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The stochastic dynamics of multistable perception poses an enduring challenge to our understand-
ing of neural signal processing in the brain. We show that the emergence of perception switching
and stability can be understood using principles of probabilistic Bayesian inference where the prior
temporal expectations are matched to a scale-free power spectrum, characteristic of fluctuations
in the natural environment. The optimal percept dynamics are inferred by an exact mapping of
the statistical estimation problem to the motion of a dissipative quantum particle in a multi-well
potential. In the bistable case the problem is further mapped to a long-ranged Ising model. Optimal
inference in the presence of a 1/f noise prior leads to critical dynamics, exhibiting a dynamical phase
transition from unstable perception to stable perception, as demonstrated in recent experiments.
The effect of stimulus fluctuations and perception bias is also discussed.

Multistable perception is a striking quantitative fea-
ture of human cognition and has stimulated much re-
search in neuroscience and psychophysics[1, 2]. A classic
example is the Necker cube whereby our visual percep-
tion of the ambiguous figure switches stochastically be-
tween two interpretations even though the image is static
[3]. Stochastic percept switching in vision, and other sen-
sory modalities [4], provides a useful experimental tool
for investigating perception organization and neural in-
formation processing. Recent investigations have also
demonstrated that, under differing experimental condi-
tions such as intermittent stimulus removal, the switch-
ing rate can slow down and can even come to a stop,
indicating a dynamical phase transition from unstable
perception to stable perception [5, 6].

The mechanistic neural basis underlying multistable
perception is not well understood. Most computational
models assume that the biological origin of switching is
either due to inherent neural noise, adaptation processes
or optimal signal processing (see, for example [7-10]).
However, these models are unable to easily account for
the reported transitions to perception stabilization and it
is unclear what role evolution in the natural environment
has played. Here it is shown that, by framing percep-
tion as a unified Bayesian inference task, both percep-
tion switching and stability emerge naturally from ratio-
nal and optimal interpretations computed by the brain,
without the need to invoke ad hoc neurophysiological pro-
cesses such as neural noise. The alternate percepts rep-
resent hypotheses of the external world, determined by
a tradeoff between the sensory data and a priori beliefs.
Central to our formalism is that the prior expectations
are matched to the observed scale-free statistics of nat-
ural temporal patterns. Remarkably, the Bayesian for-
mulation of the inference problem can be mapped to the
dynamics of a dissipative quantum system, allowing us
to deploy the powerful tools of statistical physics to un-
derstand the emergence of dynamical phase transitions
in statistical learning of complex data.

We start by assuming that the input data comprises
of N measurements z1zy...x 5y = {z;} at discrete times ¢
over a duration time 7. The data arises probabilistically
from a model parameterized by «, representing the fea-
ture or percept, and the perception task is to estimate
the time sequence {a;}. The input sequence is taken to
be conditionally independent i.e.

N
Pl{z}{a}] = [ [ Platloal. (1)
t=1
If {,} arises unambiguously from a single true model @
then it is expected that our estimate a(t) will fluctuate
close to @ [11]. It is envisioned that there is an energy
landscape in the a-space with a minimum at @ and the
optimal estimate of a(t) will tend to keep it close to the
ground state.

A more interesting, and generalized, question arises
when we consider a non-trivial form of the extended en-
ergy landscape. In particular, there may be C' > 2 plau-
sible interpretations consistent with the input data. It is
useful to rewrite Eq. (1) using the following identity

Pl{z}{ow}] = (HP [x¢]@] > exp [Z In ?t||ao: ]
(2)

where @ corresponds to any one of the C stable percepts.
If the time variation of «(t) is slow, we effectively col-
lect many samples of x before o changes, allowing us to
replace the sum over samples by its continuum limit:
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where Dy is the Kullback-Leibler divergence between
two distributions [12], and ¢ are the sampling fluctua-
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tions in the data away from the thermodynamic limit,
obeying the asymptotic constraint ¢» — 0 as N — oo.
The D, term plays the role of a potential energy V[a(t)]
with minima located at the set {@.}.

Bayes’ theorem then furnishes us with the posterior
probability distribution of the sequence of model param-
eters given the input data,

Pla(t) a(t)] Pla(t)]
Pat] - Y

Pla(t)|z(t)] =

In multistable perception phenomena the incoming data
z(t) is ideally constant, but in practise there may be fluc-
tuations in the input which we will discuss later. To pro-
ceed further we require a priori hypotheses about how
a(t) can vary in time. To represent our prior expectation
that the local dynamics of a(t) vary slowly, we constrain
the time-averaged square of the time-derivative, penaliz-
ing rapid changes in the estimate of a(t) [10],

Paoula(t)] o exp [—”; [ (‘?;f)] S ®)

where m is a constant, weighting the strength of this
prior. This prior serves to regularize the statistical model
and prevents overfitting to the input data. Another, more
general, prior belief is that the dynamics of the external
world are drawn from a distribution with a scale-invariant
power spectrum, as ubiquitously observed from a wide
range of physical and biological settings [13-16]. This en-
capsulates the idea that biological systems have evolved
to respond optimally to physical properties of natural en-
vironments. In frequency coordinates, the simplest form
of the general environmental prior is

