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Abstract. When models of quantitative genetic variation are built from population ge-
netic first principles, several assumptions are often made. One of the most important
assumptions is that traits are controlled by many genes of small effect. This leads to
a prediction of a Gaussian trait distribution in the population, via the Central Limit
Theorem. Since these biological assumptions are often unknown or untrue, we charac-
terized how finite numbers of loci or large mutational effects can impact the sampling
distribution of a quantitative trait. To do so, we developed a neutral coalescent-based
framework, allowing us to experiment freely with the number of loci and the underlying
mutational model. Through both analytical theory and simulation we found the nor-
mality assumption was highly sensitive to the details of the mutational process, with
the greatest discrepancies arising when the number of loci was small or the mutational
kernel was heavy-tailed. In particular, fat-tailed mutational kernels result in multimodal
sampling distributions for any number of loci. An empirical analysis of 7079 expressed
genes in 49 Neurospora crassa strains identified 116 genes with non-normal sampling dis-
tributions. Several genes showed evidence of multimodality and/or skewness, suggesting
the importance of their genetic architecture. Since selection models and robust neutral
models may produce qualitatively similar sampling distributions, we advise extra caution
should be taken when interpreting model-based results for poorly understood systems of
quantitative traits.

1. Introduction1

Questions about the distribution of traits that vary continuously in populations were2

critical in motivating early evolutionary biologists. The earliest studies of quantitative trait3

variation relied on phenomenological models, because the underlying nature of heritable4

variation was not yet well understood (Galton, 1883, 1889; Pearson, 1894, 1895). Despite5

the rediscovery of the work of Mendel (1866), researchers studying continuous variation in6

natural populations were initially skeptical that the Mendel’s laws could explain what they7

observed (Weldon, 1902; Pearson, 1904). These views were reconciled when Fisher (1918)8

showed that the observations of correlation and variation between phenotypes in natural9

populations could be explained by a model in which many genes made small contributions10

to the phenotype of an individual.11

The insights of Fisher (1918) made it possible to build models of quantitative trait12

evolution from population genetic first principles. Early work focused primarily on the13

interplay between mutation and natural selection in the maintenance of quantitative genetic14
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variation in natural populations, while typically ignoring the effects of genetic drift (Fisher,15

1930; Haldane, 1954; Latter, 1960; Kimura, 1965).16

However, genetic drift plays an important role in shaping variation in natural popu-17

lations. While earlier work assumed that a finite number of alleles control quantitative18

genetic variation (e.g. Latter (1970)), Lande (1976) used the continuum-of-alleles model19

proposed by Kimura (1965) to model the impact of genetic drift on differentiation within20

and between populations. A key assumption of Lande’s models is that the additive genetic21

variance in a trait is constant over time. In fact, in finite populations the genetic variance22

itself is random; at equilibrium, there are still stochastic fluctuations around the determin-23

istic value assumed by Lande, even if none of the underlying genetic architecture changes24

(Bürger and Lande, 1994).25

Several later papers explored more detailed models to understand how genetic variance26

changes through time due to the joint effects of mutation and drift (e.g. Chakraborty27

and Nei (1982)). Lynch and Hill (1986) undertook an extremely thorough analysis of28

the evolution of neutral quantitative traits. They analyzed the moments (e.g. mean and29

variance) of trait distributions that arise due to mutation and genetic drift and provided30

several quantities that can be used to interpret variation within and between species and31

analyze mutation accumulation experiments.32

Much of this earlier work has made several simplifying assumptions about the distri-33

bution of mutational effects and the genetic architecture of the traits in question. For34

instance, Lynch and Hill (1986), despite analyzing quite general models of dominance and35

epistasis, ignored the impact of heavy tailed or skewed mutational effects. While, in many36

cases, such properties of the mutational effect distribution are not expected to have an37

impact if a large number of genes determine the phenotype in question, it is unknown38

what impact they may have when only a small number of genes determine the genetic39

architecture of the trait. Moreover, when mutational effects display “power-law” or “fat-40

tailed” behavior, the impact of the details of the mutational effects may persist even in the41

so-called infinitesimal limit of a large number of loci with small effects. Finally, mutation42

accumulation experiments have produced skewed and/or leptokurtic samples of quantita-43

tive traits (Mackay et al., 1992), which is a direct motivation to relax assumptions on the44

mutational effects distribution.45

Such deviations that stem from the violations of common modeling assumptions have the46

potential to influence our understanding of variation in natural populations. For instance,47

leptokurtic trait distributions may be a signal of some kind of diversifying selection (Kopp48

and Hermisson, 2006) but are also possible under neutrality when the number of loci49

governing a trait is small. Similarly, multimodal trait distributions may reflect some kind50

of underlying selective process (Doebeli et al., 2007) but may also be due to rare mutations51

of large effect.52

We have two main goals in this work. Primarily, we want to assess the impact of viola-53

tions of common assumptions on properties of the sampling distribution of a quantitative54

trait (e.g. variance, kurtosis, modality). Secondly, we believe that the formalism that we55

present here can be useful in a variety of situations in quantitative trait evolution, particu-56

larly in the development of robust null models for detecting selection at microevolutionary57
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time scales. To this end, we introduce a novel framework for computing sampling dis-58

tributions of quantitative traits. Our framework builds upon the coalescent approach of59

Whitlock (1999), but allows us to recover the full sampling distribution, instead of merely60

its moments.61

First, we outline the biological model and explain how we can compute quantities of62

interest using a formalism based on characteristic functions. We then use this approach to63

compute the sample central moments. While much previous work focuses on only the first64

two central moments (mean and variance), we are able to compute arbitrarily high central65

moments, which are related to properties such as skewness and kurtosis. By doing so, we are66

able to determine the regime in which the details of the mutational effect distribution are67

visible in a sample from a natural population. Additionally, we explore the convergence to68

the infinitesimal limit and find that when “fat-tailed” effects are present, traditional theory69

based on the assumption of normality can lead to misleading predictions about phenotypic70

variation. Finally, to assess the impact of genetic architecture in natural populations, we71

identified for non-normal sampling distributions of gene expression among 49 Neurospora72

crassa individuals.73

2. Model74

The mechanistic model we construct has three major components: a coalescent process,75

a genetic mutational process that acts upon the controlling quantitative trait loci, and76

a mutational kernel that samples quantitative trait effect sizes. Together these processes77

generate the quantitative traits sampled from the study population while explicitly mod-78

eling their shared genetic ancestry. Although we opt for simple model components during79

this exposition, the model generally supports more realistic and complex extensions, such80

as population structure and epistasis.81

We assume that we sample n haploid individuals from a randomly mating population82

of size N . Initially, consider a trait governed by a single locus and we will later extend83

the theory to traits governed by multiple loci. Let µ be the mutation rate per generation84

at the locus, and θ = 2Nµ be the coalescent-scaled mutation rate. We model mutation85

as a process by which a new mutant adds an independent and identically distributed86

random effect to the ancestral state. Note that when the distribution of random effects is87

continuous, this corresponds to the Kimura (1965) continuum of alleles model. However,88

it is also possible for the effect distribution to be discrete, similar to the discrete model of89

