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Abstract—The reconstruction of gene regulatory networks from gene
expression data has been the subject of intense research activity. A
variety of models and methods have been developed to address different
aspects of this important problem. However, these techniques are often
difficult to scale, are narrowly focused on particular biological and
experimental platforms, and require experimental data that are typically
unavailable and difficult to ascertain. The more recent availability of
higher-throughput sequencing platforms, combined with more precise
modes of genetic perturbation, presents an opportunity to formulate more
robust and comprehensive approaches to gene network inference. Here,
we propose a step-wise framework for identifying gene-gene regulatory
interactions that expand from a known point of genetic or chemical
perturbation using time series gene expression data. This novel approach
sequentially identifies non-steady state genes post-perturbation and in-
corporates them into a growing series of low-complexity optimization
problems. The governing ordinary differential equations of this model
are rooted in the biophysics of stochastic molecular events that underlie
gene regulation, delineating roles for both protein and RNA-mediated
gene regulation. We show the successful application of our core algorithms
for network inference using simulated and real datasets.

I. INTRODUCTION

The elucidation of gene regulatory networks is fundamental to
understanding the dynamic functions of genes in biochemical, cellular
and physiological contexts. The architectures of networks comprised
of small numbers of genes are generally deciphered using classi-
cal experimental techniques, where biophysical data describing the
interactions of genes and their products can lead to useful models
and well-characterized systems. While this validated experimental
tract continues to provide valuable biological insight, it is ultimately
laborious and costly, and often demands strategies uniquely tailored to
individual biological systems and problems. Furthermore, the models
that result from these efforts tend to be limited to a very modest
subset of genes, typically suffer from a lack of temporal resolution,
and focus narrowly on very particular modes of interaction.

To complement these established approaches, there is a great
impetus to develop more efficient and uniformly applicable in silico
methods for gene network inference and discovery [1], [2], [3], [4],
[5], [6], [7]. Of particular interest is the goal of gene network infer-
ence using perturbed gene expression data [8], [9], [10], [11], [12],
[13], [14], [15], [16], whereby gene expression levels are measured
under the influence of either genetic or chemical perturbations of the
system. Previous attempts at network reconstruction via perturbation
tend to be limited to the analysis of steady-state gene expression. The
growing ubiquity of next-generation sequencing technologies presents
a powerful high-throughput substrate for capturing the dynamic and
non steady-state aspects of gene expression.

In this work, we seek to develop a robust framework for network
inference that relies on temporal gene expression data coupled
to genetic or chemical perturbation. In a departure from previous
attempts, our formulation does not require a priori knowledge beyond
the set of temporal gene expression measurements, acknowledges the
non-steady state and dynamic nature of gene expression, incorporates

both RNA and protein-mediated regulation, sequentially absorbs a
growing number of genes into the regulatory network immediate to
perturbation, aims for sparsity in network topology, and reduces an
otherwise complex optimization problem into a convex form that can
be solved efficiently.

Notation: Throughout this paper {d, i, j, k, l} count integer num-
bers. Column vectors and matrices are indicated by bold lower-case
and upper-case letters, respectively. We use 1 to show a vector with
all entries 1 and 0 a vector with all entries 0. The set of real numbers
is denoted as R and positive real numbers R+. The indicator function
IR+{x} has the value one when x ∈ R+, otherwise zero. The
operator sign(x) replaces each entry of x with its sign function value.
We use (X)T to denote transpose of X, dx(t)/dt and x′(t) the first
derivative of x(t) with respect to time t, ∥x∥1 the 1-norm of vector
x, ∥x∥2 the 2-norm of vector x, and ∥X∥ the largest singular value
of matrix X. We explicitly state a function of time in the form x(t).
This is to be distinguished from vectors of the form x(i), where i is
a positive integer representing the ith entry of the vector x.

II. SYSTEM MODEL

A. Gene expression datasets and perturbation

Let xi(t) and yi(t) denote the RNA-level and protein-level ex-
pression of gene i at time t, respectively. We define an m× n gene
expression matrix

X =

x1(t1) . . . x1(tn)
...

. . .
...

xm(t1) . . . xm(tn)

 ,

where m indicates the total number of genes in the system and
n the total number of samples in the time series. In practical
cases, with expression data originating from microarray or RNA-Seq
experiments, m ≫ n.

The paper is concerned with datasets with known points of
perturbation. In this experimental scheme, a gene xp

i is specifically
targeted for perturbation via either gene suppression or gene over-
expression. Perturbation is triggered at a known time point after
a series of presumably steady state measurements. Without loss of
generality, it is assumed that the starting point of perturbation occurs
at t1 and prior measurements are approximately steady state. Datasets
from experiments that conform to this scheme are in the following
form, where xp

i (t1) represents the point of perturbation and L denotes
the total number of samples post-perturbation.

Xp ..=



. . . x1(t0) x1(t1) . . . x1(tL)
. . .

...
...

. . .
...

. . . xi(t0) xp
i (t1) . . . xp

i (tL)
. . .

...
...

. . .
...

. . . xm(t0) xm(t1) . . . xm(tL)
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B. Conceptual description of inference approach

We consider a non-perturbed system as one with genes in steady
state, i.e., where dxi(t)/dt and dyi(t)/dt are approximately zero.
After a series of steady state expression measurements, a protein-
encoding gene in this system is perturbed to bring about a dramatic
change in its expression level, i.e., where |dxp

i (t)/dt| ≫ 0, followed
by a series of post-perturbation measurements. The discrete set of
expression measurements, with appropriate temporal resolution, can
be used to produce continuous gene trajectory curves.

For a short period of time post-perturbation, the perturbed gene
falls out of steady state while all other genes remain effectively in
steady state. The induced change in RNA expression, ∆xp

i , is coupled
to a delayed change in protein expression, ∆yp

i . This shift in protein
availability leads, through the immediate regulatory network of the
perturbed protein, to changes in the expression levels of other genes.

Consider the set of all genes that are affected by ∆yp
i at time t.

We divide this set into protein and miRNA-encoding subsets. The
set of all indices that correspond to protein-encoding genes is shown
as G(t), and M(t) is set of all indices that correspond to miRNA-
encoding genes. We define the collection of RNA expression data
for these subsets as XG(t)

..= {xi(t)|i ∈ G(t)} and XM(t)
..=

{xi(t)|i ∈ M(t)}, respectively. We further define the collection of
protein expression levels for subset G as YG(t)

..= {yi(t)|i ∈ G(t)}.
In principle, we can identify genes that fall out of steady state in

an ordered manner with gene trajectory analysis. The growing set
of non-steady state actors in the system, both members of G(t) and
M(t), can then be sequentially incorporated into a growing network
of interactions to be modeled.

C. Governing regulatory equations

Gene and protein expression dynamics are often modeled in
the form of ordinary differential equations [17], [18], [19], with
gene-specific rate constants for molecular synthesis and degradation
and gene-specific functions accounting for the regulatory effects of
proteins. We introduce miRNA-mediated gene regulation into this
model and establish functions for both protein and RNA regulatory in-
teractions that complement our overall approach to network inference.
The architecture of the gene regulatory circuit under consideration is
depicted in Figure 1.

