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Abstract

The incorrect alignments are a severe problem in variant calling, and remain as a challenge
computational issue in Bioinformatics field. Although there have been some methods utilizing the
re-alignment approach to tackle the misalignments, a standalone re-alignment tool for long
sequencing reads is lacking. Hence, we present a standalone tool to correct the misalignments,
called ProbAlign. It can be integrated into the pipelines of not only variant calling but also other
genomic applications. We demonstrate the use of re-alignment in two diverse and important
genomics fields: variant calling and viral quasispecies reconstruction. First, variant calling results
in the Pacific Biosciences SMRT re-sequencing data of NA12878 show that false positives can be
reduced by 43.5%, and true positives can be increased by 24.8% averagely, after re-alignment.
Second, results in reconstructing a 5-virus-mix show that the viral population can be completely
unraveled, and also the estimation of quasispecies frequencies has been improved, after re-
alignment. ProbAlign is freely available in the PyroTools toolkit

(https://github.com /homopolymer/PyroTools).
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Introduction

The advent of high throughput sequencing (HTS) technologies has revolutionized the discovery of
genetic changes in genome sequence. Various sizes of samples, such as a set of targeted regions in
a genome, or the entire genome of a sample, even the genomes of a pool of samples, can be
completely sequenced in days or weeks, producing huge data of gigabase-size. In a genome,
genetic variants, e.g. single nucleotide polymorphisms (SNPs), multiple nucleotide polymorphisms
(MNPs), short insertions and deletions (InDels), can be pinpointed at the base pair (bp) resolution
by using the re-sequencing or targeted sequencing technique. Leveraging on the multiplex
indexing technique, a population of tens of samples can be sequenced by using the same
sequencing runs and completed in feasible time with affordable cost. Population sequencing data
gears up the genotyping of genetic variants in a population, and expedites the estimation of the
distribution of genetic variants in the population, which eventually facilitating the dissection of
population structure [1], the sketching of fitness landscape [2], the reconstruction of the clonal

evolution [3], etc.

There are four kinds of sequencers that dominate the market, including [llumina [4], Roche/454
[5], Ion Torrent [6], and Pacific Biosciences SMRT [7]. While all of these sequencers can produce a
huge amount of sequencing reads, they are different at various aspects, e.g. reagent cost per base,
data throughput, read length, error patterns, etc. The [llumina sequencer is commonly used in the
large-scale genomics projects that require the sequencing of a large population or high sequencing
depth, because it achieves the lowest per base sequencing cost and the largest data throughput.
The length of [llumina sequencing reads is within the range from 100bp to 300bp. Although this
interval covers most of microsatellite repeats and short interspersed nuclear elements (SINEs),
short reads limit the ability of resolving the complex regions in genome, e.g. long interspersed
nuclear elements (LINEs), of which the size is from 500bp to 8000bp [8]. Roche/454 and lon
Torrent sequencers can produce the mediate length of sequencing reads ranging from 300bp to
800bp. Pacific Biosciences SMRT sequencer, which using third-generation single molecule
sequencing technology, can produce long reads up to 10kilo base pairs. Mediate and long reads
are less sensitive to the repetitive regions, and then achieve the better mappability than short
reads, so as to move forward the reconstruction of complex regions in genome [9]. Besides the

discrepancy at read length, the error patterns of these sequencers are different. The Illumina
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sequencer is prone to substitute the underlying bases with erroneous bases [10]. In Roche/454
and lon Torrent data, the insertions and deletions are prevalent because they are imprecise at the
determination of the length of homopolymer runs [11]. The insertions and deletions are also the
dominant error patterns in the Pacific Biosciences SMRT data [12]. All of these four kinds of

sequencers play the important roles in the genomic research fields.

