
DISEASES: Text mining and data integration of 
disease–gene associations 
Sune Pletscher-Frankild1, Albert Pallejà1,2, Kalliopi Tsafou1, Janos X. Binder3,4, 
Lars Juhl Jensen1† 

1 Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical 
Sciences, University of Copenhagen 

2 Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and 
Medical Sciences, University of Copenhagen, Copenhagen, Denmark 

3 Structural and Computational Biology Unit, European Molecular Biology Laboratory 
(EMBL), Heidelberg, Germany 

4 Bioinformatics Core Facility, Luxembourg Centre for Systems Biomedicine (LCSB), 
University of Luxembourg, Luxembourg 

† Corresponding author: lars.juhl.jensen@cpr.ku.dk; Novo Nordisk Foundation Center 
for Protein Research, Blegdamsvej 3b, 2200 Copenhagen N, Denmark. 

Abstract 
Text mining is a flexible technology that can be applied to numerous different tasks in 
biology and medicine. We present a system for extracting disease–gene associations 
from biomedical abstracts. The system consists of a highly efficient dictionary-based 
tagger for named entity recognition of human genes and diseases, which we combine 
with a scoring scheme that takes into account co-occurrences both within and between 
sentences. We show that this approach is able to extract half of all manually curated 
associations with a false positive rate of only 0.16%. Nonetheless, text mining should 
not stand alone, but be combined with other types of evidence. For this reason, we have 
developed the DISEASES resource, which integrates the results from text mining with 
manually curated disease–gene associations, cancer mutation data, and genome-wide 
association studies from existing databases. The DISEASES resource is accessible 
through a user-friendly web interface at http://diseases.jensenlab.org/, where the text-
mining software and all associations are also freely available for download.  
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Introduction 

Named entity recognition (NER) 

Recognizing named entities and concepts, such as genes and diseases, in text is the 
basis for most biomedical applications of text mining [1]. NER is sometimes divided into 
two subtasks, namely recognition and normalization (also known as identification or 
grounding), the former being to recognize the words of interest and the latter being to 
map them to the correct identifiers in databases or ontologies. However, as recognition 
without normalization has very limited practical use, the normalization step is now often 
implicitly considered part of the NER task. 

The main challenges in NER are the poor standardization of names and the fact that a 
name of, for example, a gene or disease may have other meanings [2]. To recognize 
names in text, many systems thus make use of rules that look at features of names 
themselves, such as capitalization and word endings, as well as contextual information 
from nearby words. In early methods the rules were hand crafted [3], whereas newer 
methods make use of machine learning [4,5], relying on the availability of manually 
annotated text corpora. 

Dictionary-based methods instead rely—as the name suggests—on matching a 
dictionary of names against text. For this purpose the quality of the dictionary is 
obviously very important; the best-performing methods for NER according to blind 
assessments rely on carefully curated dictionaries to eliminate synonyms that give rise 
to many false positives [6,7]. Moreover, dictionary-based methods have the crucial 
advantage of being able to normalize names. Whether or not one makes use of 
machine learning, a high-quality, comprehensive dictionary of gene and disease names 
is thus a prerequisite for mining disease–gene associations from the biomedical 
literature. 

Controlled vocabularies of diseases 

It is fairly straightforward to find a good starting point for a dictionary of human gene 
names due to efforts such as the Human Genome Organization (HUGO) Gene 
Nomenclature Committee (HGNC) [8] and UniProt Knowledgebase (UniProtKB) [9]. It is 
less obvious to find a good dictionary of disease names, as there are several competing 
classifications and ontologies, which are designed for different purposes, mutually 
inconsistent, and thus poorly integrated with each other. 