Chakraborty and Nei (1982). While this model does not capture the impact of a biallelic90

locus with exactly two effects, the following theory could easily be modified to analyze that91

case.92

[Figure 1 goes here]93

Figure 1 shows one realization of both the coalescent and mutational processes for a94

sample of size 5. Given the phenotype at the root of the tree and the locations and effects95

of each mutation on the tree, the phenotypes at the tips are determined by adding mutant96

effects from the root to tip. To specify the root, we can assume without loss of generality97

that the ancestral phenotype for the entire population has a value 0 (this is similar to98
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the common assumption in quantitative genetics literature that the ancestral state at each99

locus can be assigned a value of 0).100

This mutational process can be described as a compound Poisson process (see also101

Khaitovich et al. (2005b); Chaix et al. (2008); Landis et al. (2013) for compound Pois-102

son processes in a phylogenetic context). To ensure that this paper is self contained, we103

briefly review relevant facts about compound Poisson processes in the Appendix.104

In the following, we ignore the impact of non-genetic variation and focus on the breeding105

value of individuals, i.e. the average phenotype of an individual harboring a given set of106

mutations.107

3. Results108

3.1. Computing the characteristic function of a sample. In many analyses, the109

object of interest is the joint probability of the data. If we let X = (X1, X2, . . . , Xn) be110

the vector representing the quantitative traits observed in a sample of n individuals, we111

denote the joint probability of the data as p(x1, x2, . . . , xn). Note that, in general, Xi and112

Xj are correlated due to shared ancestry, and that p must be computed by integrating over113

all mutational histories consistent with the data. Hence, computing p directly is extremely114

difficult.115

Instead, we compute the characteristic function of X. For a one-dimensional random
variable, X, the characteristic function is defined as E(eikX) where i is the imaginary unit,
k is a dummy variable. Generalizing this definition to an n-dimensional random variable,
we are interested in computing

λn(k) = E(eik
TX)

= E(ei(k1X1+k2X2+...+knXn))

where k = (k1, k2, . . . , kn) is a vector of dummy variables. Like a probability density116

function, the characteristic function ofX contains all the information about the distribution117

of X. Moreover, computing moments of X is reduced to calculating derivatives of the118

characteristic function, which will prove useful in the following.119

We calculate this formula in two parts. First, we compute a recursive formula for ϕn,120

the characteristic function given that ancestral phenotype of the sample is equal to 0.121

Then, we compute ρn, the characteristic function of the ancestral phenotype of the sample,122

assuming that the characteristic function of the population is equal to 0. As we show in the123

Appendix, we can then multiply these characteristic functions to obtain the characteristic124

function of X.125

We use a backward-forward argument to compute the recursive formula, first condi-126

tioning on the state when the first pair of lineages coalesce (backward in time) and then127

integrating (forward in time) to obtain the characteristic function for a sample of size n,128

ϕn. This results in129

(1) ϕn(k) =
2

n(n− 1)− θ (
∑n

u=1 ψ(ku)− n)

∑
u<v

ϕn−1(k
(u,v))
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where k(u,v) is the vector of length n− 1 made by removing ku and kv and adding ku + kv130

to the vector of dummy variables.131

This equation has a straight-forward interpretation. The characteristic function for a132

sample of size n, ϕn, is simply the characteristic function for a sample of size n− 1, ϕn−1,133

averaged over all possible pairs that could coalesce first, multiplied by the characteristic134

function for the amount of trait change that occurs more recently than the first coalescent.135

The multiplication comes from the fact that the characteristic function of a sum of inde-136

pendent random variables is the product of the characteristic functions of those random137

variables. We prove this result in the Appendix (Section 5.3).138

In the Appendix (Section 5.4), we also show that the characteristic function for the139

phenotype at the root of the sample is140

(2) ρn(k) = n!(n− 1)

∞∑
u=1

u∏
v=2

v(v − 1)

v(v − 1)− θ(ψ(k)− 1)

u!

(n+ u)!
.

Intuitively, this equation arises by conditioning on whether u lineages are left in the popu-141

lation when the sample reaches its common ancestor and then averaging over the (random)142

time between when the individuals in the sample coalesce and when everyone in the pop-143

ulation coalesces.144

Hence, the characteristic function for a sample of size n is145

λn(k) = ρn(k1 + k2 + . . .+ kn)ϕn(k).

3.2. Sampling traits controlled by a small number of loci. It is common practice146

in both theoretical and applied quantitative genetics to summarize information about the147

phenotypic distribution within a population by computing central moments. However, care148

must be taken when interpreting theoretical predictions about central moments estimated149

from a sample. This is because the phenotypes in the sample are not independent, but150

instead correlated due to their shared genealogical history. Hence, in any particular pop-151

ulation, an estimate of a central moment may deviate from its expected value, even as the152

number of individuals sampled grows to infinity (Aldous, 1985).153

With this caveat in mind, we computed the first four expected central moments for a
sample of phenotypes taken from this model (see Appendix for details). They are

E(h2) =
1

2
θLm2

E(h3) =
1

6
θLm3

E(h4) =
3

4
θ2L2m2

2 +
1

4
θL(2θm2

2 +m4),

where hk is the unique minimum variance unbiased estimator of the kth central moment,154

mk is the kth moment of the mutational effect distribution and L is the number of loci155

that influence the trait.156
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These equations reveal that it may be possible to construct method-of-moments estima-157

tors for the moments of the mutation effect distribution and/or the number of loci that158

govern a trait.159

3.3. “Infinitesimal” limits for large numbers of loci. Many traits are assumed to be160

governed by a large number of loci, each individually of small effect. This is known as an161

infinitesimal model (Falconer and Mackay, 1996). Typically, the sampling distribution in162

the infinitesimal limit is assumed to be Gaussian, by appealing to the central limit theorem.163