SIEE
S(w) = |wl™ (™)

Poyla(t)] x exp

The parameter 1 determines the strength of prior belief
and n is the scaling dimension of the power spectrum.
When n ~ 1 we have the familiar “1/f noise”, also known
as flicker noise or pink noise. We stress that the noise here
refers to the statistics of the environment and not the
brain, which we assume to be noiseless. Taken together,
the priors Eq. (5) and Eq. (6) describe fluctuations in «(t)
which are w=2T2=02=7) yp to a cross-over frequency,
we ~ (n/m)?~". Combining both priors in the Bayesian
posterior probability Eq. (4) we obtain a unified path-
integral expression

Pla(t)](t)] oc exp(=Sla(t))), (8)
where the action S[a(t)] is given by

Statt)] = [ 2 (me? + ") la()P + [ deVia(o),

V()] = > Dicefanla(t]. )
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In the time-domain,

Sle(®)] = %/dt (%:)QJrZT//dt’dtW
+/dtVeff[04(t)]7 (10)

where we have made use of the identity 2a(t)a(t) =
[@?(t) +a? ()] — [a(t) — a(t')]? and absorbed the squared
terms into the potential term V]a(t)] giving us an effec-
tive potential Vog[a(t)]. We observe that Eq. (10) is the
Euclidean action that models the effects of dissipation on
a quantum-mechanical particle of mass m, with coordi-
nates a(t), moving in a potential Vg [ ()], and subject to
frictional forces with damping constant " o« n [17]. The
slow prior Eq. (5) enforces only a local time constraint
and maps to a kinetic energy term, whereas the environ-
mental power spectrum prior Eq. (6) may give rise to a
nonlocal time constraint and maps to a dissipative term.

The case of n = 1 is identical to the Caldeira-Leggett
action [18] whereby the effect of ohmic dissipation on a
quantum particle is modeled by linear coupling to an ex-
ternal heat bath consisting of an ensemble of harmonic
oscillators. This functional-integral description of macro-
scopic quantum friction is of widespread interest in con-
densed matter physics and more recently in quantum
computing where it provides a model of decoherence of
a qubit [19]. In a metastable system, subohmic dissi-
pation (0 < m < 1) can give rise to localization of a
quantum particle, in contradistinction to the dispersed
dynamics arising from dissipation (n > 2). Ohmic dis-
sipation (n=1) exhibits criticality and the long-time be-
havior of a quantum particle depends crucially on the
potential energy landscape Vg and the phenomenologi-
cal friction constant 7. In terms of our Bayesian inference
task this implies that the 1/f noise prior is special in that
it can result in critical dynamics in the estimate of «(t).

To put flesh on a specific example we now explore
the problem of optimally estimating o when there ex-
ist C' = 2 possible interpretations which, for the sake of
generality, may not be equally probable. An actual re-
alization of this would be perception of the Necker cube
where the contrast of the outline intentionally highlights
one perceptual image over the other. This scenario is
particularly interesting since the model estimation prob-
lem can be mapped to an Ising model with long-range
interactions and an external field.

The potential energy term corresponding to bistable
perception is a double-well potential with minima at @y
and @s. For convenience we take the curvatures at the
two vacua V)i (@1 2) to be identical. A small bias in one
percept is represented by a slight asymmetry in the po-
tential (Figure 1). Naively we may expect that the opti-
mal solution consists of a(t) localizing in one of the two
wells, but since the mapping is to a quantum system,
and not a classical system, we also have the possibility of
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FIG. 1: Potential energy landscape for a where there exist
two valid interpretations of the data, one at &; and the other
@s. There is a small preference for the a = @y perception

delocalized solutions. In the undamped (n = 0) case we
know that non-perturbative semiclassical solutions exist,
representing instanton solutions whereby the estimate of
a hops (quantum tunnels) from one well to another well
in a short time 75 ~ wy ' where wy = [V/(@1.2)/m]/?
is the frequency of small oscillations in each well. In
the limit that the barrier height is much greater than
wp the trajectories of o can be described by an alter-
nating sequence of hops from one well to another well.
In the Bayesian inference problem these instantons are
percept switches between two metastable percepts. Note
that this implies that, with negligible environmental pri-
ors Eq. (6), the most likely (optimal) estimate of « is to
always jump from one percept to another, and no neural
noise is needed to elicit the percept switches.

By ignoring time-scales smaller than wg ! we can conve-
niently reduce the action to a two-state quantum system,
where the eigenstates of the Pauli spin matrix o, corre-
sponds to the two alternate percepts. The incorporation
of dissipation, the second term in Eq. (10), into this ap-
proach leads to the well known spin-boson model, where
many results are known [17]. In particular, in the case of
ohmic dissipation (n = 1) there is a critical value of the
dissipation constant 1, = 1/(4a@?), above which the par-
ticle is delocalized and below which the particle tunnels
backwards and forwards.