In a clinical setting, various versions of the International Classification of Diseases (ICD; 
http://www.who.int/classifications/icd/) are almost ubiquitously used for coding 
diagnoses in electronic health records (EHRs) and derived health registries [10]. 
European countries, Canada, and Australia use revision 10 (ICD-10), whereas the 
United States still use revision 9 (ICD-9). ICD-10 is not just an update to ICD-9; it is a 
restructured diagnosis classification, and no official mapping exists between the two 
revisions. Because ICD is designed for clinical coding and billing purposes, its structure 
and disease names are poorly suited for biomedical literature mining. It is, however, 
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useful for text mining of clinical narrative in EHRs, especially because it has been 
translated to many languages [11]. 

A newer alternative is the Systematized Nomenclature of Medicine – Clinical Terms 
(SNOMED CT; http://www.ihtsdo.org/snomed-ct/). It cross maps to several revisions of 
ICD and has a considerably broader scope than just diseases. SNOMED-CT is one of 
many terminologies combined in the even broader Unified Medical Language System 
(UMLS) Metathesaurus; another is Medical Subject Headings (MeSH; 
http://www.ncbi.nlm.nih.gov/mesh/). Dictionaries based on subsets of UMLS have been 
used for recognition of disease names with varying success in text-mining tools, such as 
MetaMap [20442139], Medical Language Extraction and Encoding (MedLEE) [12], and 
the Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES) [13]. 
However, because UMLS contains many distinct concepts that are very close in 
meaning even human annotation of UMLS concepts in text is problematic [14]. Licenses 
for SNOMED-CT and other terminologies in UMLS further restrict their use in resources 
intended for redistribution. 

In contrast to these, the Disease Ontology [15] is part of the Open Biomedical 
Ontologies (OBO) Foundry initiative [16]. It cross maps to UMLS and has extensive 
annotation of synonyms. Consequently, Disease Ontology works well for recognition of 
diseases in Gene Reference Into Function (GeneRIF; 
http://www.ncbi.nlm.nih.gov/gene/about-generif) entries [17]. 

Information extraction (IE) 

Having addressed the NER task using appropriate dictionaries of gene and disease 
names, the next task is to extract information on associations between genes and 
diseases. There are two fundamentally different approaches to IE: natural language 
processing (NLP), using a grammar to parse the syntax of each sentence, and 
statistical co-occurrence methods [1]. We focus on the latter approach, which is highly 
flexible and generally gives better recall, but worse precision, than NLP[18–20]. Other 
disadvantages of co-occurrence methods are that they are unable to extract the 
direction of an association and have difficulty distinguishing between direct and indirect 
associations [1]. However, neither of these disadvantages are important with respect to 
extracting disease–gene associations. 

Almost all co-occurrence methods implement a frequency-based scoring scheme to 
account for the fact that a pair of entities or concepts may co-occur a few times without 
being in any way related [19,21,22]. These scoring schemes have traditionally counted 
either the number of sentences or the number of abstracts in which the pair co-occurred, 
and both sizes of text units have merit [18]. We have therefore recently introduced a 
scoring scheme that simultaneously takes into account both sentence-level and 
abstract-level co-occurrences [23]. 

Disease–gene associations extracted from Medline abstracts can already be searched 
through generalized co-occurrence tools such as CoPub [20,24] and FACTA+ [22,25]. 
However, as these resources are technology-centric — focusing on text mining — they 
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do not take into account any other types of evidence. This limitation is aggravated by 
the fact that neither resource allows bulk download of all associations, making it difficult 
for others to integrate additional evidence. 

Disease–gene association databases 

Several existing databases focus on or contain disease–gene associations, mainly 
obtained through manual curation of the biomedical literature. Unfortunately, most of 
these use an in-house controlled vocabulary of diseases and are subject to restrictive 
licenses, which makes it difficult to integrate them both from a technical and from a legal 
standpoint. The oldest and most famous of databases is Online Mendelian Inheritance 
in Man (OMIM; http://omim.org). More recent efforts include the Human Gene Mutation 
Database (HGMD) [26], the Comparative Toxicogenomics Database (CTD) 
(http://ctdbase.org/) [27,28], and Genetics Home Reference (GHR; 
http://ghr.nlm.nih.gov). In addition to these dedicated disease–gene association 
databases, UniProtKB also annotates diseases associated with each gene [9]. 