Here, we find that under certain circumstances traits may not be normally distributed, even164

in the limit.165

To obtain a non-trivial limit, we must assume that as the number of loci controlling
the trait increases, the effect of each individual locus decreases. Then, computing the
characteristic function for a trait governed by a large number of independent loci is simple
due to the fact the characteristic function of the sum of independent random variables
is the product of their characteristic functions. Thus, assuming that each locus has the
same effect distribution (this assumption can be relaxed relatively easily) the characteristic
function of the limit distribution is given by

Λn(k) = lim
L→∞

λn(k)
L

= lim
L→∞

ρn(k1 + k2 + . . .+ kn)
Lϕn(k)

L

= Rn(k1 + k2 + . . .+ kn)Φn(k).

In the Appendix, we show that mutation effect distributions with power law behavior166

instead converge to a limiting stable distribution. A random variable X is said to have a167

power law distribution if P (X > x) ∼ κx−α for large x, some κ > 0 and some α ∈ [0, 2). In168

this limit, individuals with shared genealogy may still have highly correlated phenotypes,169

due to rare mutations of large effect.170

On the other hand, all mutation effect distributions without power law behavior converge
to a Gaussian limit, due to the central limit theorem. In the Appendix, we show that
samples taken from a population in this limit can be represented as a sample from a
normal distribution with a random mean. In particular,

Xi
i.i.d.∼ N

(
M,

1

2
θσ2
)

M ∼ N
(
0,

1

2
θσ2
)
,

where N (m, s2) represents a normal distribution with mean m and variance s2.171

3.4. Simulation. We simulated data to verify our analytical results and obtain some in-172

sight into the nature of the stable limiting distribution that arises for power law mutational173

effects. We first wanted to confirm that the trait distributions converge to univariate Gauss-174

ian limiting distributions as n→ ∞ and L→ ∞ when mutational kernels are not fat-tailed.175

To explore how the moments of the sampling distribution change with respect to n, L, and176
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the mutational kernel, we asked for which values of L do the moments of the various muta-177

tional kernels leave a signature in the sampled quantitative traits. Finally, we conjectured178

that fat-tailed mutation kernels result in trait distributions that remain multimodal as179

L→ ∞, which we verified by simulation rather than by mathematical proof.180

For these simulation studies, we selected four mutational kernels: (1) the symmetric181

normal distribution for it’s simplicity, (2) the Laplace distribution because it is heavier-182

tailed (or more leptokurtic) than the normal distribution yet has finite variance, (3) the183

skew-normal distribution for it’s skewness parameter and tractability, and (4) the symmet-184

ric α-stable distribution because of its power-law behavior. To ensure that simulations of185

different non-fat-tailed distributions were comparable, we set the variance per locus to be186

τ2 = σ2/L when we simulated L loci, meaning the trait distribution would have constant187

variance θσ2/2. Note the symmetric normal distribution is a special case of both the skew-188

normal distribution when the skewness parameter is zero and the α-stable distribution189

when the “fat-tailedness” parameter is α = 2.190

For all simulations, we generated coalescent genealogies and mutations using the program191

ms (Hudson, 2002). We then generated and mapped mutational effects using custom scripts192

in R (R Core Team, 2013).193

Code is available at http://github.com/Schraiber/quant trait coalescent.194

[ Figure 2 goes here. ]195

[ Figure 3 goes here. ]196

3.4.1. Univariate Gaussian limit. For mutational kernels of small effect size and variance197

τ2 per locus, the sampling distribution converges to a normal distribution with variance198

θσ2/2 where Lτ2 → σ2 as L → ∞. We simulated 100 replicates of trait data for L ∈199

{1, 2, 4, . . . , 256} and n ∈ {2, 4, 8 . . . , 512} with mutation parameters θ = 2 and τ = 1200

for the normal, the skew-normal (skewness=0.9), and the Laplace distributions. We then201

assessed convergence to the normal limit using the Kolmogorov-Smirnov (KS) test statistic,202

D, which equals zero when two distributions are identical. Figure 2 reports the frequency203

we reject the null hypothesis—that the limiting and sampled distributions are identical—204

for each batch of 100 replicates per value of n and L for p-values less than 0.05. For205

n ≤ 4, the KS test lacked power to reject the null hypothesis whatsoever. For n ≥ 8, the206

three mutational kernels converge to the limiting normal distribution in a similar fashion,207

with the sampling and limiting distributions bearing strong resemblance when L > 16.208

Distinctly, the Laplace distribution converges to normality at a slower rate than other209

mutational kernels, likely resulting from it being leptokurtic (Figure 3).210

[ Figure 4 goes here. ]211

3.4.2. Central moments. We assessed the signature left by various mutational kernels on212

the sampling distribution by computing the central moments across simulation replicates.213

While the variance (h2) remains constant for all values of L regardless of the mutational214

kernel (by experimental design), the third central moment (h3) and the fourth central215

moment (h4) depend on the mutational kernel for small values of L. As L → ∞, the216

sample moments converge to those of a normal distribution. Here, we characterize the217
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deviation from the normally-distributed moments under a variety of mutational kernels:218

the (symmetric) normal distribution; the skew-normal distribution for skewnesses 0.1, 0.5219

and 0.9; and the Laplace distribution. We omitted the α-stable distribution from this220

portion of the study since its moments h2, h3, and h4 only exist when α = 2, i.e. when it221

is Gaussian.222

We simulated data while varying the number of loci, L ∈ {1, 2, 4, . . . , 256}, holding223

the sample size constant, n = 1024, for 2000 replicates for each of the five mutation224

kernels. Afterwards, we computed the mean h2, h3, and h4 statistics across replicates of225

each mutation kernel and value of L for comparison with their expected h-statistic values226