Variant calling is the first step of HTS applications, and proceeds in the following stages. First,
sequencing reads are mapped onto the reference genome, and piled up on the genome. Second,
the differences are detected by comparing sequencing reads with the genome. Among the called
variants, the false discoveries are resulted from three confounding factors: sequencing errors,
alignment biases, and mapping artifacts. (i) Base quality score and error modeling are employed
in both Likelihood- and Bayesian-based variant calling methods in order to recognize the truth
genetic signals and eliminate sequencing errors [13-15]. (ii) The gaps in the short tandem
repeats, e.g. homopolymer runs and dinucleotide repeats, are usually placed at wrong positions,
then resulting in the incorrect alignments and also the false positive variants. It is a challenge to
compute the correct alignments in these low complexity regions, because (a) sequencing reads
vary in a large range at determining the number of repetitive elements, and (b) there is no any
proper scoring function, which reflecting error patterns of a sequencer. Alignment biases are
pervasive in the mediate and long sequencing reads. (iii) The repetitive elements in genome, e.g.
satellites, rDNAs, SINEs, LINEs, Alu repeats, segmental duplications, etc., place a problem at
searching for the original positions of sequencing reads, especially for short reads. A shortread is
often randomly assigned to a position by a mapping algorithm, if it could be mapped to multiple
regions of the similar repetitive structure. The differences between the repetitive regions could
be reported as genetic variants, eventually increasing the false discovery rate. Moreover, the
alignment biases could place the truth variants at random positions, which decreasing the number
of the variant supporting reads in the pileup, and then result in the false negatives. The mapping

artifacts that place reads in wrong positions are also a resource of the false negatives.

Haplotype-based variant calling has been reported as an efficient variant calling method [16-19].
The computation steps include: (1) generating the candidate haplotypes, (2) computing the new

alignments between the sequencing reads and candidate haplotypes, which is also called re-
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alignment, and (3) inferring the underlying genotype. The improvement of haplotype-based
methods in variant calling relies on the following advantages. (i) First, haplotype-based methods
employ the graph technique, e.g. de Bruijn graph [20] or partial order graph [21], to reconstruct
the consensus sequences (haplotypes) within a region of interest (ROI). The strength of the graph
technique is to remove the spurious signals by using the redundancy in the pileup of sequencing
reads. The underlying genotype is a combination of the consensus sequences, which can explain
the largest portion of the aligned reads in the ROI region. As a consequence of the mapping
artifacts, the number of unique reads in a ROI region could be more than the expected number of
haplotypes, e.g. two haplotypes for a diploid sample. The genotype inference places the
constraints on the number of haplotypes, and then eliminates the mapping artifacts. (ii) Second,
haplotype-based methods approximate the truth alignments of the sequencing reads by
enumerating over all possible haplotypes. The misalignments can be corrected if sequencing

reads were aligned to their original haplotypes.

However, the re-alignment is commonly implemented as an internal workhorse inside the
haplotype-based variant calling methods, and it is not able to access to the re-alignment results
from the exterior. GATK provides a tool, which called IndelRealigner, to adjust the alignments
around the insertions/deletions, but it is restricted to process the [llumina sequencing data [14].
SRMA is another re-alignment tool, but its speed is a critical issue and cannot work on Pacific
Biosciences SMRT data [22]. To our knowledge, there is no any standalone re-alignment tool that
working for long read sequencers under the feasible running time in the Bioinformatics field. The
high quality alignments can also benefit other genomic applications, e.g. the detection of short
tandem-repeat variation [23] and viral quasispecies reconstruction [24]. There are two
difficulties in the implementation of the re-alignment. First, the re-alignment is a time-consumed
computation, because it requires the computation of the pairwise alignments between sequencing
reads and all possible haplotypes. Second, there is no any proper scoring function that can
correctly score the alignments for sequencing reads, of which sequencing errors vary in a diverse

range.

In this paper, we presented a standalone re-alignment tool, called ProbAlign, for long read

sequencing technologies. ProbAlign addressed the above two difficulties. First, ProbAlign
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employs the graph technique to represent the consensus sequences in a ROI region, which
resembles the partial order graph or variant graph. ProbAlign computes the new alignment of a
sequencing read by aligning the read to the graph. The time complexity is O0(n|V|), n is read
length, || is the number of vertices in the graph. As a comparison, the time complexity of the re-
alignment in the haplotype-based methods is 0 (Amn), 1 is the number of haplotypes, m is
haplotype length, and n is read length. Hence, the time complexity is reduced by an order of
magnitude. Second, ProbAlign employs the conditional random field (CRF) technique to model
error patterns in the sequencing reads. The parameters of the CRF model can be estimated from
the BAM file at hand. This enables the proper scoring of the correct alignments for sequencing

reads, which are contaminated by various sequencing errors.

Results

Overview of ProbAlign

The rationale of the re-alignment method is stated in the following. Assume that a bucket of reads
have been aligned into a multiple sequence alignment (MSA), of which a row is an aligned read
and a column is an aligned position. The computational task is to align a new read onto the MSA.
The strategy, which implemented in ProbAlign, is to pick up a sequence in the MSA, and then align
the new read to the picked sequence. The sequence is picked such that sequencing errors in the

sequence are most similar to those in the new read.