Databases also exist that deal with specific diseases or types of diseases, most notably 
cancer. The Catalog of Somatic Mutations In Cancer (COSMIC) is the most 
comprehensive source of information on somatic mutations and their frequencies in 
human cancers [29]. Mutation data is manually curated from the primary literature and 
annotated according to a histology and tissue ontology. 

Over the last decade, genome-wide association studies (GWAS) have produced data 
on thousands of single nucleotide polymorphisms (SNPs) associated with the risk of 
hundreds of diseases. GWAS data are, however, non-trivial to work with for the non-
expert, because they identify marker SNPs that are often not the actual causal SNPs 
[30,31]. For this reason GWAS results must be analyzed in the context of linkage 
disequilibrium (LD), which is defined as the non-random association of variants at two or 
more loci [31,32]. GWAS Central (http://www.gwascentral.org/) is a centralized 
database that collects the results from genetic association studies [33]. Unfortunately it 
provides data only for small- to medium-scale investigations and explicitly forbids using 
the data to create similar public resources. By contrast, the National Human Genome 
Research Institute (NHGRI) GWAS Catalog (http://www.genome.gov/gwastudies/) is 
public domain [34]. The latter is thus the basis for the derived databases DistiLD [35] 
and GWASdb [36] databases, which show disease-associated SNPs and genes in their 
chromosomal context. 

Here we describe the DISEASES resource, which aims to be the most comprehensive 
freely available database of disease–gene associations. To this end, we have 
developed open-source text-mining software that performs NER of diseases and human 
genes as well as IE of disease–gene associations. We integrate the associations 
extracted through automatic text mining with evidence from databases with permissive 
licenses, namely manually curated associations from GHR and UniProtKB, GWAS 
results from DistiLD, and mutation data from COSMIC. To make the data easy to use 
for large-scale analyses, we map all sources of evidence to common identifiers, assign 
them comparable quality scores, and make them available for bulk download. We also 
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make the information available as a user-friendly web resource 
(http://diseases.jensenlab.org) aimed at end users interested in individual diseases or 
genes. 

 

Material and methods 

Dictionary construction 

For human gene and protein names, we used the alias file from STRING v9.1 [23], 
which integrates names from Ensembl [37], UniProtKB [9], and HGNC [8]. We 
orthographically expanded the gene symbols with the prefix ‘h’, which means human 
and is commonly used in the literature to disambiguate a human gene from its 
identically named orthologs in model organisms. 

To construct a dictionary of diseases for use in NER, we extracted all names and 
synonyms from the Disease Ontology [15]. Comparing these to the dictionary of human 
gene names revealed that the HGNC gene symbol of a disease gene was in many 
cases listed in Disease Ontology as a synonym for the disease in which the gene is 
implicated. For example, BRCA1 and BRCA2 were listed as exact synonyms for 
hereditary breast ovarian cancer. As this would be a major source of ambiguity in the 
combined dictionary, we explicitly filtered out disease names that are identical to HGNC 
gene symbols. 

To improve recall, we next automatically generated variants of the disease names. 
Although the terms disease, disorder, and syndrome have separate definitions, we 
found that they are used inconsistently in the literature when part of disease names; for 
example, Alzheimer’s disease is occasionally referred to as Alzheimer’s disorder or 
Alzheimer’s syndrome. To address this we automatically generate the two other variants 
if either of them is in the dictionary. Similarly, the adjectives hereditary and familial are 
used interchangeably, and we thus automatically replace one with the other. We also 
removed words in parentheses and brackets occurring at the end of disease names, 
unless this would cause ambiguity. 

Recognition of gene and disease names in text 

To match a document against the dictionary, we have developed a highly efficient 
tagging algorithm, which is implemented in C++. The algorithm is described in full detail 
elsewhere [38], but is summarized here for completeness. Tests of the tagging speed 
and memory efficiency of the implementation compared to another popular tagger are 
also provided in our earlier publication [38]. 