(Figure 4). As expected, h2 remains constant regardless of the mutation kernel or L. The227

normal and Laplace distributions are symmetric and produce sample h3 values near zero,228

indicating no skewness. The skew-normal mutation kernel result in non-zero skewness229

even for traits controlled by over 100 loci so long as the kernel is sufficiently strongly230

skewed. The speed the sampling distribution’s third central moment, h3, converges to231

zero in inverse proportion to the magnitude of its mutational kernel’s skewness value. All232

distributions produce non-zero h4 values when L is small, due to the randomness of the233

mutation process. The h4 value of the Laplace distribution, the sole leptokurtic mutational234

kernel in this comparison, is the slowest of all kernels to converge to the normal limit.235

[ Figure 5 goes here. ]236

3.4.3. Multimodality. As n → ∞ and L → ∞, we proved that sampling distributions237

generated by finite-variance mutational kernels converge to the unimodal normal distri-238

bution and conjectured that power-law mutational kernels, such as the α-stable, converge239

to multimodal stable distributions. Here, we demonstrate by simulation our proven and240

conjectured modality results hold as L→ ∞.241

To do so, we test for unimodality using the dip statistic, D (Hartigan and Hartigan,242

1985). Briefly, D(F0, F1) gives the minimized maximum difference between an empirical243

distribution, F1, and some unimodal (null) distribution, F0, where F0 is typically taken244

to be the uniform distribution. D approaches zero when F1 is unimodal and equals 1
4245

when the distribution is perfectly bimodal (i.e. two point masses). We used the R package246

diptest (Maechler and Ringach, 2012) to compute p-values for each simulated dataset,247

recording the frequency of replicates whose p-value is less than 0.05 for each mutational248

kernel and value of L. If the limiting distribution is unimodal, we expect this frequency to249

be less than 0.05 as L increases. Conversely, we expect multimodal limiting distributions250

to converge in frequency to some value greater than 0.05 as L increases.251

We complemented the simulated data from Section 3.4.2 with three additional α-stable252

mutational kernels for α ∈ {1.5, 1.7, 1.9}, keeping the coalescent-mutation process variance253

equal across all datasets.254

Figure 5 shows the trait distributions under α-stable mutation kernels remained mul-255

timodal as L → ∞ and stratify according to their respective α values: as α decreases256

the large-effect mutations responsible for multimodality grow more prominent. Mutation257

kernels of small effect size become unimodal as L→ ∞. Notably, Laplace-distributed mu-258

tations converge to unimodality more slowly the normally-distributed mutations, echoing259
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the results reported in Sections 3.4.1 and 3.4.2. Also note that when the number of loci260

is small (L ≤ 4) the sampling distribution is multimodal regardless of the mutation ker-261

nel. This corroborates our earlier KS tests (Section 3.4.1), which found simulated data for262

L ≤ 4 bore little to no resemblance to a unimodal normal distribution.263

3.5. Neurospora crassa gene expression. Our simulations show that skewness, leptokur-264

tosis, and multimodality may surface in the sampling distribution of quantitative traits, so265

we searched for these patterns in the N. crassa gene expression data reported by Ellison266

et al. (2011). Based on our modeling framework, the details of the deviation from normality267

can be used to infer the characteristics of the underlying mutational kernel. We selected this268

dataset because the data were collected so as to minimize environmental effects, because269

many changes gene expression may only be weakly deleterious if not neutral, and because270

transcriptomes contain thousands of comparable and consistently measurable quantitative271

traits. For these analyses, we only look at properties of the sampling distribution and make272

no assumptions about the generating process.273

Forty-eight individuals were sampled from a wild population in Louisiana. The samples274

were then propagated in a controlled laboratory setting to minimize environmental and275

genotype-by-environmental effects on the quantitative traits. RNAseq raw read counts276

were obtained for 9793 genes, then normalized using upper quartile normalization (raw277

read counts divided by transcript length, further divided by the third quartile of all ranked278

read counts per individual). All expression levels were log-transformed. To control for279

noise, we discarded any weakly expressed gene with values less than log(-5.0) for any of the280

48 individuals, then additionally discarded the most extreme value per gene, yielding 7079281

genes with 47 individuals per gene. We expect these noise-control filters to bias our trait282

distribution toward normality, in particular, towards unimodal symmetric distributions283

with no excess kurtosis.284

[ Figure 6 goes here. ]285

We used the Shapiro-Wilk test to assess normality and the dip test to assess multimodal-286

ity. Additionally, we computed the sample skewness and kurtosis. Twenty-five and 697287

genes reported p-values less than 0.05 for the dip test and Shapiro-Wilk tests, respectively,288

14 of which fell into both categories (Figure 6A). We saw that genes in which normality is289

rejected tend to be positively and negatively skewed with approximately the same frequency290

(Figure 6B), and are more often leptokurtic than platykurtic (Figure 6C) For genes where291

we failed to reject normality, the mean sample skewness is -0.016 (i.e. mildly negatively292

skewed) and mean sample kurtosis is 2.78 (i.e. mildly platykurtic). After correcting for a293

false discovery rate of 10%, we identified one multimodal trait and 116 non-normally dis-294

tributed traits. Among these discoveries, 57 were negatively skewed while 59 were positively295

skewed, and 23 were platykurtic while 93 were leptokurtic. Figure 7 shows the sampled296

trait distributions for six of the 116 non-normally distributed genes. The complete list of297

116 genes is available at https://github.com/Schraiber/quant trait coalescent.298

[ Figure 7 goes here. ]299
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The Shapiro-Wilk and dip tests may have insufficient power to reliably reject normality300

and unimodality hypotheses when given only 48 samples (49 samples minus the one most301

extreme-valued sample). We assessed power by simulation in a few simple cases. For302

example, for 48 samples drawn from an α-stable with α = 1.8, approximately 41% rejected303

normality under the Shapiro-Wilk test. Similarly, for a skew-normal distribution with304

skewness 0.5, 23% rejected normality. A simple bimodial distribution with equal mixture305

weights, means (0, 4), and standard deviations (1, 1) rejected the dip test 43% of the time.306

When one mixture component outweighs the second component four-fold (i.e. when a307

minor clade in the population carries a mutation of large effect), the dip-test is rejected308

only 0.71% of the time.309

4. Discussion310

The natural world is replete with quantitative trait variation and understanding the311

forces governing their evolution is a central goal of evolutionary biology. The model of312