This circuit can be represented in the following form:

dxi(t)

dt
= τifi(YG(t))−

(
λRNA
i + gi(XM(t))

)
xi(t) (1)

dyi(t)

dt
=
(
ri − hi(XM(t))

)
xi(t)− λProt

i yi(t), (2)

where τi is the rate of transcription when RNA polymerase (RNAP)
is bound, fi(YG(t)) is the probability of RNAP binding, λRNA

i is
the rate of basal RNA degradation, gi(XM(t)) incorporates the effect
of miRNA-mediated RNA degradation, ri is the rate of translation,
hi(XM(t)) accounts for the effect of miRNA-mediated translational
inhibition, and λProt

i is the rate of protein degradation. It follows
from the biological definitions of the system that parameters τi,
λRNA
i , ri, and λProt

i are to be positive and hi(XM(t)) ≤ ri.

D. Protein-mediated regulation

For each gene, i, we employ an existing statistical thermodynamic
framework [20], [21] to model the equilibrium probability of RNAP
binding to a gene of interest as a function of protein regulators,
fi(YG(t)). We extend a previous derivation of multiple protein
regulators operating on a single gene [22] and explicitly show that
the general form can be expressed as a function of non-steady state
genes, G(t) (Appendix A). Although steady state regulators play an
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Fig. 1. Gene regulatory circuit. ‘Gene’ represents protein-encoding genes
and ‘miRNA’ represents miRNA-encoding genes. Protein-encoding genes
can give rise to transcription factors (‘TF’) that directly exert influence on
the cis regions of other genes, as well as non-TF proteins (‘G’) that can
indirectly act through TFs and various biochemical cascades. These protein
regulators ultimately affect the equilibrium probability of RNA polymerase
(‘P’) being bound to a promoter of interest. Additionally, miRNAs can directly
repress expression via targetted RNA degradation or translational repression.
All proteins and RNAs in this system undergo varying rates of chemical
degradation.

active role in gene regulation, we can effectively restrict our binding
probability function to the activities of perturbed regulators. This
function is shown below.

fi(YG(t)) =

ai0 +
N(t)∑
j=1

aij

∏
k∈Sij(t)

yk(t)

1 +
N(t)∑
j=1

bij
∏

k∈Sij(t)

yk(t)

(3)

where Sij(t), 0 ≤ j ≤ N(t), is the list of all possible protein
products of genes within set G(t) that interact to form regulatory
complexes. For instance when G(t) = {1, 2}, there are N(t)+1 = 4
complexes as the empty set Si0 = {∅}, Si1 = {1}, Si2 = {2},
and Si3 = {1, 2}. To reduce the complexity of this model, we
restrict Sij(t) to all terms up to the second-order, accounting for
the interactions of no more than two proteins bound together. In this
arrangement, a complex represents either the products of a single gene
or the interaction of the products of any two genes that can form a
regulatory agent. However, any number of complexes can additively
combine to regulate single genes. The numbering of complexes is
an arbitrary labeling of genes and gene-pairs in the system. The
coefficients 0 ≤ aij ≤ bij depend on the binding energies of
regulator complexes that act on a promoter region, and ai0 and bi0
correspond to the case where no regulators are bound to the promoter
region (

∏
k∈Si0(t)

yk(t) ..= 1). It is assumed all coefficients are
normalized so that bi0 = 1.

E. miRNA-mediated regulation

To account for the effects of miRNA regulation on each gene,
we draw on previous mass-law (linear) models [23], [24] that
acknowledge two primary routes of inhibitory regulation: (i) cleavage
or degradation of target transcript and (ii) translational repression.
These are represented by functions gi(XM(t)) and hi(XM(t)), re-
spectively. The former is a modifier of the RNA degradation rate
constant, λRNA

i , while the latter detracts from RNA available to
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Fig. 2. Overview of gene inference pipeline, beginning with a normalized
gene expression dataset. The first stage involves the estimation of all gene tra-
jectories as noise-free and continuous curves (P1), followed by segmentation
into equally-spaced intervals for detection of significant changes in expression.
The time-dependent expansion of G(t) and M(t), along with the result of
(P1), seed downstream network inference. In the next stage, (P2) is used to
estimate protein expression, and finally all obtained results are considered
in algorithm 1 to produce a regulatory network map. Figure 3 provides a
graphical description of the bracketed pre-inference stages.

the translational machinery without affecting RNA concentration as
assayed. These functions are shown below.

gi(XM(t)) =
∑

j∈XM(t)

λRNA
ij xj(t) (4)

hi(XM(t)) =
∑

j∈XM(t)

λProt
ij xj(t) (5)

where both λRNA
ij and λProt

ij are greater than or equal to zero.
We impose the constraint that any given miRNA can only inhibit

the expression of a particular target mRNA through one mode of
regulation, either transcript cleavage or translational repression. This
is reasonable, given that the particular pathway of inhibition is
determined by the specificity of binding between a particular miRNA
and a seed site on a target transcript, which is a fixed interaction for
each miRNA-mRNA pairing [25], [26], [27]. This constraint takes
the following mathematical form

IR+{λRNA
ij }+ IR+{λProt

ij } = 1.

III. NETWORK INFERENCE ALGORITHM

Sub-sections III-A - III-D contain all the core algorithmic com-
ponents in our proposed inference pipeline. A graphical overview of
how these modular algorithms form a framework for gene network
inference is shown in Figure 2. This linear ordering of post-processing
and inference steps, although designed for a normalized gene expres-
sion dataset involving a precise perturbation, is robust and flexible.

A. Modeling and estimation of gene expression

Normalized gene expression values, such that xi(t) ≤ 1, are
the given input for the algorithms described in this and subsequent
sections. In reality, gene expression trajectories are inevitably noisy,
which perturb the model parameters away from the true values. To
reduce this noise effect, we first represent gene expressions as a linear
combination of basis functions in the following form

xi(t) =
D∑

d=1

θidφd(t) = φ(t)Tθi, (6)

where D is the total number of bases and θid the coefficient of the
dth basis function, φid(t). The basis functions are chosen to take the
form of a B-spline (Appendix B). Although all genes are associated
with a common set of basis functions in (6), one can consider different
sets of basis functions for different genes.

The form of (6) allows us to fit a continuous function for a
set of discrete gene expression measurements, using the following
minimization

(P1) min
θi

∥∥∥∥∥
L∑

j=1

(
xi(tj)−φ(tj)

Tθi

)∥∥∥∥∥
2

+ γθθ
T
i Kθi,

where the roughness penalty θT
i Kθi =

∫ tL
t1

(
d2xi(t)/dt

2
)2

dt and
K is a roughness matrix with the (j, k)th entry

∫ tL
t1

φ′′
j (t)φ

′′
k(t)dt.

Here, the first term is intended to diminish noise within measurements
and the second term is intended to smooth our approximations. The
parameter γθ is tuned by cross validation where training data is
available, otherwise it can be drawn from a characterized network
from the nearest available biological system.