We first tokenize the text on white space characters and special characters, such as 
hyphen and slash, and identify the leftmost longest matches by looking up all substrings 
consisting of up to 15 consecutive tokens. To make these lookups fast while handling 
character case variation as well as spacing and hyphenation of multiwords, we used a 
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custom hash table to store the dictionary. The hash table is case insensitive, disregards 
white space characters and hyphens within name, and trims off other punctuation 
characters, such as quotes and parentheses, at the beginning and end of names. To 
match also acronyms that are not in the dictionary, we use a regular expression to 
search definitions of acronyms within the text and look up their long forms in the 
dictionary. Crucially, we globally block tagging names that would otherwise give rise to 
many false positives by manually inspecting the tagging results of all names that occur 
more than 2000 times in Medline. Many of the blocked names are acronyms; for 
example, the acronym for disseminated intravascular coagulation is DIC, which can also 
mean deviance information criteria, differential interference contrast, and dissolved 
inorganic carbon. By keeping track of all names that we have inspected — whether they 
were blocked or not — we are able to efficiently update the list of blocked names as 
both Medline and the dictionary grows. For each name recognized in the text we 
normalize it to the corresponding unique identifier and, in case of diseases, backtrack 
the term to the root of the ontology through is_a relationships to assign also the 
identifiers of all parent terms. 

Extraction and scoring of disease–gene associations 

We score associations between proteins and diseases using the scoring scheme 
previously described [39], which is also the basis for the co-occurrence-based text-
mining scores in STRING v9.1 [23] and COMPARTMENTS [40]. For completeness we 
reiterate the scoring scheme here. 

An important feature of the scoring scheme is that it simultaneously takes into account 
co-occurrences at the level of abstracts as well as individual sentences. To this end, we 
first calculate a weighted count (𝐶 𝐺,𝐷 ) for each pair of a gene (𝐺) and a disease (𝐷) 
over the n abstracts in the text corpus: 

C G,D = 𝑤!𝛿!" G,D
!

!!!

+ 𝑤!𝛿!" G,D  

where 𝑤! = 3 and 𝑤! = 0.2 are the weights for co-occurrence within the same abstract 
and the same sentence, respectively, and the delta functions 𝛿!" 𝐺,𝐷  and 𝛿!" 𝐺,𝐷  
signify whether or not 𝐺 and 𝐷 co-occur in abstract 𝑘 or a sentence within it. A co-
occurrence score (𝑆 𝐺,𝐷 ) is calculated from the weighted counts as: 

S G,D = C G,D ! C G,D C ∙,∙
C G,∙ C ∙,D

!!!

 

where C G,∙  is the sum over all diseases paired with gene 𝐺, C ∙,D  is the sum over all 
genes paired with disease 𝐷, the normalizing factor C ∙,∙  is the sum over all pairs of 
genes and diseases, and the weighting factor 𝛼 = 0.6. All parameters (𝑤!, 𝑤!, and 𝛼) 
have in earlier work been optimized to give the best possible performance on finding 
functionally associated genes [23]. An important property of this function is that it not 
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only rewards for the gene and disease being mentioned together, but also penalizes for 
them being frequently mentioned together with other diseases or genes, respectively. 

We next convert the co-occurrence scores (𝑆 𝐺,𝐷 ) to z-scores (𝑍 𝐺,𝐷 ), which are 
easier to interpret and are robust to changes in the size of the text corpus. We assume 
that the empirically observed score distribution is a mixture of the true signal and a 
lower-scoring random background, which we model as a Gaussian distribution. The full 
details of this score conversion have been published elsewhere [39]. Finally, we 
calculate the confidence score (stars) as 𝑍 𝐺,𝐷 2, limited to a maximum of four stars 
to account for automatic text mining never being as reliable as manually curated 
annotations. 

