21mapped paired-end reads

to their correct origin in the reference genome with sensitivity and
specificity comparable to all four of the aligners to which we com-
pared it (Figure 5 and Supplementary Figures S1-S8). Although
each aligner uses a slightly different computational model for
MAPQ, all of the aligners maintain a very high ratio of correct to
incorrect mappings until mappings with relatively low MAPQ
scores are considered.

Figure 5. Total correctly mapped versus incorrectly mapped reads, plotted
for decreasing MAPQ, for 1 million simulated 100 bp paired-end Illumina
reads (2 million total reads). Results for unpaired reads and for 250 bp
reads are very similar (Supplementary Figures S1-S8).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 1, 2014. ; https://doi.org/10.1101/007641doi: bioRxiv preprint

https://doi.org/10.1101/007641
http://creativecommons.org/licenses/by-nc-nd/4.0/

R. Wilton et al.

6

3.2 Evaluation on real data
We used experimental data from the YanHuang human genome
project to evaluate speed (Figure 6 and Supplementary Figure S9).

 Figure 6. Speed (measured as the number of 100bp query sequences processed per
second) plotted versus sensitivity (expressed as the overall percentage of mapped
pairs). Data for 10 million 100bp paired-end reads from the YanHuang genome.
Workstation hardware: 12 CPU cores (24 threads of execution), one NVidia K20c
GPU. Results for unpaired reads are similar (Supplementary Figure S9).

Throughput decreases with increasing sensitivity for all of the
aligners, with a more rapid decrease near each aligner's maximum
sensitivity. This is apparent even with BWA-MEM and SOAP3-
DP, although we were unable to "tune" these aligners across as
wide a range of sensitivity settings as the others.

Figure 7. Throughput on one, two, and three GPUs (NVidia K20c) in a single com-
puter for the data shown in Figure 6. For comparison, 2x and 3x multiples of single-
GPU throughput are also plotted.

A21's speed on a single GPU is generally about 10 times that of
the CPU-based aligners to which we compared it. When compared
with GPU-based aligners, A21 is about 10 times faster than
NVBIO and about twice as fast as SOAP3-DP. When executed
concurrently on multiple GPUs in a single machine, A21's
throughput increases in proportion to the number of GPUs (Figure
7). At lower sensitivity settings, overall throughput is limited by

PCIe bus bandwidth. Scaling improves at higher sensitivity set-
tings, where throughput is limited by the number of dynamic-
programming computations carried out on the GPUs.

4 DISCUSSION
Apart from its potential for high throughput, the A21 implemen-

tation demonstrates that an increase in throughput can be achieved
without losing sensitivity. Furthermore, by sacrificing throughput,
A21 can be "pushed" to a comparatively high level of sensitivity.

4.1 Performance characteristics
 It is clear from the shape of its speed-versus-sensitivity curve

that A21 achieves increased sensitivity by exploring a proportion-
ally larger search space per successful mapping. A21's search-
space heuristics cause it to find high-scoring mappings (that is,
perfect or near-perfect alignments) rapidly within a relatively small
search space. For reads that do not map with high alignment
scores, however, A21 must explore more seed locations and com-
pute more dynamic programming problems before it can report a
satisfactory mapping. For example, in the experiment shown in
Figure 6, A21 computed about 8 times as many dynamic-
programming alignments at the high end of its sensitivity range as
it did at the low end of the range.

A21 explores a significantly larger search space for reads that it
cannot align with a comparatively small number of mismatches or
gaps. This mitigates the effect of the heuristics that filter the list of
potential mapping locations on the reference sequence. In particu-
lar, gapped mappings that might be missed in an early seed itera-
tion (when seeds are spaced widely) are detected in later seed itera-
tions (when seeds are spaced more closely). The nature of these
heuristics, however, implies that the additional mappings that A21
finds when it is configured for higher sensitivity are generally low-
er-scoring mappings.