Employing (P1), our estimation to xi(t), denoted as x̂i(t), is a
continuous function in time and its first derivative can be easily
calculated as

dx̂i(t)

dt
≃ x̂i(t+∆t)− x̂i(t)

∆t
. (7)

Throughout the rest of the paper, it is assumed that our samples
are taken from x̂i(t) and therefore, any arbitrary number of samples,
L, is achievable. We further replace x̂i(t) with xi(t) for notational
convenience.

B. Detection of perturbed genes

We can introduce a simple first approach for detecting when
individual genes exit steady state post-perturbation. Gene expression
models generated via (P1) are essentially smooth and noise-free when
the total number of bases is restricted to an appropriately small
number, D. High-frequency gene trajectories, whether a product
of noise or periodicity in expression [28], [29], are converted into
flat trajectories. This property allows us to detect when significant
non-periodic deviations occur with respect to the initial steady state
measurement(s). More precisely, time interval [t1, tL) is divided into
R sub-intervals as [rt{1,L}, (r+1)t{1,L}) for all 1 ≤ r ≤ R, where
t{1,L}

..= (t1− tL)/(R+1). We choose R with respect to the nature
of the original expression data, such that R ≥ D.

For each sub-interval, we look for the maximum and minimum
values of trajectories. The sets G(t) and M(t) are then expanded as
follows. At sub-interval r, gene i is included within either G(t) or
M(t) for t > rt{1,L} provided that the deviation from the steady
state measurement of gene i is greater than a desired threshold, T .
In the simulations described in this paper, T was set in the range of
[0.15, 0.20] for normalized expression data. Both R and this threshold
can be modified to better reflect the frequency of gene expression
measurements for a given biological system. If more complex change
detection schemes are preferred, a number of alternative approaches
can be adapted for this purpose [30], [31], [32].
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Fig. 3. The bracketed pre-inferenced stages of the pipeline in Figure 2 are
shown graphically. Discrete expression data from two genes and a small
number of basis functions are utilized to produce continuous models of
expression (P1), followed by segmentation and change detection. In this
simple example, a change in gene 2 is detected in sub-interval r = 1, and a
change in gene 1 is detected in sub-interval r = 5.

C. Modeling and estimation of protein expression

Formulation: Similar to (6), we express the protein level yi(t) as

yi(t) =

D∑
d=1

αidφd(t) = φ(t)Tαi. (8)

Our objective is first to find αi through the ODE (2) resulting in an
estimation of the protein level yi(t). The calculated yi(t)’s are in turn
used to approximate unknown variables associated with the ODE (1).
One of the challenges of solving non-linear ODEs is that the solution
does not usually have a closed form. We propose to transform the
non-linear ODE (2) into a linear regression problem. To motivate
our method of constructing the ODE solution, we consider the first
derivative of yi(t) as

y′
i(t) = φ′(t)

T
αi,

and ODE (2) is consequently represented as

φ′(t)
T
αi =

ri −
∑

j∈M(t)

λProt
ij xj(t)

xi(t)− λProt
i φ(t)Tαi.

We rewrite the above equation in the following form

rixi(t)− xM(t)
TλR

i (t)− bi(t)
Tαi = 0, (9)

where bT
i (t)

..= [λProt
i φ(t)T + φ′(t)

T
] and λR

i (t) is the column
vector with entries λProt

ij , ∀j ∈ M(t). The miRNA expressions
corresponding to λR

i (t) are indicated by the vector xM(t) such
that both vectors, λR

i (t) and xM(t), have the same index order.
For notational convenience, we assume that all entries of xM(t) are
multiplied by xi(t).

Consider gene expressions at times tl, 1 ≤ l ≤ L. Setting all
available gene expressions in equation (9), we arrive at

Ai

(
−ri, z

T
i ,α

T
i

)T
= 0,

where

Ai
..=


xi(t1) (xM(t1)

T ,0(t1)
T ) bi(t1)

T

xi(t2) (xM(t2)
T ,0(t2)

T ) bi(t2)
T

...
...

...
xi(tL) xM(tL)

T bi(tL)
T

 , zi ..= λR
i (tL),

and 0(tl) is the zero column vector with length card(M(tL)) −
card(M(tl)). When the length is zero, we do not consider the vector
0(tl), e.g., (xM(tL)

T ,0(tL)
T ) is replaced by xM(tL)

T in the last
row of Ai. Matrix Ai has L rows and card(M(tL)) + D + 1

columns. Given that ri is positive, we normalize
(
−ri, z

T
i ,α

T
i

)T
with respect to ri and represent the normalized vector as(
−1, zTi ,α

T
i

)T
, acknowledging abuse of notation. Given λProt

i and
M(t), matrix Ai is completely determined.

Algorithm: We need to solve the linear system model

Ai

−1
zi
αi

 = 0 (10)

for zi and αi when matrix Ai is determined. For identifiability of
zi and αi, we require that L ≥ card(M(tL)) + D, that is the
number of equations is no smaller than the number of unknown
parameters. However the sparsity in zi, given that only a small
number of miRNAs typically act on a common gene [33], reduces
the number of required equations.

To account for measurement noise and encourage zi to be sparse,
we will minimize the 2-norm error described in (10) with 1-norm
regularization ∥zi∥1. Furthermore, we adopt the analogous roughness
penalty αT

i Kαi as used in (P1). Thus, we propose to obtain the ODE
(2) solution with the following convex optimization

(P2) min
{zi,αi}

∥∥∥∥∥∥Ai

−1
zi
αi

∥∥∥∥∥∥
2

+ γz∥zi∥1 + γαα
T
i Kαi,

subject to zi ≥ 0

(xM(tl)
T ,0(tl)

T )zi ≤ xi(t) ∀1 ≤ l ≤ L

where γz and γα are chosen using cross validation. The second
constraint ensures that the total rate of translation, ri − hi(XM(t)),
is not negative. Due to the convex nature of this problem, it can
be quickly solved for large gene datasets. This recovery of protein
expression is dependent on prior knowledge of individual protein
degradation rates, λProt

i . In the absence of this experimental data, we
can fix the value of λProt

i to 1 for the entire system and still achieve
accurate network reconstruction as shown in subsequent sections.

D. Gene regulatory inference

Formulation: The model given by ODEs (1) and (2) describes the
evolution of RNA and protein expressions provided that we know
all the regulatory parameters, e.g., aij , bij , and τi. Coefficients aij

and bij are difficult to experimentally determine and it is currently
infeasible to carry out the relevant measurements simultaneously for
a complex system with a large number of genes and gene products
under consideration. Our goal is to estimate these coefficients so that
the ODE models can be temporally fitted to large gene expression
data. Specifically, we will use the previously described estimations
of protein and RNA expression to approximate aij and bij , and to
infer a regulatory network map.