Integration of curated knowledge 

The GHR database does not provide download files for use in large-scale analyses. We 
thus used an automated crawler to download the web page for each disease and store 
the disease name, which is part of the uniform resource locator (URL), along with any 
gene symbols listed on the web page. We were able to map the names of 390 diseases 
to Disease Ontology using the dictionary we developed for text mining. The pages are 
regularly recrawled to update with new associations; the numbers used in the 
manuscript are based on what was downloaded on May 31, 2013. 

In case of UniProtKB, associations to diseases can be found in the KW lines through 
the use of 149 keywords from the UniProtKB controlled vocabulary of keywords. We 
were able to manually map 132 of the 149 disease keywords to corresponding concepts 
in the Disease Ontology. Most of the keywords that we could not map, such as Disease 
mutation, were not disease names. 

We mapped HGNC gene symbols from GHR and identifiers from UniProtKB to their 
identifiers in STRING v9.1 using the alias file [23]. We subsequently used the explicitly 
annotated disease–gene associations from GHR and UniProtKB to infer broader 
Disease Ontology concepts via the is_a relationships in the ontology. As all disease–
gene annotations imported and inferred from the two databases are based on manual 
curation, we assigned them a confidence score of five stars. 

Benchmark of text-mining results 

To assess the quality of the text-mining results, we constructed a reference set based 
on the manually curated annotations imported from GHR and UniProtKB. Due to the 
hierarchical nature of the Disease Ontology, it is necessary to select on a subset of 
terms to be used as the basis for the assessment. To this end, we chose to use the 
subset of terms that were explicitly annotated in the two databases (as opposed to 
inferred through is_a relationships). In case one term was a child term of another, we 
selected the broader parent term. This resulted in a positive reference set of 2780 
associations between 2001 genes and 173 diseases. We defined the negative set as all 
other 343393 possible pairings of the same genes and diseases. 
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We next sorted the text-mined associations descending by score and compared them to 
the reference set. We present the results as receiver operating characteristic (ROC) 
curves by plotting the true positive rate (TPR) as function of false positive rate (FPR), 
considering either all disease–gene associations or only the best-scoring association 
per gene (Figure 1). We compare these results to two random backgrounds. One is 
simple random shuffling of the disease–gene pairs, which ignores that some diseases 
are associated with many more genes than others. To correct for this, the second 
random background is calculated by sorting the disease–gene pairs descending by prior 
probability of the disease. Because the prior of each disease is estimated based on the 
reference set itself, this likely overestimates the performance that can be attained by 
random guessing. 

Integration of mutation and GWAS data 

To integrate cancer mutation data from COSMIC [29], we manually created mappings 
between terms listed in the fields “Site primary” and “Histology” and Disease Ontology 
concepts classified under “organ system cancer” and “cell type cancer”, respectively. 
We mapped the genes to STRING v9.1 identifiers via the Ensembl transcript identifiers 
provided by COSMIC. For each pair of a gene (G) and a disease (D) we counted the 
number of disease samples carrying at least one somatic missense or nonsense 
mutation within the gene (N G,D ). We discarded pairs with a count less than 10 and 
derived confidence scores (stars) as log!" N G,D − 0.5, limiting it to at most four stars. 

To include also GWAS data, we integrated information from the DistiLD database [35], 
which maps genes and disease-associated SNPs onto so-called LD blocks defined 
based on data from the HapMap Project [41]. We assigned each SNP with a p-value 
less than 10!!  to the nearest gene within the same LD block. The “Disease/Trait” 
descriptors from the NHGRI GWAS Catalog were mapped to the corresponding 
Disease Ontology concepts through the ICD-10 annotations from DistiLD, the Disease 
Ontology Lite annotations from GWASdb [36], and manual inspection of conflicts. The 
resulting disease–gene associations were assigned a confidence score (stars) using the 
formula 3− log!" max P,P!"# , where P is the p-value, P!"# is the genome-wide GWAS 
significance threshold (5 ⋅ 10!!). 