The effect of A21's heuristics on the computation of MAPQ
(mapping quality) for a read is difficult to determine. In some
cases, A21 assigns a lower MAPQ (higher probability that the read
is incorrectly mapped) simply because it computes alignments in
parallel for the read and therefore tends to find more alternative
mappings than would a non-parallelized implementation. On the
other hand, by excluding many potential reference locations (and
thus potential alternative mappings) from its search space, A21
might incorrectly assign a high MAPQ to a read. In any event, we
do not observe any notable difference overall in A21's MAPQ
scoring when compared with other aligners.

4.2 GPU-accelerated sequence alignment
Unlike the Smith-Waterman-Gotoh alignment algorithm, parallel

list-management algorithms — in particular, variations of radix
sort and of prefix (scan) operations — are amenable to cooperative
parallel-threaded implementation. Much of the intermediate pro-
cessing in the sequence-alignment pipeline is thus well suited to
GPU-based implementation. We exploited this characteristic of
the read-alignment process in designing and developing the A21
software.

There are two features in the design and implementation of A21
that distinguish it from other GPU-based read aligners. First, we

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 1, 2014. ; https://doi.org/10.1101/007641doi: bioRxiv preprint

https://doi.org/10.1101/007641
http://creativecommons.org/licenses/by-nc-nd/4.0/

Faster sequence alignment through GPU-accelerated restriction of the seed-and-extend search space

7

adopted a software-design approach that used the GPU as an "ac-
celerator" in a task-parallel pipeline. CPU threads execute concur-
rently with GPU threads on independent data wherever possible,
with synchronization points only where the GPU has completed
processing a set of data. In practice, this means that overall
throughput is GPU-bound and thus insensitive to variations in the
time spent executing CPU threads (including post-processing
alignments, reading and writing data files, and recording perfor-
mance data).

Second, we used GPUs for the kinds of computations for which
they are well suited (stream compaction, radix sort, parallel prefix
reduction, set difference). This is a reasonable approach not only
because it uses GPU hardware in a natural way, but also because
we were able to leverage the NVidia Thrust library, one of several
freely-available, well-optimized library implementations of basic
parallel operations on GPU hardware. This approach led to an
emphasis on data structures that can be represented in one-
dimensional arrays of integers as well as list manipulations that
involve simple, data-independent numerical operations.

There is a rule of thumb among GPU programmers that states
that the cost and effort of developing software for GPUs is justified
only when an order-of-magnitude improvement can be obtained
relative to a comparable non-GPU implementation. Our experi-
ments with A21 show that it meets this informal performance crite-
rion.

We nevertheless recognize that direct comparisons in speed be-
tween CPU-based and GPU-based software implementations are
fraught with difficulties (Anderson et al, 2011). We attempted to
choose comparison hardware that was reasonably similar in terms
of cost and availability. As more capable CPU and GPU hardware
becomes available, we expect A21, like all of the aligners we eval-
uated, to deliver higher throughput.

 We also foresee further optimization of A21's implementation.
For example, there are newer, faster, GPU function libraries that
might be used to replace calls to the Thrust APIs. Also, we have
not experimented with low-level optimization of our Smith-
Waterman-Gotoh GPU implementation (Liu et al., 2013). It is
likely that such optimizations will appreciably improve A21's
throughput.

In an effort to keep up with the increasing amount of sequence
data used in clinical and research settings, the usual approach to
designing read alignment software has been to focus on increasing
throughput. Experience with both CPU-based and GPU-based
aligner implementations suggests that the most expeditious way to
improve throughput is to add additional computational hardware,
that is, to compute read alignments concurrently in multiple
threads of execution. In this regard, therefore, GPU hardware is an
attractive platform for high-throughput sequence-alignment im-
plementations.

Nonetheless, the highly data-parallel nature of GPU hardware
makes it difficult to re-use CPU-based techniques in a GPU im-
plementation. A different approach to exploiting GPU parallelism
is to use it for computational tasks that are particularly well suited
to the hardware, that are difficult to perform efficiently on sequen-
tial CPU threads, and that can improve throughput and accuracy.
We see A21 as a first step in this direction.

ACKNOWLEDGEMENTS
We are grateful to David Luebke and Cliff Wooley of NVidia Cor-
poration for their help in understanding some of the nuances of
NVidia GPU hardware.