As shown in Fig. 1, ProbAlign defines low complexity regions, e.g. homopolymer runs and
dinucleotide repeats, and putative multiple nucleotide polymorphism (MNP) loci as the regions of
interest (ROIs). (i) First, a DAG is established from the raw mapping results in a ROL. In the DAG,

A vertex represents one allele in an aligned position. An edge links two vertices that are occurred
in an aligned read. (ii) Second, the vertices in the DAG are sorted in the topological order, and a
depth-first search (DFS) algorithm is deployed to find the maximally weighted path(s) in the graph,
which are inferred as the consensus sequence(s) in the ROIL. (iii) Next, a new DAG is constructed
from the reference sequence and the consensus sequence(s). This DAG is named as the consensus
graph, because every path is a consensus sequence. (iv) Then, ProbAlign iterates through the
sequencing reads in the ROI, and the alignments of sequencing reads against the consensus graph

are computed by using a Viterbi algorithm. Once the new alignment of a sequencing read is better
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than the original alignment, e.g. the number of mismatches declines, and then the new alighment
replaces the old alignment in the given BAM file. Also, the consensus graph is updated by adding
new vertices and/or edges, which representing the variants in the new alignment. The reason of
the graph update is that the number of short repetitive elements varies in a diverse range in long
sequencing reads, the alignment quality can be improved if the graph has the local structures
describing the large deletions/insertions in low complexity regions. (v) Finally, the CIGAR strings
and MD tags of the re-alignments are stored in the new BAM file. Two examples of the re-
alignment are shown in Fig. 2. More re-alignment examples could be found in the supplemental

materials.

Application I: SNP calling of NA12878

The alignment files of Pacific Biosciences SMRT re-sequencing data (unpublished) of NA12878
that sequenced by Mount Sinai School of Medicine are publicly available in the 1000 Genomes
Project FTP site. The alignment files of Roche/454 re-sequencing data of NA12878 was also
downloaded from the 1000 Genomes Project FTP site. The lon Torrent re-sequencing reads of
NA12878 were downloaded from the National Center for Biotechnology Informatics (NCBI) Short
Read Archive (SRA) (Project Accession Number: PRJNA162355). The Ion Torrent sequencing
reads were mapped to the human genome (version: hg19) by using the Burrows-Wheeler Aligner

(BWA) MEM algorithm [25] with the default option settings.

The alignments in the BAM files of Roche/454, lon Torrent, and Pacific Biosciences SMRT reads
were adjusted by using ProbAlign in the default settings. The SNP calling software Samtools [13]
was deployed to call SNPs in both the original and adjusted BAM files. The VCF files of SNP calling
results were compared with the National Institute of Standards and Technology (NIST) GIAB high-
confidence benchmark calls (v2.18), which constructed by the Genome in a Bottle (GIAB)
consortium by integrating the variant calls from five sequencers, including Illumina, Roche /454,
Ion Torrent, SOLiD and Complete Genomics [26]. The evaluation measures, e.g. the number of true
positives, the number of false positives, and the false discovery rate (FDR), were calculated by

using the program VCFComparator in USeq toolkit.
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Taking Pacific Biosciences SMRT data for example, the number of sequencing reads that mapped
to chromosome 21 is 661553, of which the average read length is 1805bp. ProbAlign found 70581
ROIs in chromosome 21, and re-aligned 244986 (37.0%) sequencing reads. Both the original BAM
file and re-aligned BAM file were input to Samtools to call SNPs by using the same options. When
the cutting threshold of variant posterior probability was set as 0.5, which implying that variant
quality score should be greater than 3.02, Samtools called 41348 true positives and 1815 false
positives in the re-aligned BAM file. As a comparison, The Samtools caller detected 41322 true
positives and 3214 false positives in the original BAM file. As a result of re-alignment, the true
positives were increased by an amount of 26 (0.1%), and the number of true negatives was
decreased by 1399 (43.5%). We plotted the increment of true positives in Fig. 3a, by varying the
cutting threshold of variant quality score. It is noted that the re-alignment improved the
probability of truth SNPs being detected, especially increasing the number of high quality truth
SNPs. As shown in Fig. 3a, the average relative increment percentage reaches 24.8%. We also
plotted the decrement of false positives along with the variant quality score in Fig. 2b. It revealed
that the re-alignment efficiently suppress the false positive detection. The re-alignment method
helps decrease a considerable number of false positives in the low quality SNPs, e.g. over 40% of
false positives have been eliminated at the variant quality score threshold of 10. Although the
figure of the relative decrement percentage shows that the re-alignment method harasses the
detection of false positives in the high quality calls, the absolute number is below 5 and could be
overlooked. Generally speaking, the re-alignment decreases the false discovery rate (Fig. 3c), as
well as increases the capability at detecting high quality variants. In both Roche/454 and lon
Torrent data, the false discovery rates were also reduced. Those results can be found in the

supplemental materials.