Fisher (1918), which explained how quantitative variation can be generated by Mendelian313

inheritance, provides an underpinning for understanding the generation and maintenance of314

variation in continuous characters. A primary assumption of much of this work is traits are315

controlled by a large number of loci and that new mutations have a very small, symmetric316

effect on the trait value.317

In this work, we introduced a coalescent framework for modeling neutral evolution in318

quantitative traits. This stands in contrast to past work, which has typically taken a319

forward-in-time approach based on classical population genetics (but see Whitlock (1999)320

who also utilized a coalescent model). Our backward-in-time, sample-focused approach321

enabled us to derived an expression for the joint distribution of the data with arbitrary322

mutational effects and numbers of loci. We found that traits governed by a large number323

of loci with small effects are well-modeled by a Gaussian distribution, as expected. How-324

ever, we saw that with small numbers of loci, significant departures from normality can325

be observed. Moreover, for fat-tailed (or power-law) mutational kernels, there are signifi-326

cant departures from normality (including multi-modality), even when the number of loci327

becomes large.328

We assessed departure from normality in traits governed by a small number of loci by329

exploring the central moments of three different mutational kernels (normal, skew-normal330

and Laplace distributions) both analytically and by simulation. We showed that although331

all three mutational kernels converge to a Gaussian distribution, traits controlled by a332

small number of loci retain the signature of their underlying mutational kernel in their333

3rd and 4th central moments. Hence, it may be possible to reconstruct aspects of the334

mutational effect distribution by observing phenotypes in natural populations. This may335

be particularly interesting for analyzing variation in gene expression, because mutational336

effects in cis may be strongly skewed (Khaitovich et al., 2005a; Chaix et al., 2008; Gruber337

et al., 2012). Our theory suggests that the distribution of gene expression in a population338

might therefore be skewed.339

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 4, 2014. ; https://doi.org/10.1101/008540doi: bioRxiv preprint 

https://doi.org/10.1101/008540


SENSITIVITY OF QUANTITATIVE TRAITS TO MUTATIONAL EFFECTS, NUMBER OF LOCI, AND POPULATION HISTORY11

We were also interested in the circumstances under which multi-modal phenotypic dis-340

tributions can arise. When a trait has a simple genetic architecture, it’s easy to see that341

there must be discrete phenotypic clusters, corresponding to groups of individuals sharing342

the same mutations. As the number of loci increases, there are more mutational targets343

(and thus more mutation events), which smooths the distribution, causing the sampling344

distribution to converge to the appropriate limiting distribution. For mutational effects345

with finite variance, this ultimately results in a limiting Gaussian distribution, consistent346

with the central limit theorem. However, when the mutational kernel is fat-tailed, the347

marginal effects of each locus do not vanish as the number of loci grows. Thus, some348

clade-specific mutations will always be of large effect despite the number of loci assumed349

by the model, resulting in a multi-modal sampling distribution.350

Following our simulations, we asked whether the sampling distributions for empirical351

quantitative trait data were testably non-normal, as might be generated by the neutral352

model we presented earlier. For a sample of 49 strains of N. crassa, we found 116 of 7079353

genes were detectably non-normal with a false discovery rate of 10%. Qualitatively, many354

more than 116 genes appeared non-normal, but more than 49 samples are needed for suffi-355

cient testing power. Because the data were generated while controlling for environmental356

effects then filtered for noisy measurements, we expect the quantitative trait variation must357

be explained predominantly by genetic factors. Several genes showed evidence of skewness,358

which our model shows could result from a skewed mutant effect distribution. Similarly,359

many genes showed evidence for leptokurtosis, although this may be due to either a simple360

genetic architecture (i.e. the trait is controlled by few loci) or a truly leptokurtic mutational361

kernel. The neutral model we proposed describes gene expression evolution only when no362

selection is acting on the quantitative trait, though we suspect that many of our results will363

hold qualitatively under weak selection. Of course, the assumption of weak or no selection364

is unlikely to be true across the entire transcriptome. Nonetheless, we believe that these365

qualitative aspects of the data can be used to shed light on the underlying mutational366

processes governing quantitative trait evolution. Whatever genetic process generated these367

data, e.g. an adaptive model, an adequate model must be capable of explaining skewed,368

leptokurtic, and multimodal sampling distributions.369

These results show that even under the assumption of neutrality, significant departures370

from normality are possible and can be detected in empirical data. It is possible that these371

deviations from normality may be conflated with signatures of selection acting on quan-372

titative variation. Several recent studies have claimed that evidence of non-Gaussianity373

may be evidence for non-neutral evolution at macroevolutionary time scales. For instance,374

Khaitovich et al. (2005a); Chaix et al. (2008) found that the distribution of gene expression375

differences between great apes is strongly positively skewed. Similarly, Uyeda et al. (2011)376

argued that there is a one million year wait between bursts of evolution in the fossil record377

and numerous studies have explored non-Gaussian trait divergence in a phylogenetic con-378

text (Landis et al., 2013; Eastman et al., 2013). While it is unlikely that the population379

genetic model we developed can be directly applied to macroevolutionary data of this sort380

(Estes and Arnold, 2007), it is important to recognize that such effects can be due to purely381

neutral processes.382
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On shorter time scales, there is significant interest in detecting non-neutral quantitative383

trait evolution among closely related species or populations. One powerful method com-384

pares a measure of quantitative trait divergence, Qst, to the fixation index, Fst (McKay and385

Latta, 2002; Ovaskainen et al., 2011). However, this requires estimates of breeding values386

from common-garden experiments, and may be difficult to achieve. In other cases (e.g.387

Lemos et al. (2005)) more phenomenological approaches are taken, by comparing within388

and between species phenotypic diversity. The null distributions of these approaches typi-389

cally rely on assumptions of the infinitesimal model, which we have shown may be violated390

due to mutations of large effect and/or loci with relatively simple genetic bases. To address391

these issues and leverage the abundance of modern quantitative trait data, Berg and Coop392

(2014) developed a method that explicitly uses breeding values estimated from quantitative393

trait mapping studies. When such effect size estimates are unavailable, it may be possible394

to use our formalism to develop robust null models to detect selection.395

Our coalescent approach can be extended in several ways. Notably, we consider only396

haploid populations. In principle, an extension to diploid individuals is straight-forward397

using the result of Möhle (1998) that diploid, dioecious populations of size N are readily398

modeled by pairing random chromosomes from a haploid population of size 2N . To incor-399

porate diploidy, we would also need to incorporate a model of dominance, of which several400

exist in the literature (e.g. the model of independent dominance of Lynch and Hill (1986).401