To improve the reliability of the inferred network, we take into
account time-dependent changes in gene levels and construct a set of
equations accordingly. This is an important departure from standard
steady state treatments. In this scenario, we first assume that the
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non-perturbed system is in an initial steady state, where RNA and
protein levels are near constant (i.e., dxi(t)/dt = dyi(t)/dt ≃ 0).
As previously mentioned, the perturbation of protein-encoding gene
xp
i (t1) first leads to fluctuations in the expression levels of genes in

its immediate regulatory network. Genes that have exited a steady-
state expression profile at any time up to t, G(t) and M(t), expand
to contain greater numbers of genes that interact to form a putative
regulatory network.

Considering changes in gene levels xi(t) at time tl, 1 ≤ l ≤ L,
with the exception of xp

i (t1), the term τifi(YG(tl)) in equation (1)
can be rewritten as follows

τifi(YG(tl)) =

τiai0 +
N(tl)∑
j=1

τiaij

∏
k∈Sij(tl)

yk(tl)

1 +
N(tl)∑
j=1

bij
∏

k∈Sij(tl)

yk(tl)

..=
pT
i (tl)ai

pT
i (tl)bi

,

(11)
where ai is a vector with (j+1)th entry τiaij , 0 ≤ j ≤ N(tL). The
(j+1)th element of vector pi(tl) is described by

∏
k∈Sij(tl)

yk(tl)

when 0 ≤ j ≤ N(tl) and zero for N(tl)+1 ≤ j ≤ N(tL). Vector bi

is defined such that the first entry is 1 and (j+1)th, 1 ≤ j ≤ N(tL),
is bij .

Remark 1. Given that yi(t)s are normalized with respect to ri,
aij and bij include the multiplier term

∏
k∈Sij(tl)

rk so that the
normalization can be vanished. Similarly, τi can be absorbed into the
coefficients aij , where we assume τi < 1 to maintain the algorithm
constraint 0 ≤ ai ≤ bi.

We also representλRNA
i +

∑
j∈M(tl)

λRNA
ij xj(tl)

xi(tl) +
dxi(t)

dt

∣∣∣∣
t=tl

..= uT
i (tl)λi,

(12)

in which ui(tl) and λi are defined as follows. First and second
entries of vector ui(tl) are dxi(t)/dt|t=tl and xi(tl), respectively.
The remaining entries are xj(tl)xi(tl), j ∈ M(tl). Making the same
arrangement of array as ui(tl), vector λi is determined by first entry
1, second entry λRNA

i , and subsequent entries λRNA
ij , j ∈ M(tl).

Using (11)–(12), equation (1) can be reformulated as

Ωl(ai,bi,λi) ..= pT
i (tl)ai − uT

i (tl)λib
T
i pi(tl) = 0. (13)

Algorithm: We need to solve the non-convex problem

(P3) min
{ai,bi,λi}

Γ(ai,bi,λi)

subject to 0 ≤ ai ≤ bi, 0 ≤ λi

bi(1) = 1

λi(1) = 1,λi(2) = λRNA
i

with

Γ(ai,bi,λi) ..=
L∑

l=1

Ωl(ai,bi,λi)
2 +

γ1
2

(
∥λi∥22 + ∥bi∥22

)
+

γ2∥bi∥1 + γ3∥λi∥1,

The first term in the above equation follows from (13). The second
term associated with γ1/2 motivates grouping effect among variables
bi and λi [34], [35]. Due to the assumption that each gene has only
a few regulators, 1-norm regularizations are considered to encourage
sparse solutions. Note that in the absence of miRNAs (all λRNA

ij =
0), terms ∥λi∥2 and ∥λi∥1 are no longer needed.

Non-convex optimizations are generally hard to solve in a rea-
sonable time. Hence, we seek to identify a special treatment that

reduces the computational complexity and provides desired solutions.
Optimization (P3) is convex in {ai,bi} for fixed λi and vice versa,
and therefore the problem is bi-convex and can be solved using a
variation of the alternating-direction method of multipliers (ADMM)
which cycles over two groups of variables [36], cf. Appendix C. Here,
given the absence of dual variables, ADMM is reduced to simple
alternating minimization. The proposed solver entails an iterative
procedure compromising two steps per iteration k = 1, 2, . . . This

Algorithm 1 : Gene regulatory inference
input ai,bi,λi

initialize ai[0],bi[0], and λi[0] at random with respect to

bi(1) = 1,λi(1) = 1, and λi(2) = λRNA
i .

for k = 0, 1,. . . do
[S1] Update primal variables ai and bi:

{ai[k + 1],bi[k + 1]} = arg min
{bi,ai}

Γ(ai,bi,λi[k])

subject to 0 ≤ ai ≤ bi

bi(1) = 1.

[S2] Update primal variable λi:

λi[k + 1] = argmin
λi

Γ(ai[k],bi[k],λi)

subject to λi ≥ 0

λi(1) = 1,λi(2) = λRNA
i .

end for
return ai,bi,λi

iterative procedure implements a block coordinate descent method
[37]. At each minimization, the variables that are not being updated
are treated as fixed and are replaced with their most updated values.
Then the iteration alternates between two sets of variables, {bi,ai}
and λi.

One difficulty with the proposed solver is that it may result
in stationary points which are not necessarily globally optimal.
This occurs since optimization (P3) is not convex in {bi,ai,λi}.
Motivated by the proposition 1 in [38], the next theorem offers a
global optimality certificate upon the convergence of the solver.

Theorem 1. Let {āi, b̄i, λ̄i} be a stationary point of (P3). If∥∥∥∥∥
L∑

l=1

Ωl(āi, b̄i, λ̄i)ui(tl)p
T
i (tl)

∥∥∥∥∥ ≤ γ1
2
, (14)

then {āi, b̄i, λ̄i} is the globally optimal solution of (P3).

Proof. See Appendix D.

Remark 2. For non-convex problems, ADMM offers no convergence
guarantees. Nevertheless, there are evidences in the literature that
show empirical convergence of ADMM, particularly when the non-
convex exhibits specific structures. For example in our scenario,
problem (P3) is bi-convex and admits unique closed form solutions
for sub-problems [S1] and [S2]. This observation along with desired
properties, Theorem 4.5 and 4.9 in [39], are indeed a sufficient case
for successful convergence. A formal proof of convergence is beyond
the scope of this paper.

Algorithm 1 is intended for the case in which the RNA degrada-
tion rates, λRNA

i , are available. However, experimentally measuring
λRNA
i is a difficult task. We offer a simple modification to the

algorithm so that network inference can be still obtained without
prior knowledge of RNA degradation rates.
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Fig. 4. Map of gene regulatory network described by equations (17) and (18) .
First-order (single) and and second-order (combined) regulators are depicted
in concentric circles. Green arrows specify gene activation and red arrows
specify gene repression. The relative magnitudes of activation and repression
are roughly represented by arrow thickness.