Application II: HIV-1 quasispecies reconstruction

We also evaluated the performance of ProbAlign in viral population analysis. We used a public
HIV-1 benchmark data including five HIV-1 strains, which are HIV-1g9,6, HIV-1nxg2, HIV-1jr-csr, HIV-
1n143, and HIV-1yy2 [27]. The proportion of these five strains in the mix was measured by the data
provider who using the single-genome amplification (SGA) method. The SGA measures are used as
the golden standard to evaluate the goodness of HIV-1 quasispecies reconstruction. We used the

BWA MEM algorithm to map the Pacific Biosciences SMRT sequencing data onto the genome
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sequence of HIVuxg2. The Pacific Biosciences SMRT sequencing data harbors unexpected high rate
of the indels, such that it is difficult to reconstruct the quasispeices in the mix. Hence, we deployed
ProbAlign to adjust the alignments in the region of the gene gp41 that starting from 7758 to 8795
in the HIVuxg2 genome. We utilized the haplotype inference program PredictHaplo [28] to
reconstruct the quasispecies in this region. As shown in Table 1, PredictHaplo reconstructed 4
quasispecies, if the alignments were not adjusted. The strain HIVuxg2 is missed in the
reconstructed population. After using ProbAlign to adjust the alignments, PredictHaplo
successfully reconstructed all sequences of those five HIV-1 strains. Also, the re-alignment
improved the estimation of viral quasispecies frequencies. After re-alignment, the root-mean-
square error (RMSE) of frequency estimation is reduced from 0.101 to 0.058. Therefore, besides

the SNP calling, the re-alignment also helps resolving the structure of viral population.

Discussions

Where to re-alignment?

What difficulties remain in variant calling?

How to set the scoring function?

Computational time

Conclusions

Methods

Conditional random field

Conditional random field (CRF) is a machine learning method for the processing and manipulation
of sequential data, e.g. next-generation sequencing reads. CRF, like hidden Markov model (HMM),
can compute the alignment of two sequences by using the Viterbi algorithm [29]. And also, CRF
provides more flexible utilities at modeling sequence context in the alignment. Three kinds of

distinct feature functions are employed in the proposed CRF model. The feature functions are
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defined as f(x, y, a,-,]-), of which a, ; is the alignment of two subsequences x[y,;; and y[q.;. Ifa
feature appears in the alignment, then f(x, y, ai’j) = 1. Otherwise, f(x, y, al-J-) = 0. (1) First, one
kind of these feature functions is to describe the hidden state transition between two contiguous
positions, e.g. previous state is match and current state is insert. (2) The second type of feature
functions is the nucleotide emission in the alignment, e.g. x; = A emits y; = A at the hidden state
match. (3) The rest of feature functions are designed to formulate the homopolymer
insertions/deletions in the alignment, e.g. the largest length is 5bp and the difference is 1bp in the

alignment of X;_,.;) = AAAAtoy; ] = AAAAA at the hidden state insert.

j=5:j
There are 76 feature functions in the CRF model in total, F = {f |1 < k < 76}. A weightw; is
assigned to a feature function f, to reflect the importance of the feature. Then, the scoring of an

alignment a is
S@=)  wifi(xya) - logz(x,y)
L],

The partition function z(x,y) = X, exp(Zi’j,k wi fi (X, ai,j)) is computed by using the forward
algorithm. The value of feature function weights w;, are estimated by using the iterative learning

method and quasi-Newton optimum searching technique [30].