Results and discussion 

Dictionary-based tagger software 

We have developed a highly efficient NER method for diseases and human genes, 
which are normalized to identifiers from Disease Ontology [15] and STRING v9.1 [23], 
respectively. On a server with two Intel E5520 processors and 24GB of random access 
memory (RAM), starting the tagger and loading the dictionary took only 4.2 seconds. 
Once started, the tagger used 260MB of RAM and was able to process 360 Medline 
abstracts per second on a single processor core (measured on a corpus of 100,000 
Medline abstracts). The tagger software bundled with a dictionary of disease and 
human gene names is available for download under the BSD license. 
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Cooccurrence-based disease–gene associations 

Because the NER task is for us only a step on the way towards the goal of extracting 
disease–gene associations, we chose to focus our benchmarking effort on assessing 
the quality of the end result. We therefore compared the text-mined associations to the 
manually curated associations imported from GHR and UniProtKB in two ways: 1) 
considering all disease–gene associations, and 2) considering only the highest scoring 
disease for each gene. The results of these comparisons (Figure 1) show that our text-
mining system is able to extract a large fraction of the known disease–gene 
associations with high specificity (low FPR). If a user were to simply trust the highest 
scoring disease association for each gene, 50% of all manually curated disease–gene 
associations in the benchmark set would be found at a FPR of only 0.16%. 

The high quality of text-mining results is reflected by the fact that they are already being 
used extensively. The text-mined associations from DISEASES are included in the 
widely used GeneCards database [42]. They have also been used as a basis for 
inference of disease associations for miRNAs from their predicted target genes [39] and 
for enrichment analysis of autism-related genes [43]. 

 

Figure 1: Benchmark of disease–gene associations obtained through text mining. 
The receiver operating characteristic (ROC) curves shows the true positive rate (TPR) 
as function of false positive rate (FPR) when considering all associations (black) and 
when considering only the highest scoring association for each gene (red). The dashed 
and dotted curves show the random expectations according to simple shuffling and 
prior-based ranking, respectively. The curves do not intercept TPR = 1 and FPR = 1, 
because some disease–gene pairs in the benchmark set are not found mentioned 
together in Medline, for which reason they have no text-mining score. 
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Table 1: Overview of disease–gene association evidence. Each row shows the 
number of genes, diseases and associations between them that are supported by a 
given type, confidence level (in case of Text mining), or source (in case of Knowledge 
and Experiments). The numbers in parentheses specify the counts prior to backtracking 
of Disease Ontology terms through is_a relationships. 

Evidence Genes Diseases Associations 

Text mining 15631 4598 478407 

- 4 star confidence 478 662 1044 

- 3 star confidence 3207 2267 15226 

- 2 star confidence 12706 4354 142892 

Knowledge 2001 735 
(453) 

15231 
(2953) 

- Genetics Home Reference 965 671 
(390) 

7551 
(1169) 

- UniProtKB 1651 271 
(120) 

11576 
(2187) 

Experiments 10711 423 
(264) 

89073 
(20206) 

- COSMIC 8786 142 
(76) 

55791 
(13050) 

- DistiLD 4315 351 
(210) 

36650 
(7185) 

Total 17606 4610 543405 

 

Contents of the database 

Although we have in this paper placed most emphasis on the text-mining aspects, the 
DISEASES database integrates disease–gene associations from several sources. This 
is advantageous, because every source of associations has its shortcomings. Table 1 
provides an overview of the total evidence landscape of the database, showing that the 
text-mining pipeline is indeed the largest single contributor of associations. However, it 
is important to note that this number depends strongly on the confidence cutoff; indeed 
the number of associations obtained from the manually curated databases rivals the 
number of text-mined associations with at least 3 confidence stars. Mutation data from 
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COSMIC and GWAS data from DistiLD also both contribute a sizeable number of 
associations; however, the former data source only relates genes to cancers. 

All disease–gene associations from all evidence sources are available for bulk 
download in tab-delimited format under the Creative Commons Attribution (CC-BY) 
license. 

The DISEASES web interface 

Whereas tab-delimited files are convenient for bioinformaticians wanting to perform 
large-scale analyses or create derived resources, a user-friendly web interface better 
caters to researchers interested in individual genes or diseases. 