From the point of view of the coalescent process, it is straightforward to apply our model402

to populations that have undergone complex demographic histories. This is because the403

dynamics of a coalescent under population size fluctuations and population structure are404

well known. Moreover, we explored only unlinked, neutral loci and it may be possible405

to obtain some analytical results for linked loci and/or weak natural selection by using406

the ancestral recombination graph and ancestral selection graph, respectively. While an-407

alytical results are difficult within these frameworks, we believe that they can be used408

to perform simple simulations of quantitative traits evolving in complex scenarios, thus409

enabling Approximate Bayesian Computation.410

5. Appendix411

5.1. Compound Poisson processes. To obtain the probability of the data under this412

model, we must be able to compute the probability of the change in phenotype along a413

branch of the tree. Unfortunately, except for very simple mutational models, this probabil-414

ity is impossible to compute analytically. Instead, we compute the characteristic function415

of the change along a branch.416

Using standard results for compound Poisson processes (Kingman, 1992), we see that417

the characteristic function of the change along a branch of length t (in coalescent units) is418

(3) φt(k) = e
θ
2
t(ψ(k)−1)

where ψ is the characteristic function of the mutational effect distribution.419

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 4, 2014. ; https://doi.org/10.1101/008540doi: bioRxiv preprint 

https://doi.org/10.1101/008540


SENSITIVITY OF QUANTITATIVE TRAITS TO MUTATIONAL EFFECTS, NUMBER OF LOCI, AND POPULATION HISTORY13

5.2. The phenotype at the root of the sample genealogy and the subsequent
evolution within the sample are subindepenent. Note that

λn(k) = E(eik
TX)

= E(ei(k1X1+k2X2+...+knXn))

= E(ei(k1(R+E1)+k2(R+E2)+...+kn(R+En)))

where R is the phenotype at the root of the sample genealogy and Eu is the subsequent
evolution leading to lineage u in the sample. So,

E(ei(k1(R+E1)+k2(R+E2)+...+kn(R+En))) = ER(E(ei(k1(R+E1)+k2(R+E2)+...+kn(R+En))|R))

= ER(e
i(k1+k2+...+kn)RE(ei(k1E1+k2E2+...+knEn)|R))

= E(ei(k1+k2+...+kn)R))E(ei(k1E1+k2E2+...+knEn))
where the last line follows by independent and stationary increments of the compound420

Poisson process. Thus, R and (E1, E2, . . . , En) subindependent, and hence their joint char-421

acteristic function is the product of their characteristic functions.422

5.3. Proof of recursive formula for the characteristic function. First, we condition
on the state at the first coalescence (going back in time). The state consists of three
components: 1) which pair of individuals coalesce, (u, v), 2) the time of the coalescent
event, Tc, and 3) the trait value in each lineage at that time, X′ (note that, given (u, v),
we have that X ′

u = X ′
v, since those two ilneages have coalesced and hence had the same

trait value at the time of coalescence). Then,

E(eik
TX) = E(u,v),X′,Tc

(
E
(
eik

TX|(u, v),X′, Tc

))
=

2

n(n− 1)

∑
u<v

EX′,Tc

(
E
(
eik

TX|(i, j),X′, Tc

))
=

2

n(n− 1)

∑
u<v

EX′,Tc

(
E
(
eik

T (X′+Y(Tc))|(u, v),X′, Tc

))
=

2

n(n− 1)

∑
u<v

EX′,Tc

(
eik

TX′
E
(
eik

TY(Tc)|Tc
))

(4)

where Y(t) = (Y1(t), Y2(t), . . . , Yn(t)) is the vector accounting for the evolution on each423

lineage that occurs during time t. The second line follows by the fact that each pair424

is equally likely to coalesce (with probability
(
n
2

)−1
) and the third line by independent425

increments of a compound Poisson process.426

Now, we compute the internal expectation going forward in time. Noticing that E(eikTY(Tc)|Tc)427

is simply the characteristic function of a compound Poisson process run for length Tc, we428

see from (3) that429

E
(
eik

TY(Tc)|Tc
)
= exp

{
θ

2
Tc

(
n∑
i=1

ψ(ki)− n

)}
.
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Because Tc and X′ are independent, we can integrate over Tc analytically in the outer430

expectation. The distribution of the time to the first coalescent event in a sample of size431

n is Exponential with rate
(
n
2

)
, hence,432

ETc

(
exp

{
θ

2
Tc

(
n∑
i=1

ψ(ki)− n

)})
=

n(n− 1)

n(n− 1)− θ (
∑n

i=1 ψ(ki)− n)
.

Plugging this result into (4) results in433

E
(
eik

TX
)
=

2

n(n− 1)− θ (
∑n

i=1 ψ(ki)− n)

∑
u<v

EX′

(
eik

TX′
)
,

but since X′ is simply the result of the same process where two of the entries are identical,434

we obtain the recursive formula (1).435

To initialize the recursion, we must compute the characteristic function for a sample of436

size 2. This is437

(5) ϕ2(k) =
2

2− θ(ψ(k1) + ψ(k2)− 2)
.

5.4. The phenotype at the root of the sample genealogy. First, we note that,438

conditional on the time between when the sample genealogy finds a common ancestral and439

the population genealogy finds a common ancestor, ∆, the characteristic function of the440

phenotype at the root of the sample genealogy is441

e
θ
2
(ψ(k)−1)∆,

by using equation (3). Thus, the after integrating over ∆, the desired quantity is moment442

generating function of ∆, defined by443

M(z) = E(ez∆)

evaluated as z = θ
2(ψ(k)− 1).444

We compute M(z) by conditioning on how many lineages are left in the population445

genealogy when the sample reaches its most recent common ancestor. To do this, we make446

use of a result of Saunders et al. (1984),447

P(u lineages left in population|sample coalesced) = n!(n− 1)
u!

(n+ u)!
.

Given that u lineages are left in the population when the sample reaches its most recent
common ancestor, the remaining time until the whole population reaches its common an-
cestor is simply the time it takes for a coalescent started with u to reach its most recent
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common ancestor, Cu. Thus,

M(z) = E(ez∆)

= Eu(E(ez∆|u lineages left when sample coalesces))

=
∞∑
u=1

E(ezCu)n!(n− 1)
u!

