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Summary: MDTraj is a modern, lightweight and efficient software package for analyzing molecular dynam-
ics simulations. MDTraj reads trajectory data from a wide variety of commonly used formats. It provides
a large number of trajectory analysis capabilities including RMSD, DSSP secondary structure assignment
and the extraction of common order parameters. The package has a strong focus on interoperability with the
wider scientific Python ecosystem, bridging the gap between molecular dynamics data and the rapidly-growing
collection of industry-standard statistical analysis and visualization tools in Python.

Availability: Package downloads, detailed examples and full documentation are available at
http://mdtraj.org. The source code is distributed under the GNU Lesser General Public License at

https://github.com/simtk/mdtraj.

I. INTRODUCTION

Molecular dynamics (MD) simulations yield a great
deal of information about the structure, dynamics and
function of biological macromolecules by modeling the
physical interactions between their atomic constituents.
Modern MD simulations, often using distributed comput-
ing, graphics processing unit (GPU) acceleration, or spe-
cialized hardware can generate large datasets containing
hundreds of gigabytes or more of trajectory data track-
ing the positions of a system’s atoms over time. In or-
der to use these vast and information-rich datasets to
understand biomolecular systems and generate scientific
insight, further computation, analysis and visualization
is required?.

Within the last decade, the Python language has
become a major hub for scientific computing, with a
wealth of high-quality open source packages, including
those for interactive computing?, machine learning® and
visualization®. The environment is ideal for both rapid
development and high performance, as computational
kernels can be implemented in C and FORTRAN but
available within a user-friendly environment.

In the MD community, the benefits of integration with
such industry standard tools has not yet been fully re-
alized because of a tradition of custom file formats and
command-line analysis®%. In order to bridge this gap, we
have developed MDTraj, a modern, open and lightweight
Python library for analysis and manipulation of MD tra-
jectories with the following goals:

1. To serve as a bridge between MD data and the mod-
ern statistical analysis and scientific visualization
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software ecosystem in Python.

2. To support a wide set of MD data formats and com-
putations.

3. To run extremely rapidly on modern hardware with
efficient memory utilization, enabling the analysis
of large datasets.

Il. CAPABILITIES AND IMPLEMENTATION

Wide range of data formats: MDTraj can read and
write from a wide range of data formats in use within
the MD community, including RCSB pdb, GROMACS
xtc and trr, CHARMM / NAMD / OpenMM dcd, TIN-
KER arc, AMBER NetCDF, binpos, mdcrd and prmtop
files. This wide support enables consistent interfaces and
reproducible analyses regardless of users’ preferred MD
simulation packages.

Easy featurization: Many data-analysis methods for
MD involve either (a) extracting a vector of order param-
eters of each simulation snapshot or (b) defining a dis-
tance metric between snapshots. This category includes
dimensionality reduction techniques such as principal
components analysis (PCA) for constructing free-energy
landscapes, as well probabilistic models like Markov state
models.

MDTraj makes it very easy to rapidly extract these
representations. It includes an extremely fast minimal
root mean squared deviation (RMSD) engine capable
of operating near the machine floating point limit de-
scribed by”. Functions for DSSP secondary-structure
assignment®, solvent accessible surface area determina-
tion and the extraction of internal degrees of freedom are
similarly optimized in C with extensive use of vectorized
intrinsics.
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import mdtraj as md

t = md.load ('trajectory .pdb')

from itertools import combinations

pairs = combinations(range(t.n_atoms), 2)
X = md. compute_distances(t, pairs)

import matplotlib.pyplot as plt

from sklearn.decomposition import PCA
pca = PCA(n_components=2)
Y = pca.fit_transform (X)
0], Y[:,

plt . hexbin (Y][:, 1], bins='log"')
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Figurel: Demonstration of principal components
analysis (PCA) with MDTraj, scikit-learn and
matplotlib.

Figure2: MDTraj’s WebGL-based protein and
trajectory viewer.

Interactive wvisualization: These fast computational
routines make MDTraj ideal for interactive calculation
and exploratory analysis, using the extensive machine
learning, statistics and visualization packages in the sci-
entific python community. Furthermore, MDTraj in-
cludes an interactive WebGL 3D protein viewer in the
IPython notebook based on iview?, shown in Fig. 2.

The capabilities of MDTraj serve as a bridge, connect-
ing MD data with statistics and graphics libraries devel-
oped for general data science audiences. The key advan-
tage of this design, for users, is access to a much wider
range of state-of-the-art analysis capabilities character-
ized by large feature sets, extensive documentation and
active user communities.

A demonstration of this integrative workflow is

shown in Fig. 1, which combines MDTraj with the
scikit-learn package for PCA and matplotlib for vi-
sualization, to determine high-variance collective motions
in a protein system. While PCA is a widely used method
that is included in a variety of MD analysis packages,
the advantage of integrating with the wider data science
community is immediately evident when moving on to
more complex statistical analysis. For example, a va-
riety of sparse and kernelized PCA-like methods have
been recently introduced in the machine learning com-
munity, and may be quite powerful for analyzing more
complex protein systems. Because of its open and inter-
operable design, these cutting-edge statistical tools are
readily available to MD researchers with MDTraj, with-
out duplication of developer efforts and independent of
the particular MD software used to perform the simula-
tions.

IIl. TESTING AND DEVELOPMENT

The development and engineering of MDTraj incorpo-
rates modern best practices for scientific computing!©,
and contains over 900 tests for individual components.
These tests are continually run on each incremental con-
tribution on both Windows and Linux platforms, us-
ing multiple versions of Python and the required li-
braries. The project is licensed under the GNU Lesser
General Public License, and its design and development
takes place openly on Github at https://github.com/
simtk/mdtraj. More information is available at http:
//mdtraj.org.
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