A useful approximation is to discretize time in steps
of 79, and the dissipative contribution to the action then
becomes

—1 2
nwey [o2(t:) — 04(t))]
Sdissipation ~ Ar ; j: |Z _ j|n+1 ’ (11)

It is evident that we can identify the problem of estimat-
ing «(t) with a configuration of interacting Ising spins
s; where ¢ indexes the time in units of 7. Thus the dy-
namics of bistable perception with a power-law spectrum
prior is equivalent to the instanton hops of a dissipative
two-state system and is also equivalent to the spin con-
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FIG. 2: Equivalence between bistable perception switching,
double-well quantum dynamics, and the Ising model. (a)
Necker cube. (b) Switching between alternate percepts of the
Necker cube. (c) Corresponding instanton trajectories be-
tween two stable model parameters. (d) Corresponding spin
configuration of a one-dimensional 1/7"*! Ising model.

figuration of a long-ranged one-dimensional Ising model
(see Figure 2). The probability distribution for the spin
sequence is then given by one-dimensional Ising model
with power-law interactions

S5;S;
P[s;] o< exp JZWJreZSi , (12)
i, i

where J ~ nw( -1 /2m. Using the correspondence between
the dissipative two-state system and the Ising model with
long range interactions, a number of properties rigorously
proven for the Ising model can be directly transferred to
the dynamics of bistable perception. Consider the un-
biased case, (¢ = 0). When n > 1, long-range order is
absent in the Ising model and the percept always switches
between two equally plausible percepts. For n < 1, sym-
metry breaking occurs and thus «f(t) is localized. The
case of n = 1 maps to the well-known inverse-square
Ising model [20, 21], where there exists a phase transi-
tion demarcating the two types of behaviour at a critical
value of J. Thus the non-local 1/f noise prior, reflecting
the actual power spectra observed in the environment,
gives rise to critical dynamics in the optimal estimate of
a(t), and both stable perception and unstable percep-
tion are possible depending on the strength of the prior.
To connect our results with experimental data we re-
call that perceptual alternations can be slowed and even
stopped by intermittant removal of the visual stimulus
[5], suggesting that memory (non-local) effects become
important. Thus, when data is lacking, the brain places
more strength on the 1/f prior, forcing a transition from
unstable perception to stable perception.
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This qualitative picture of localized/non-localized
transitions does not change when there are C' > 2
metastable states. The Caldeira-Leggett model of ohmic
quantum dissipation has been studied when the poten-
tial energy landscape is taken to be sinusoidal (C' = c0),
where it is known there again exists a critical value of
the dissipation parameter 1 which separates a localized
phase from a nonlocalized phase [22].

What happens when we include the effect of non-
negligible fluctuations in the input data? At any point
in time, these fluctuations will tend to bias one model
over the other. In the context of the Ising model the in-
put noise, which we take to be white, can be modeled as
quenched disorder. The Hamiltonian H for such a system
is given by

o 81‘8]‘ o
H—*JZW*Z}MSM (13>
,J i

up to a temperature factor. The random field is taken to
be normally distributed with a variance ¢ about the bias
energy, i.e. (h?) = 02 + ¢2. To determine whether sym-
metry breaking occurs in this random field Ising model
we extend the elegant Imry-Ma argument [23] to the case
of long-ranged interactions between the spins. Imagine
we have an ordered Ising spin chain, aligned with the ex-
ternal field €, and we then flip L of them where L > 1.
The energy cost from the change in spin-spin interac-
tions will scale slower than log L for n > 1 and as L'~
for 0 < n < 1. From the Central Limit Theorem the
typical change in energy due to the external field will
be 2¢L — 20L'Y2. Whether the symmetry broken state
is energetically favorable will thus depend on the rela-
tive values of 7,e and o. In the unbiased system, the
ordered state will be unstable for n > 1/2 and stable for
n < 1/2 at low enough temperatures. When translated
back to the bistable estimation problem these results pre-
dict that, when incorporating 1/f noise priors, a fluctu-
ating bias in the input will prevent stable perception.
To summarize, the framework presented here shows
that the combination of stimulus cues and internal rep-
resentations of the physical world gives rise to the quali-
tative dynamics reported in multistable perception phe-
nomena. This lends further weight to the compelling
idea that the brain attempts to represent the entire pos-
terior distribution rather than just a point estimate [24].
By mapping the statistical estimation task to a statisti-
cal physics problem we have shown how both stochastic
switching and certainty may arise in the face of ambigu-
ous signals. The non-local 1/f noise prior leads to critical
dynamics of perception and allows a specific model to be
learnt amongst a plethora of possible models.
Multistable perception has also been been reported in
other sensory modalities, such as audition, olfaction and
touch [4], suggesting that it may arise from a general
neural design principle. The principles of probabilistic
Bayesian inference and statistical mechanics provide a
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way to address perception dynamics whilst evoking very
few assumptions about the sensory system.

Finally, the work presented here strengthens the con-
nection between estimation theory and statistical me-
chanics, permitting us to understand the collective emer-
gence of stochasticity and certainty more generally in sta-
tistical learning theory as well as perception dynamics.
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