For simplicity of explanation, we can first remove miRNAs from
our model. ODE (1) can then be rewritten as

Ωl(ai,bi, ci) ..= pT
i (tl)

(
ai − bi

dxi(tl)

dt
− cixi(tl)

)
= 0, (15)

and ci ..= λRNA
i bi. Employing the above reformulation, unknown

variables ai, bi, and ci are estimated through the following convex
optimization

(P4) arg min
{ai,bi,ci}

L∑
l=1

Ωl(ai,bi, ci) + γ2(∥bi∥1 + ∥ci∥1)

subject to 0 ≤ ai

ai ≤ bi

λminbi ≤ ci ≤ λmaxbi, (16)

where λmin and λmax specify an lower and upper bound for λRNA
i ,

respectively. Variable ci is introduced to remove λRNA
i from our

optimization. However, the new variable expands the feasible set of
solutions, which might create an answer different from the true value.
To reduce this effect, we add constraint (16) to (P4) to tighten the
feasible set of solutions. Given that λRNA

i /τi ≥ 1, we can take
on the additional constraint ai ≤ ci. In the subsequent simulations,
λmin is in the near-zero range [0.001, 0.01], and λmax is selected in
the range [0.1, 1]. It is straightforward to generalize the introduced
approach within the framework of (P3). Derivations are removed to
avoid repetition in the paper.

IV. SIMULATIONS

A. Small gene network with prior knowledge of degradation rates

To demonstrate the proposed time-series approach, we consider the
three-gene network described by the following systems of ODEs for
gene expression

dx1(t)

dt
=

0.1 + 0.05y1(t)y2(t) + 0.025y1(t)y3(t)

1 + 0.1y1(t) + 10y3(t) + 0.05y1(t)y2(t) + 0.025y1(t)y3(t)

− 0.1x1(t),

dx2(t)

dt
=

0.1 + 0.1y1(t) + 0.1y1(t)y2(t)

1 + 0.1y1(t) + 0.1y1(t)y2(t) + 10y1(t)y3(t)
− 0.1x2(t),

dx3(t)

dt
=

0.1 + 0.1y2(t)

1 + 0.1y2(t) + .1y3(t)
− 0.1x3(t), (17)
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Fig. 5. Gene expression trajectories (unnormalized) before and during the
imposed perturbation. The system is in steady state before time 0. Gene 1
is artificially perturbed at time zero, leading to changes in gene expression
levels. A new steady state is eventually achieved at approximately time 50. We
sample expression levels between time 0 (the starting point of perturbation)
and 50 (the new steady state) and use them as data in our algorithm.

and the following system of ODEs for protein expression

dy1(t)

dt
=x1(t)− 0.5y1(t),

dy2(t)

dt
=2x2(t)− 0.5y2(t),

dy3(t)

dt
=x3(t)− 0.5y3(t). (18)

The above toy model, visualized in Figure 4, is provided to better
explain our algorithms. Although a small network is examined,
many of the same qualitative characteristics of large network are
investigated in this example. The explicit system of ODEs, describing
the kinetics of the system [40], allows us to generate samples to fit
our model and to also compare recovered solutions with the ground
truth. This model also incorporates complex modes of regulation,
including self-regulation and combined regulators.

To generate data, arbitrary initial conditions are assigned to ODEs
(17) and (18) and the system is allowed to resolve to a steady state.
To perturb this steady state, the expression level of gene 1, x1(t), is
artificially fixed to 0.3, leading to fluctuations in the expression levels
of other genes. Figure 5 illustrates expression trajectories before and
during the perturbation.

We collect 12 samples from each gene expression level. The
samples are chosen uniformly from time interval [0, 50]. Points 0 and
50 specify the times at which the perturbation starts and the system
reaches a new steady state, respectively. Using these sampled data,
we solve optimization (P2) to effectively recover protein expressions
as shown in Figure 6.

We finally examine Algorithm 1, (P3), for the goal of network
recovery. In this scenario, our target is to estimate vectors ai and
bi. We assume that the degradation rates are known in advance
and therefore, since the system does not contain any miRNA in
this particular example, λi is completely at hand. Let us consider
gene 3 where the true value of a3 = (0.1, 0, 0.1, 0, 0, 0, 0) and
b3 = (1, 0, 0.1, 0.1, 0, 0, 0). Vectors a3 and b3 are indexed with
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Fig. 6. Exact protein expression curves derived from model ODEs (17) and (18) (left), and their recovered estimations using 12 unnormalized timepoint
samples via (P2) (right). For convenience of graphical comparison, the values of ri were drawn from the system equations. Protein expression is otherwise
normalized with respect to ri, but this would result in a transformed scale for this qualitative comparison.

regard to

p3(tl) =

(1, y1(tl), y2(tl), y3(tl), y1(tl)y2(tl), y1(tl)y3(tl), y2(tl)y3(tl)).

Applying our method, we obtain a3 ≃ (0.1, 0, 0.083, 0, 0, 0, 0) and
b3 ≃ (1, 0, 0.083, 0.08, 0, 0, 0). Table I demonstrates that as the
sampling frequency increases, we attain more accurate approxima-
tions. Furthermore, it can be seen that the estimations achieve similar
accuracy after a small number of samples.

Employing the aforementioned single perturbation, we are only
able to recover the strongest edge of gene 2, b2(6) = 10. The
difficulty here is due to the sharp change in y1 (Figure 6), which
provides us with a minimal amount of dynamic information. y1
near-instantaneously switches between two steady-state levels of
expression, resulting in less accurate recovery of the underlying
dynamics. However, expression patterns in perturbed biological set-
tings tend to be more dynamic and are unlikely to contain this
type of expression pattern. In this example, the removal of sharp
instantaneous expression changes leads to complete recovery of the
gene regulatory network.

Remark 3. The recovery of regulatory networks using this proposed
approach is tightly associated with the presence of dynamic changes
in gene expression. These changes can provide us with a certain
amount of information which predominantly specifies the accuracy of
estimation. The achievable accuracy depends on many factors such
as nonlinearity in changes or similarity in the range of changes.

TABLE I
Inference of binding coefficients describing energies of regulator

complex-promoter interactions based on number of samples.

# of Samples Variables Estimated vector entries
a3 0.097 0 0.082 0 0 0 08
b3 1 0 0.082 0.06 0 0 0
a3 0.1 0 0.093 0 0 0 016
b3 1 0 0.093 0.089 0 0 0
a3 0.1 0 0.1 0 0 0 024
b3 1 0 0.1 0.092 0 0 0

System identification for gene 3 based on sample frequency. Coefficients a3

and b3 are the numerator and denominator of pbound
3 (binding probability of

RNA polymerase to a given promoter).

B. Medium (10-gene) simulated network with noise

We extend our approach to simulated networks of 10 genes,
generated as part of the DREAM4 in silico network inference
challenge [42]. Each network dataset includes a simulated time series
of gene expression in response to five chemical perturbations, along
with single steady-state expression levels for wild-type, knockdown,
knockout, and multifactorial perturbations. These datasets also sim-
ulate internal network noise and incorporate measurement noise. We
use these data to assess the robustness of our approach in a non-ideal
setup.

Our approach is geared towards precise genetic and chemical
perturbations, while these datasets simulate chemicals that are non-
specific in their interactions. To place us at further disadvantage, we
attempt network recovery using only the time series perturbations,
forgoing all other datasets available to solvers. Lastly, our approach
works best under conditions where RNA and protein degradation
rates are known. Given that this information is unavailable, this
exercise also serves as a test of our simplifying assumptions for such
situations. Unlike simulations in the previous section, the rules of this
challenge stipulate no self-regulation and no combined regulators.