(n+ u)!

=
∞∑
u=1

u∏
v=2

v(v − 1)

v(v − 1)− 2z
n!(n− 1)

u!

(n+ u)!

where the final line follows by recognizing that Cu is the sum of u − 1 independent ex-448

ponential random variables with means
(
u
2

)
,
(
u−1
2

)
, . . . ,

(
2
2

)
. Substituting θ

2(ψ(k)− 1) for z449

yields the desired result.450

5.5. Computing sample central moments. While it is difficult to compute the expec-
tation of any sample central moments for a particular sample, it is possible to average over
replicate populations to compute expectations. This results in

E(h2) = E(X2
1 )− E(X1X2)

E(h3) = E(X3
1 ) + 2E(X1X2X3)− 3E(X2

1X2)

E(h4) = E(X4
1 ) + 6E(X2

1X2X3)− 4E(X3
1X2)− 3E(X1X2X3X4),

where the expectations on the right hand sides are over the correlated phenotypes in the451

sample. It is possible to compute these expectations by taking derivatives of the char-452

acteristic function (1). After simplifying, one then arrives at the formulas in the main453

text.454

5.6. Derivation of multivariate stable limit for sample distribution. Recall that a455

random variable X is said to have a fat-tailed (or power-law) distribution if456

(6) P (X > x) ∼ κx−α

for large x and some κ > 0. As is typical in the literature, we reserve the term “fat-tailed”457

for distributions with α ∈ (0, 2).458

To obtain an appropriate scaling limit, we assume that there is a parameter t, related459

to the parameter κ in (6) by460

(7) t = κ
π

sin(απ/2)Γ(α)α
,

such that Lt → s as n → ∞. The parameter s is related to the scale parameter of the461

resulting limit distribution.462

We provide a heuristic derivation, rather than a rigorous proof. First, we argue by463

induction that the (per locus) characteristic function for a sample of size n is464

ϕ̃n(k) ∼ 1− θs

L

 ∑
j∈P∗(k)

cn,|j|

∣∣∣∣∣∣
∑
z∈j

z

∣∣∣∣∣∣
α
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for large L, where P∗(k) is the power set of the elements in k, except the set {k1, k2, . . . , kn},465

and cn,|j| is a combinatorial constant that depends only on the sample size n and |j|, the466

size of the set j.467

Note that for n = 2, this can be seen by observing that for large L, the characteristic
function of a fat-tailed distribution is asymptotically

ψ(k) ∼ 1− s

L
|k|

≡ ψ̃

Thus,

ϕ2(k) ∼ 1− θ

2

s

L
(|k1|α + |k2|α)

≡ ϕ̃2

Now, assume that the formula holds for ϕ̃n−1. Using the recursion (1), we have

ϕn(k) ∼
1(

n
2

)
− θ

2

(∑n
u=1 ψ̃(ku)− n

)∑
u<v

ψ̃n−1(k
(u,v))

=

(
n
2

)
− θs

L

(∑
j∈P∗(k) c̃n,|j|

∣∣∣∑z∈j z
∣∣∣α)(

n
2

)
+ θs

2L (
∑n

u=1 |ku|α)
.

The second line follows from plugging ψ̃ and ϕ̃, and c̃n,|j| arises by summing over the
appropriate terms coming from all characteristic functions in the sum. Again looking for
an asymptotic for large L, we see that(

n
2

)
− θs

L

(∑
j∈P∗(k) c̃n,|j|

∣∣∣∑z∈j z
∣∣∣α)(

n
2

)
+ θs

2L (
∑n

u=1 |ku|α)
∼ 1− θs(

n
2

)
L

 ∑
j∈P∗(k)

c̃n,|j|

∣∣∣∣∣∣
∑
z∈j

z

∣∣∣∣∣∣
α

+
1

2

n∑
u=1

|ku|α


= 1− θs

L

 ∑
j∈P∗(k)

cn,|j|

∣∣∣∣∣∣
∑
z∈j

z

∣∣∣∣∣∣
α

= ϕ̃n(k).

Finally, we note that by raising ϕ̃n to the Lth power, and taking the limit as L → ∞,468

we obtain the log characteristic function469

(8) log Φn(k) = θs

 ∑
j∈P∗(k)

cn,|j|

∣∣∣∣∣∣
∑
z∈j

z

∣∣∣∣∣∣
α ,

where all terms are defined as before.470

The characteristic function in (8) can be recognized to be that of a multivariate α-stable471

distribution (Press, 1972). These multivariate distributions are fat-tailed generalizations472
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of the familiar multivariate normal distribution, and this limit corresponds to a generalized473

multivariate central limit theorem for sums of random vectors with fat-tailed distributions.474

5.7. Limiting distribution of the phenotype at the root of the sample genealogy.475

Again, we proceed heuristically rather than rigorously. First, note that for large L,476

v(v − 1)

v(v − 1)− θ(ψ(k)− 1)
∼ 1− θs

Lv(v − 1)
|k|α

so that477
u∏
v=2

(
1− θs

Lv(v − 1)
|k|α

)
∼ 1− u− 1

u

s

L
θ|k|α

for large L. Thus,

ρn(k) ∼ n!(n− 1)

∞∑
u=1

(
1− u− 1

u

s

L
θ|k|α

)
u!

(n+ u)!

= 1− sθ

Ln
|k|α.