Graph based re-alignment

The graph based multiple sequence alignment (MSA) was early proposed to resolve the gap
representation problem of the consensus/profile based MSA that usually charges the gap
incorrectly [21]. Recently, the graph based MSA technique has been re-invented to reconstruct the
consensus sequence(s) from high throughput sequencing data, because the graph provides the
structure to represent the linkage information between nearby variants, and is capable to
eliminate random errors in the noise-contaminated sequencing data. This idea was employed in
recent developed Bioinformatics tools, which are used to detect variants [18] or assemble long
reads of high error rate [31]. The graph technique was also employed to adjust the alignments
around the insertions/deletions, by leveraging on the consensus structure of the pileup of aligned
reads [22]. However, the scoring function is a critical issue that the trivial scoring function cannot

resolve sequencing errors in complex regions, e.g. the tandem repetitive regions. Therefore, a
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contribution of this paper is to propose a machine learning method to estimate the scoring
function from high-throughput sequencing data. Another contribution is to employ the graph-
based MSA to resolve the misalignments around tandem repeats, e.g. mono- and di-nucleotide

repeats.

The re-alignment method is stated in the following steps. (1) The re-alignhment method starts
from the raw alignments that are generated by a mapping program. A graph is constructed from
the raw alignments, of which the vertices are nucleotides in the alighments. Two vertices are
linked by a directed edge if these two adjoining nucleotides occur in an alignment. The spurious
edges (e.g. the edge occurs once in data) are pruned away. If the raw alignments were consistent,
the re-alignment method would halt. Otherwise, the re-alignment method will proceed. The raw
alignments are inconsistent if there are at least two paths in the graph, of which the path labels are
the same. (2) Once the raw alignments are inconsistent, the top ranked k paths are chosen as the
possible underlying consensus sequences, and the rest of paths are removed from the graph,
excluding the reference. Then, all vertices in the graph are sorted by topological ordering. (3) A
read is aligned against the graph by using the Viterbi algorithm. After the computation, a path in
the graph is chosen as the aligned template, and the new CIGAR flag of the alighment between the
read and template is reported. And then, the graph is updated by the computed alignment. This

step is repeated until that all reads are aligned to the graph.

Datasets and other programs
Pacific Biosciences SMRT sequencing data of NA12878
ftp://ftp.1000genomes.ebi.ac.uk/voll /ftp/technical /working /20131209 nal12878 pacbio/Schadt

/alignment/

Roche/454 sequencing data of NA12878
http://ftp.1000genomes.ebi.ac.uk/voll /ftp /technical /pilot2_high cov. GRCh37 bams/data/NA12

878/alignment/

GIAB high-confident benchmark calls of NA12878
ftp:/ /ftp-trace.ncbi.nih.gov/giab /ftp/data/NA12878/variant_calls/
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5-virus-mix

https://github.com/armintoepfer/5-virus-mix

USeq toolkit

http://sourceforge.net/projects/useq/

PredictHaplo
http://bmda.cs.unibas.ch/HivHaploTyper/

Acknowledges

Tables and figure legends

Table 1. Reconstruction of HIV gene gp41 in 5-virus-mix

Estimated quasispecies frequencies%

HIV-1 strains 89.6 HXB2 JR-CSF NL43 YU2
Golden 12.3 9.2 27.9 38.4 12.2
standard

Before re- 14.7 na 23.6 57.0 4.7
alignment

After re- 14.6 8.7 23.2 48.1 5.4
alignment

Figure 1. Workflow of ProbAlign. ProbAlign adjusts the misalignments around homopolymer
runs, dinucleotide repeats, and multiple nucleotide polymorphisms. (a) A region of interest
includes a homopolymer run of length 13bp, and also harbors a number of the incorrect
alignments. (b) An alignment graph is constructed from the pileup. Red vertices in the backbone
are the bases in reference genome. Blue vertices are the mismatches. Green vertices are the

inserted bases. Dashed edges represent insertions and deletions. Weight of an edge e = (u, v) is

occurrence(e)
occurrence(e

computed by the formula, w(e) =

5 ot (c) A consensus graph is constructed
e'eInEdge(u)

from the alignment graph. (d) It is an alignment of a read sequence (colored blue) against the

consensus graph (colored red).
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Figure 2. Re-alignment examples of long sequencing reads. The tracks from top to bottom are the
original BAM file, the re-aligned BAM file, and human genome. (a) An example of re-alignment
increasing true positive detection. The truth SNP at chr21:10710102 is rescured by replacing the
misalignments. (b) An example of re-alignment reducing false positive detection. The false SNP at

chr21:9834810 is reduced by replacing the misalignments.

Figure 3. The increment of true positives, the decrement of false positives, and FDR curve. (a) The
increment of true positives, red bars are the absolute changes, and green bars are the relative
changes. (b) The decrement of false positives, red bars are the absolute changes, and green bars

are the relative changes. (c) FDR curve.
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