DREAM4 Challenge 2 datasets for Networks 1 and 2 are used to
infer gene regulatory networks and to inspect predictions of network
topology using the official scoring pipeline. First, we use (P1) to
produce smooth and continuous gene expression trajectories from the
discrete and noisy time series datasets (Figure 7). Perturbed genes are
identified and incorporated as described in Section III-B. Network
inference is carried out using Algorithm 1. In the absence of RNA
degradation rates, λmin is set to either 0.001 or 0.01, and λmax is set
to 0.1 or 1. If a directed network edge is identified, the probability
of the edge is set to 1 for weighted edges, and 0 otherwise. This is
done to allow scoring of our network with the provided scripts, given
our non-probabilistic formulation. Algorithm 1 minimization values
are filtered against abnormal values that could represent underfitting
and overfitting of data.

For Network 1, we report the area under the receiver operating
characteristic curve (AUROC) = 0.81 and the area under the
precision-recall curve (AUPR) = 0.75, and for Network 2, AUROC
= 0.76 and AUPR = 0.68 (Supplemental Figure 1). These results
compare very favorably to other time series-based methods applied to
the same datasets [43]. In fact, for Networks 1 and 2, the AUROC and
AUPR values represent improvements over the top reported results.
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Fig. 7. Time series gene expression measurements from simulated DREAM4
datasets are shown with connected solid lines. Dashed lines of corresponding
color show that application of (P1) effectively produces noise-free (smooth)
and continuous gene expression curves.

C. Network inference from yeast cell cycle time series

In order to probe real biological data with inherent noise, we apply
parts of our pipeline to a classical yeast cell cycle microarray dataset
[44]. This data is provided as a 25 point time-series with a 5 minute
sampling interval. Given the yeast cell is in an incredibly dynamic
stage post synchronization with α-factor pheromone, this again rep-
resents a vast departure from ideal near steady-state conditions with
a precise and local perturbation. We chose to focus our analysis on a
set of primary regulatory genes and complexes involved in core cell
cycle control and that showed greater than 15% changes in expression
over the time course [41]. This led to retainment of 7 genes. We use
(P2) to fit smooth continuous functions to the noisy gene expression
measurements exhibited in Figure 8. We next examine our proposed
scheme, (P4), to infer a gene regulatory network among these genes.

The inferred network is shown in Figure 8, with arrows indicating
directed edges for gene-gene excitatory and inhibitory interactions. Of
the 12 regulatory interactions inferred, 6 are correct in both direction-

ality and influence (i.e. inhibition vs activation) and 2 are correct only
in directionality. Further, 3 can be considered conditionally correct,
whereby the predicted influence is mediated by a single intermediate
node that was absent from the model. A single edge was labeled as
a false positive, even though an argument can be made for mediation
of that influence by two intermediate nodes. Strikingly, the algorithm
correctly predicts a role for combined regulators and recovers the
only example of self-regulation in the reference pathway. This is
promising, given the absence of data relating to protein degradation,
contextless inference, and the non step-wise nature of changes in
expression that would be preferred in our proposed experimental
scheme.

V. CONCLUSIONS

The gene inference pipeline described in this work helps es-
tablish a robust framework for network discovery from perturbed
expression data. The system of equations used to model eukaryotic
gene regulation include the novel extension of a thermodynamic and
statistical mechanic approach to polymerase binding. This pipeline
is best suited for the processing of expression measurements from
high-resolution time series experiments involving precise genetic or
chemical perturbation of a steady state system. Genetic perturbation
is best in the form of induced over-expression or RNAi-mediated gene
knockdown. Chemical perturbation is best in the form of a chemical
that has a specific protein interaction and limited off-target effects.
However, we establish that this approach can yield insights under
non-ideal conditions.

The modular nature of our pipeline allows for the modification
of different stages to best fit a given biological system and of
expression information. Alternative approaches can be implemented
for the stags that precede the core inference algorithm, including
change detection. The performance of this approach can further
be improved with a priori knowledge of protein expression levels,
protein and RNA degradation rates, along with the labeling of non-
coding RNAs. Technologies are continually being improved for the
purpose of capturing these data in a genome-wide manner [45], [46],
[47], [48], to complement gene expression measurements. Our gene
inference approach can readily utilize protein expression data, protein
and RNA degradation data, and miRNA labeling data.

While we expect such inference approaches to work better for
homogenous and synchronized single-cell or single-tissue systems,
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Fig. 8. Time-series gene expression measurements of yeast cell cycle-associated genes filtered at a stringent change detection threshold ( T = 0.15) (left),
and their recovered estimations using (P2) (center). The inferred network via (P4) is shown on the right, compared to the network as it’s presently understood
([41]). “True positives” represent edges recapitulated by the inference algorithm in both direction and influence, “near positives” represent edges correct in
direction but with reversed influence, “indirect positives” represent edges of correct direction and influence with a missing intermediate node, and “false
positive” indicates an edge not found in the reference network and that cannot be explained through a single intermediate node.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 30, 2015. ; https://doi.org/10.1101/007906doi: bioRxiv preprint 

https://doi.org/10.1101/007906


9

we also expect to capture the most prominent and meaningful aspects
of the aggregate dynamics of heterogenous mixed-cell populations,
multi-tissue systems, and whole organisms. Future directions include
the more comprehensive validation and refinement of these algorithms
for synthetic networks and higher-order eukaryotic systems, adapta-
tions of more sophisticated change detection schemes, and surveys
of a broader range of system-specific sampling frequencies.

This inference method has broad application in biological network
discovery. For example, it can be used to identify the topology of
gene regulatory networks immediate to drug response, and can be
used to identify new interactions for genes implicated in disease.
The inference data can then be used to seed and prioritize candidates
for downstream biological and in vivo validation.

APPENDIX

A. Treatment of protein regulators

Consider a gene for which the probability of RNAP being bound
to a specific promoter site, S, is under the potential influence of a
single non-steady state regulator, Regulator 1, and the collection of
all available regulators still in steady state. The steady state regulators
are encapsulated as a single super-protein complex, SS, that is fixed
as bound to the promoter region. Suppose that we have P RNAP, R1

Regulator 1, and RSS super-protein complex.
We apply the following notation: εNS

P is used to denote the energy
of the case in which RNAP is bound to a non-specific (NS) DNA
binding site, εSP,i0 the energy when RNAP is only bound to the S
binding site, εSP,i1 the energy when RNAP is specifically bound to the
promoter-regulator complex, εNS

SS the energy when the SS is bound
to the NS binding site, εSSS the energy when the SS is bound to
the S binding site, εNS

i1 the energy when Regulator 1 is bound to the
NS binding site, εSi1 the energy when Regulator 1 is bound to the S
binding site, and

∆εP,i0
..= εSP,i0 − εNS

P ,∆εP,i1
..= εSP,i1 − εNS

P ,∆εi1 ..= εSi1 − εNS
i1 .