 

Figure 2: The DISEASES web resource. The figure shows how the disease–gene 
associations are presented in the web interface, exemplified by the LRRK2 gene. The 
three tables provide the user with an overview of the evidence from text mining, curated 
knowledge, and experimental data. Clicking on an association, e.g. to Parkinson’s 
disease, in the Text mining table gives access to the underlying abstracts with the co-
occurring gene and disease highlighted. The two other tables provide hyperlinks to the 
relevant entries in the source databases. 
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We have thus developed a web interface for the DISEASES resource that allows users 
to either query for a gene to find associated diseases or query for a disease to find 
associated genes (Figure 2). In either case, the user will be presented with three tables 
called Knowledge, Experiments, and Text mining. These show the manually curated 
associations from GHR and UniProtKB, the mutation and association data from 
COSMIC and DistiLD, and the text-mined associations, respectively. Besides 
summarizing the imported information, the Knowledge and Experiments tables provide 
direct hyperlinks to the source entries in the external databases. 

The table summarizing the text-mined evidence deserves special attention. As the text-
mining method correctly takes into account information from the narrower child terms of 
each disease, the text-mined disease associations for a gene have inherent redundancy. 
When showing the list of diseases associated with a gene of interest, the web interface 
thus dynamically filters out redundant Disease Ontology terms for which better 
alternatives are present. The web interface also gives the user the possibility to inspect 
the text-mining evidence behind any disease–gene association by viewing the 
underlying abstracts with the gene and disease names highlighted. 

Generality of the approach 

The approach to text mining described in this paper is readily applicable to recognize 
other types of named entities in text and extract associations among them. Using the 
same tagger with a dictionary constructed from the NCBI Taxonomy [44], we were able 
to accurately identify taxonomic names in the biomedical literature [38]. We are 
currently extending that work to identify environments from the Environment Ontology 
[45] in text, for example, from the Encyclopedia of Life [46]. We have even used a 
slightly modified version of the tagger as part of a method for recognition of adverse 
drug events in Danish clinical narratives [47]. This illustrates the flexibility of a simple 
dictionary-based NER approach in terms of applicability to new knowledge domains. 

Combining the tagger with the co-occurrence scoring scheme for the purpose of IE is 
equally flexible. As previously mentioned, the scoring scheme was originally developed 
to extract functional associations between proteins for use in the STRING database 
based on co-occurrence of gene names within biomedical literature [23]. In addition to 
using it for disease–gene associations as described here, we have since applied the 
same scoring scheme to extract information on protein–small molecule associations in 
the STITCH database [48], protein subcellular localization in the COMPARTMENTS 
database [40], and tissue distribution of proteins in the TISSUES database 
(http://tissues.jensenlab.org). 

Besides using the same methods for NER and IE, DISEASES and the other resources 
mentioned above have in common that they integrate heterogeneous evidence from 
many sources. This sets them aside from the many resources that use text mining to 
extract associations between a wide variety of named entities and concepts. As tool 
developers, it is easiest and most efficient to be technology-centric and apply a single 
technology, such as text mining, to a wide range of topics. However, from a user’s 
perspective, a resource that integrates many sources of information pertaining to a 
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single topic of interest is usually what is sought after. We attempt to find a compromise 
by creating a general framework, which allows us to set up resources that each 
integrate information on a different topic but are maintainable, because they share 
software infrastructure. 

Conclusions 
We have developed a dictionary-based NER tool for Disease Ontology concepts and 
combined it with a co-occurrence scoring scheme to efficiently and accurately extract 
disease–gene associations from Medline. We have integrated these with manually 
curated associations from the GHR and UniProtKB databases as well as somatic 
mutation and GWAS data from COSMIC and DistiLD, respectively. We make the 
resulting database available as a searchable user-friendly web resource at 
http://diseases.jensenlab.org, where bulk datasets and the NER software are also 
available for download. 
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