Funding: Supported by: NIH grant R01HG006102 to SLS; NSF
grant IIS 1349906 to BL; NSF grant ACI 1261715, ACI 1040114,
Gordon and Betty Moore Foundation grant 109285 to AS and RW;
JHU Discovery grant to AS, SW, and RW. Johns Hopkins Univer-
sity is an NVidia "CUDA Center of Excellence".
Conflict of interest: none declared.

REFERENCES
Altschul SF, et al. (1990) Basic Local Alignment Search Tool. J Mol Biol 215, 403-

410.
Anderson M et al. (2011) Considerations when evaluating microprocessor platforms.

Proceedings of the 3rd USENIX conference on hot topics in parallelism.
USENIX Association Berkeley, CA.

Carriero N and Gelernter DH. (1990) How to write parallel programs: a first course.
MIT Press, Cambridge, MA. ISBN 9-262-03171-X.

Chen Y, Souaiaia T, Chen, T. (2009) PerM: efficient mapping of short sequencing
reads with periodic full sensitive spaced seeds. Bioinformatics 25 (19), 2514-
2521.

Genome Reference Consortium. (2014) Human Build 37 patch release 5
(GRCh37.p5). http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.17/

Glenn TC. (2011) Field guide to next-generation DNA sequencers. Molecular Ecol-
ogy Resources 11, 759–769

Gotoh O. (1982) An improved algorithm for matching biological sequences. J Mol
Biol 162, 705-708.

Hayden EC. (2014) Is the $1,000 genome for real? Nature News & Comment.
http://www.nature.com/news/is-the-1-000-genome-for-real-1.14530, downloaded
April 2014.

Holtgrewe M. (2010). Mason – a read simulator for second generation sequencing
data. Technical Report TR-B-10-06, Institut für Mathematik und Informatik, Freie
Universität Berlin.

Khajeh-Saeed A et al. (2010) Acceleration of the Smith-Waterman algorithm using
single and multiple graphics processors. J Computational Physics 229, 4247-
4258.

Langmead B and Salzberg S. (2012) Fast gapped-read alignment with Bowtie 2.
Nature Methods 9, 357-359.

Li G. et al. (2009) The YH database: the first Asian diploid genome database. Nucleic
Acids Research 37(Database issue), D1025-8.

Li H. (2013) Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM. arXiv 1303.3997v1.

Li H et al. (2008) Mapping short DNA sequencing reads and calling variants using
mapping quality scores. Genome Research 18, 1851-1858.

Lipman DJ and Pearson WR. (1985) Rapid and sensitive protein similarity searches.
Science 227 (4693), 1435-1441.

Liu Y et al. (2013) CUDASW++ 3.0: accelerating Smith-Waterman protein database
search by coupling CPU and GPU SIMD instructions. BMC Bioinformatics 14,
117.

Luo R et al. (2013) SOAP3-dp: Fast, Accurate and Sensitive GPU-Based Short Read
Aligner. PLoS ONE 8(5): e65632.

Manavski SA and Valle G. (2008) CUDA compatible GPU cards as efficient hard-
ware accelerators for Smith-Waterman sequence alignment. BMC Bioinformatics
9 (Suppl 2), S10.

NVidia Corporation. (2014) NVBIO. http://nvlabs.github.io/nvbio, downloaded May
2014.

SAM/BAM Format Specification Working Group. Sequence Alignment/Map Format
Specification (October 18, 2013). https://github.com/samtools/hts-specs, down-
loaded October 29, 2013.

Schatz MC et al. (2007) High-throughput sequence alignment using Graphics Pro-
cessing Units. BMC Bioinformatics 8, 474.

Smith TF and Waterman MS. (1981) Identification of common molecular sub-
sequences. J Mol Biol 147, 195-197.

Wu TD and Nacu S. (2010) Fast and SNP-tolerant detection of complex variants and
splicing in short reads. Bioinformatics 26 (7), 873-881.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 1, 2014. ; https://doi.org/10.1101/007641doi: bioRxiv preprint

https://doi.org/10.1101/007641
http://creativecommons.org/licenses/by-nc-nd/4.0/