Also define

Z(P,R1, RSS − 1) ..=

m!e−PβεNS
P e−R1βε

NS
i1 e−(RSS−1)βεNS

SS e−βεSSS

P !R1!(RSS − 1)!(m− P −R1 −RSS + 1)!

where Z(P,R1, RSS − 1) gives the total number of arrangements
for RNAP and R1 at NS binding sites, weighted by a Boltzmann
factor providing a relative energy for each state.

The available configurations of the system with corresponding
unnormalized probabilities are enumerated as follows: (i) Regulator
1 and RNAP unbound: Z(P,R1, RSS − 1), (ii) only Regulator
1 bound: Z(P,R1 − 1, RSS − 1)e−βεSi1 , (iii) only RNAP bound:
Z(P−1, R1, RSS−1)e−βεSP,i0 , and (iv) both Regulator 1 and RNAP
bound: Z(P−1, R1−1, RSS−1)e−βεSP,i1 . To derive the probability
of RNAP binding, we sum the probabilities of configurations in
which RNAP is bound to the specific site and divide over the
sum of probabilities of all potential configurations, Ztotal. Here, in
parallel to [22], it is shown how the effect of steady state proteins
can effectively be removed from the protein regulator formulation,
under the aforementioned arrangement. To represent the probability
of RNAP binding to the cis regulatory region of gene i, we define
pbound
i as follows.

pbound
i =

(
Z(P − 1, R1, RSS − 1)e−βεSP,i0

+ Z(P − 1, R1 − 1, RSS − 1)e−βεSP,i1

)/
Ztotal

=

(
Z(P − 1, R1, RSS − 1)e−βεSP,i0

+ Z(P − 1, R1 − 1, RSS − 1)e−βεSP,i1

)/
(
Z(P,R1, RSS − 1) + Z(P,R1 − 1, RSS − 1)e−βεSi1

+ Z(P − 1, R1, RSS − 1)e−βεSP,i0

+ Z(P − 1, R1 − 1, RSS − 1)e−βεSP,i1

)
=

(
m

R1
eβε

NS
P e−βεSP,i0 + eβεNS

P eβε
NS
i1 e−βεSP,i1e−βεSi1

)
/(

m

R1
eβε

NS
P e−βεSP,i0 + eβε

NS
P eβε

NS
i1 e−βεSP,i1e−βεSi1

+
m2

PR1
+

m

P
eβε

NS
i1 e−βεSi1

)
=

1
y1
e−β∆εP,i0 + e−β∆εP,i1e−β∆εi1

1
y1
e−β∆ε

P,i0 + e−β∆ε
P,i1e−β∆εi1 + 1

Py1
+ 1

P
e−β∆εi1

=
Pe−β∆εP,i0 + y1Pe−β∆εP,i1e−β∆εi1

Pe−β∆ε
P,i0 + y1Pe−β∆ε

P,i1e−β∆εi1 + 1 + y1e−β∆εi1

=
Pe−β∆εP,i0 + y1Pe−β∆εP,i1e−β∆εi1

(1 + Pe−β∆ε
P,i0) + y1e−β∆εi1(1 + Pe−β∆ε

P,i1)

where we have applied the approximation m!/P !R1!(RSS−1)!(m−
P − R1 − RSS + 1)! ≈ mPmR1mRSS/P !R1!(RSS − 1)!. We
introduce y1, the protein product of Regulator 1 defined as R1/m,
for the purposes of normalization and in keeping with the protein
designations used throughout this paper. We additionally note that P
in the final steps of the derivation above is also normalized to m, but
we retain the same notation for simplicity.

The final derivation can be generalized to, for an indefinite number
of first and second order regulators.

fi(YG(t)) =

N(t)∑
j=0

Pe−β∆εP,ij e−β∆εij
∏

k∈Sij(t)

yk(t)

N(t)∑
j=0

(1 + Pe−β∆εP,ij )e−β∆εij
∏

k∈Sij(t)

yk(t)

, (19)

where ∆εij is the binding energy of the jth complex to the promoter,
∆εP,ij is the energy of RNAP being bound to the promoter-
regulator complex j, and P is the concentration of RNAP. Setting
aij = Pe−β∆εP,ij e−β∆εij and bij = (1 + Pe−β∆εP,ij )e−β∆εij ,
we arrive at the form given in (3).

B. B-splines

B-splines have been well investigated in approximation theory
and numerical analysis, leading to a variety of important properties
such as computational efficiency and numerical stability. Particularly,
the B-spline basis functions have the best approximation capacity
based on the Stone-Weierstrass Approximation Theorem. Polynomial
functions are also used to estimate continuous functions. However,
the B-spline bases are shown to be optimally stable [49].

A set of B-spline basis functions in variable t is determined by
the degree of a piecewise polynomial, P , and a knot sequence [50].
The knot sequence is a set of points that divides a real interval into
a number of sub-intervals. More precisely, D bases of degree P
are parameterized by D + P + 1 knots, {t0, t1, . . . , tD+P } where
t0 ≤ t1 ≤ . . . ≤ tD+P . Employing this set of knots and the De
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Fig. 9. The De Boor recursion for P = 3 and D = 4.

Boor recursion in [51], the dth B-spline basis of degree P , written
as φ

(P )
d (t), is derived recursively as follows:

φ
(0)
d (t) =

{
1 if td−1 ≤ t ≤ td
0 if otherwise

, (20)

φ
(p)
d (t) =

t− td−1

tp+d−1 − td−1
φ

(p−1)
d (t) +

tp+d − t

tp+d − td
φ

(p−1)
d+1 (t), (21)

for 1 ≤ d ≤ D + P − p where p = 0 in (20) and 1 ≤ p ≤ P
in (21). The above recursion is visualized in Figure 9 (reconstructed
from [50]).

The degree P = 3 or 4 is sufficient in most applications. The
number of basis functions should be large enough to arrive at accurate
estimation but not too large to cause overfitting. In our case, gene and
protein levels do not contain high frequency changes and therefore, a
small number of basis functions are sufficient to represent gene and
protein expressions.

C. Bi-Convex Problems

Bi-convex optimization is a generalization of convex optimization
where the objective function and the constraint set can be bi-convex
[39].

Definition 1. Let X ⊆ Rn and Y ⊆ Rn be two non-empty convex
sets. The set E ⊆ X × Y is called bi-convex if Bx

..= {y ∈ Y :
(x, y) ∈ B} is convex for each x, and By

..= {x ∈ X : (x, y) ∈ B}
is convex for each y.

Definition 2. A function f(x, y) : B → R is called bi-convex if
f(x, y) is convex on Bx for every fixed x and also convex on By for
every fixed y.

A common method to solve a bi-convex problem is ADMM [52].
The ADMM is an iterative augmented Lagrangian method that uses
partial updates for dual variables and replaces joint minimization by
simpler sub-problems. However, the mentioned procedure does not
guarantee global optimality of the solution.