So by definition of the exponential function, we have that

Rn(k) = lim
L→∞

ρn(k)
L

= e−
sθ
n
|k|α .(9)

which the characteristic function of a univariate α-stable distribution, arising from the fact478

that the phenotype at the root of the sample genealogy is itself a limit of a sum of random479

variables. Note that as n→ ∞ (i.e. the sample becomes the whole population), R(k) → 1,480

because the root of the sample genealogy is the same as the root of the population genealogy481

and the root value has been specified to be equal to 0.482

5.8. Multivariate Gaussian limits. For the case where the mutation distribution is not483

fat-tailed, we can use the multivariate central limit theorem to more efficiently derive the484

limiting distribution. The appropriate scaling in this case is to assume that if τ2 is the485

variance of the mutation effect kernel, then Lτ2 → σ2 as L→ ∞.486

To apply the multivariate central limit theorem, we must derive the pairwise covariances487

between samples. While the required covariances could be computed by taking derivatives488

of the characteristic function, it is more instructive to compute these moments directly.489

For simplicity, we assume that the mutation effect distribution has mean 0 and variance490

τ2.491

Assume that the population genealogy at a single locus, G, is fixed. Noting that the492

variance per unit time accrued by the mutational process is θ/2τ2 and using the rules for493

calculating covariance structure on a phylogeny, it’s easy to see that for samples i and j494

we have495

Cov(Xi, Xj |G) =

{
θ
2τ

2T if i = j
θ
2τ

2(T − Tij) if i ̸= j
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where T is the height of G and and Tij is the height of the most recent common ancestor496

of samples i and j. We can then use the law of total covariance,497

Cov(Xi, Xj) = E(Cov(Xi, Xj |G)) + Cov(E(Xi|G),E(Xj |G))
to see that498

Cov(Xi, Xj) =

{
θτ2 if i = j
1
2θτ

2 if i ̸= j.

This arises because E(T ) = 2 and E(Tij) = 1.499

Hence, as the number of loci increases to infinity in such a way that Lτ2 → σ2, the500

sampling distribution converges to a multivariate normal distribution with mean 0 and501

variance covariance matrix Σ having elements502

Σij =

{
θσ2 if i = j
1
2θσ

2 if i ̸= j.

Because the pairwise covariances are equal, the random vector X is an exchangeable Gauss-503

ian random vector. Hence, using well-known facts about the representation of exchangeable504

Gaussian random vectors, one arrives at the representation in the main text.505
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M. Lachmann, and S. Pääbo. 2005a. Parallel patterns of evolution in the genomes and554

transcriptomes of humans and chimpanzees. Science 309:1850–1854.555

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 4, 2014. ; https://doi.org/10.1101/008540doi: bioRxiv preprint 

https://doi.org/10.1101/008540


20 JOSHUA G. SCHRAIBER AND MICHAEL J. LANDIS
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Möhle, M. 1998. Coalescent results for two-sex population models. Advances in Applied585

Probability Pages 513–520.586

Ovaskainen, O., M. Karhunen, C. Zheng, J. M. C. Arias, and J. Merilä. 2011. A new method587
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7. Figures610
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Figure 1. Example realization of coalescent process for a sample of size
5. Mutations (marked as light gray X’s), are placed upon the genealogy
representing each individual in the population. Effects of each mutation
are drawn from a probability distribution and are added along each branch
length. The model is specified such that the most recent common ancestor
(MRCA) of the population has phenotype 0.0, while the MRCA of the
population may have a phenotype different from zero, due to mutations
that accumulate between the MRCA of the sample and the MRCA of the
population.
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Figure 2. Frequency to reject normal sampling distribution. Heatmap
cells correspond to number of sampled individuals, n, and number of loci,
L. Panels are labeled with their respective mutational kernels. For 100
simulated replicates per cell, heatmap values correspond to the frequency
the Kolmogorov-Smirnov test rejects the null hypothesis (p < 0.05) that the
sampling distribution and the limiting normal distribution are equal. White
cells indicate the sampling distribution looks normal. Black cells indicate
the sampling distribution does not look normal.
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Figure 3. Comparison of frequency to reject normal sampling distribution.
Heatmap cells correspond to number of sampled individuals, n, and num-
ber of loci, L. Panels are labeled with their respective mutational kernels.
For 100 simulated replicates per cell, heatmap values correspond to the fre-
quency the Kolmogorov-Smirnov test rejects the null hypothesis (p < 0.05)
that the sampling distribution, A, and the limiting normal distribution are
equal minus the frequencies computed for a second distribution, B. White
cells indicate both distributions report equal frequencies. Black cells indi-
cate A looks normal more often than B. Red cells indicate A looks normal
less often than B.
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Figure 4. Central moments. From left to right, the panels correspond to
the central moments, h2, h3, and h4, respectively, for the sampling distri-
butions evolving under various mutational kernels. Data were simulated
for 1024 sampled individuals and 2000 replicates for eight values of L, the
number of loci. Colors distinguish the mutational kernel and relevant ker-
nel parameters (if any). Solid lines correspond to moment values computed
from the simulated data. Dashed lines correspond to the expected moment
values.
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Figure 5. Frequency to reject unimodal sampling distribution. Solid lines
report the frequency the null hypothesis of the dip-test, that the sampling
distribution was unimodal, was rejected for p < 0.05 when evolving under
various mutational kernels. Data were simulated for 1024 sampled individ-
uals and 2000 replicates for eight values of L, the number of loci. Colors
distinguish the mutational kernel and relevant kernel parameters (if any).
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Figure 6. N. crassa gene expression trait distributions. All panels share a
common y-axis, the log of the Shapiro-Wilk test’s p-value, where values less
than log(0.05) are below the dashed horizontal line, indicating the rejection
of normality. A) The log of the dip test’s p-value, where values less than
log(0.05) are to the left of the dashed vertical line, meaning the rejection
of unimodality. B) Skewness, where the dotted line shows the expected
skewness under normality, 0. C) Kurtosis, where the dotted line shows the
expected kurtosis under normality, 3.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 4, 2014. ; https://doi.org/10.1101/008540doi: bioRxiv preprint 

https://doi.org/10.1101/008540


26 JOSHUA G. SCHRAIBER AND MICHAEL J. LANDIS

0

5

10

15

20
co
un
t

NCU08194
(multimodal)

NCU09073
(leptokurtic, skewed)

NCU05196
(leptokurtic)

0

5

10

15

20

-4 -2 0 2 4
log(gene expr.)

co
un
t

NCU01838
(leptokurtic, skewed)

-4 -2 0 2 4
log(gene expr.)

NCU08193
(multimodal)

-4 -2 0 2 4
log(gene expr.)

NCU09243
(multimodal)

Figure 7. Examples of non-normal gene expression trait distributions.
One hundred sixteen gene expression trait distributions (of 7079 genes)
were found to be significantly non-normal under the Shapiro-Wilk test with
a false discovery rate of α = 0.1. Of the 116 genes, six genes (NCU08194,
NCU09073, NCU05196, NCU01838, NCU08193, NCU09243) that strongly
rejected normality were chosen to represent the variety of skewed, leptokur-
tic, and multimodal distributions sampled for many genes.
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