D. Proof of Theorem 1

The stationary points {āi, b̄i, λ̄i} of (P3) are derived by setting
sub-gradients to zero as follows

∇aiΓ(āi, b̄i, λ̄i) = 2

L∑
l=1

Ωl(āi, b̄i, λ̄i)pi(tl) = 0 (22)

∇biΓ(āi, b̄i, λ̄i) = −2

L∑
l=1

Ωl(āi, b̄i, λ̄i)u
T
i (tl)λ̄ipi(tl)+

γ1b̄i + γ2 sign(b̄i) = 0 (23)

∇λiΓ(āi, b̄i, λ̄i) = −2

L∑
l=1

Ωl(āi, b̄i, λ̄i)p
T
i (tl)b̄iui(tl)+

γ1λ̄i + γ3 sign(λ̄i) = 0 (24)

with respect to constraints 0 ≤ āi ≤ b̄i and λ̄i ≥ 0. These
constraints admit that sign(·) can be replaced by vector 1 in the above
equations. It is obvious from (23)–(24) that b̄T

i ∇biΩ(āi, b̄i, λ̄i) =
λ̄T

i ∇λiΩ(āi, b̄i, λ̄i) = 0, which results in

2

L∑
l=1

Ωl(āi, b̄i, λ̄i)p
T
i (tl)b̄iu

T
i (tl)λ̄i = γ1b̄

T
i b̄i + γ2b̄

T
i 1

= γ1λ̄
T
i λ̄i + γ3λ̄

T
i 1. (25)

Consider the convex optimization

(P5) min
{ai,Gi,W1,W2}

L∑
l=1

(
pT
i (tl)ai − uT

i (tl)Gipi(tl)
)2

+ γ1κ(W1,W2)

subject to W ..=

(
W1 Gi

GT
i W2

)
⪰ 0, (26)

where κ(W1,W2) ..= 1
2
(Tr(W1) + Tr(W2)).

Minimizing (P5) with respect to {W1,W2} leads to

∥Gi∥∗ = min
{W1,W2}

κ(W1,W2) subject to W ⪰ 0,

which is the alternative characterization of the nuclear norm [53].
Taking advantage of the nuclear norm, we can restrict matrix Gi to be
rank one as λib

T
i . Also, κ(·, ·) is able to satisfy the required sparsity

for {λi,b
T
i }. To investigate these claims, recall constraints (??) and

set Gi
..= λib

T
i , W1

..= λiλ
T
i + γ3

γ1
diag(λi), and W2

..= bib
T
i +

γ2
γ1

diag(bi) where diag(λi) is the diagonal matrix with (j, j)th entry
equal to λi(j). Then, the triple (Gi,W1,W2) is feasible for (P5)
due to(

W1 Gi

GT
i W2

)
=

(
λiλ

T
i + γ3

γ1
diag(λi) λib

T
i

biλ
T
i bib

T
i + γ2

γ1
diag(bi)

)

=

(
λi

bi

)(
λi

bi

)T

+
1

γ1

(
γ3 diag(λi) 0

0 γ2 diag(bi)

)
⪰ 0. (27)

In addition, we have

γ1κ(W1,W2) = γ1
(
∥λi∥22 + ∥bi∥22

)
+ γ2∥bi∥1 + γ3∥λi∥1,

and therefore the same objective function for (P3) and (P5) are
obtained. This proves any feasible solution of (P5) yields an inner
bound for (P3).

We next establish that the proposed inner bound is always equal
to (P3) upon satisfying the condition introduced in Theorem 1 and
conclude the two problems are equivalent. The equivalence ensures
that the stationary point of (P3) (which exhibits Theorem 1 condition)
is in fact globally optimal. To show this, the Lagrangian is first formed
as

L(Gi,ai,W1,W2,M) =
L∑

l=1

(
pT
i (tl)ai − uT

i (tl)Gipi(tl)
)2

+

γ1κ(W1,W2)− ⟨M,W⟩,

and M indicates the dual variable associated with the constraint W ⪰
0. In accordance with the block structure of W in (P5), we define
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M1
..= [M ]11, M2

..= [M ]12, M3
..= [M ]22, and M4

..= [M ]21. The
optimal solution of (P5) must

(i) null the sub-gradients

∇aiL(Gi,ai,W1,W2,M) =

2

L∑
l=1

(
pT
i (tl)ai − uT

i (tl)Gipi(tl)
)
pi(tl) (28)

∇GiL(Gi,ai,W1,W2,M) =

− 2

L∑
l=1

(
pT
i (tl)ai − uT

i (tl)Gipi(tl)
)
ui(tl)p

T
i (tl)

−M2 −MT
4 (29)

∇W1L(Gi,ai,W1,W2,M) =
γ1
2
I−M1

(30)

∇W2L(Gi,ai,W1,W2,M) =
γ1
2
I−M3 (31)

and also satisfy
(ii) the complementary slackness condition ⟨M,W⟩ = 0;

(iii) primal feasibility W ⪰ 0;
(iv) dual feasibility M ⪰ 0.

Consider the stationary points of (P3), and choose the candidate
primal variables ãi

..= āi, G̃i
..= λ̄ib̄

T
i , W̃1

..= λ̄iλ̄
T
i +

γ3
γ1

diag(λ̄i),
W̃2

..= b̄ib̄
T
i + γ2

γ1
diag(b̄i); and the dual variables M̃1

..= γ1
2
I,

M̃3
..= γ1

2
I, M̃2

..= −
∑L

l=1 Ωl(āi, b̄i, λ̄i)ui(tl)p
T
i (tl), and

M̃4
..= M̃T

2 . Then, condition (i) holds because the sub-gradients
(28)–(31) are zero when substituting the introduced primal and dual
variables. The requirement (ii) is also true since

⟨M̃,W̃⟩ = ⟨M̃1,W̃1⟩+ ⟨M̃3,W̃2⟩+ 2⟨M̃2, G̃i⟩

=
γ1
2

Tr

(
λ̄iλ̄

T
i +

γ3
γ1

diag(λ̄i)

)
+

γ1
2

Tr

(
b̄ib̄

T
i +

γ2
γ1

diag(b̄i)

)
− 2Tr

(
L∑

l=1

Ωl(āi, b̄i, λ̄i)p
T
i (tl)b̄iu

T
i (tl)λ̄i

)
=

1

2
Tr
(
γ1λ̄iλ̄

T
i + γ3 diag(λ̄i)

)
+

1

2
Tr
(
γ1b̄ib̄

T
i + γ2 diag(b̄i)

)
− Tr

(
γ1λ̄iλ̄

T
i + γ3 diag(λ̄i)

)
= 0,

where the last equality follows from (25). Moreover, (iii) is confirmed
similar to (27). In order to meet the last criterion (iv), according to a
Schur complement argument [37], it is sufficient to invoke ∥M̃2∥ ≤
γ1/2.

Consequently, by choosing the proposed candidates that have been
proved to be optimal, one can easily verify (P5) coincides with (P3).
This completes the proof.
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Supplementary Figure 1. ROC and P-R curves for Dream 4, Challenge 2
Network 1 (top) and Network 2 (bottom).
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