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Abstract

Cells respond to their environment by modulating protein levels through mRNA transcription and post-
transcriptional control. Modest correlations between global steady-state mRNA and protein measure-
ments have been interpreted as evidence that transcript levels determine roughly 40% of the variation
in protein levels, indicating dominant post-transcriptional effects. However, the techniques underlying
these conclusions, such as correlation and regression, yield biased results when data are noisy, missing
systematically, and collinear—properties of mRNA and protein measurements—which motivated us to
revisit this subject. Noise-robust analyses of 25 studies of budding yeast reveal that mRNA levels ex-
plain roughly 80% of the variation in steady-state protein levels. Post-transcriptional regulation amplifies
rather than competes with the transcriptional signal. Measurements are highly reproducible within but
not between studies, and are distorted in part by between-study differences in gene expression. These
results substantially revise current models of protein-level regulation and introduce multiple noise-aware
approaches essential for proper analysis of many biological phenomena.

Author Summary

Cells regulate protein levels in multiple ways. The weak correlations found between steady-state levels
of mRNA transcripts and proteins have led to the widely held conclusion that mRNA transcription
contributes less than half of the variation in protein levels. Alternatively, weak correlations may reflect
biases arising from measurement noise. By using noise-aware approaches to analyze many independent
studies of budding yeast, we show that mRNA levels explain roughly 80% of protein-level variation,
far higher than previously appreciated. The resulting integrated quantitative data suggests substantial
revisions to many common assumptions, such as that protein levels are proportional to mRNA levels. To
combat biases, both gold-standard measurements and noise-aware analyses are needed.

Introduction

Cellular protein levels reflect the balance of transcript levels, protein production by translation initia-
tion and completion, and protein removal by degradation, secretion and dilution [1,2](Figure 1A). The
standard quantitative model for protein-level regulation is

oP;
ot

where P; is the cellular protein level (molecules per cell) of gene i, M; is the mRNA level, and 7;
and §; are the mRNA translation and net protein removal rates, respectively. At steady-state, protein
levels will be proportional to mRNA levels with proportionality constants of 7;/d;, such that if rates of
translation and removal did not vary by gene, steady-state mRNA and protein levels would correlate
perfectly [1]. Consequently, the mRNA-protein correlation observed in global measurements of mRNA
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and protein levels has been intensely studied, and deviations from perfect correlation used to quantify
the contribution of post-transcriptional processes to cellular protein levels [1-6].

The consensus emerging from these studies holds that, across organisms, transcriptional regulation
explains 40-50% of the variation in steady-state protein levels, leaving half or more to be explained by
posttranscriptional regulatory processes [2,4,6-9]. Higher correlations are observed, generally for subsets
of less than half the genome that are biased toward high-abundance mRNA and protein expression [1,6,10].
Low observed mRNA-protein correlations have motivated the search for alternate forms of regulation
capable of accounting for the majority of protein-level variability [2,6,8]. Recent studies have indeed
uncovered wide between-gene variation in posttranscriptional mechanisms such as translation rates [11]
and protein degradation rates [2].

However, as frequently noted [1,4,6,12,13], noise in measurements can cause many of the observa-
tions attributed to post-transcriptional regulation. Here, noise encompasses variability due to cell-to-cell
variation, growth conditions, sample preparation and other effects due to experimental design [14], and
measurement biases and error [13]. Uncorrelated noise between mRNA and protein measurements will
reduce the observed mRNA—protein correlation relative to the true value, while inflating the variation
in measurements of translational efficiency and other posttranscriptional processes [15,16]. Empirically,
disentangling noise effects from biological effects is critical for an accurate understanding of how cells
regulate protein levels.

Rapid progress has been made in global measurement of transcript and protein levels by multiple
methods, as underscored by recent high-coverage drafts of the human proteome [17,18]. These methods
were largely pioneered in budding yeast, and have been replicated many times by different groups. Mo-
tivated by the ongoing and intense interest in the contribution of mRNA levels to protein levels, we were
prompted to revisit the subject in this well-studied model eukaryote.

Results

We collected 38 measurements of mRNA levels and 20 measurements of protein levels from 14 and 11
separate studies respectively, each of haploid S. cerevisiae growing exponentially in shaken liquid rich
medium with 2% glucose between 22°C and 30°C (Table S1). These data cover varying amounts of the
genome and display a wide range of correlations between studies (Figure 1B, Pearson correlations on
log-transformed values with zeros and missing values omitted). Although correlations of replicates within
studies are quite high [6], with median r = 0.97 for mRNA and 0.93 for protein levels, between-study
correlations are far more modest, 7 = 0.62 for mRNA measurements and 0.57 for protein measurements.
That is, data from a typical mRNA study explains 39% of the variance in another study (r? = 0.39) and
a typical protein study’s results explain only 32% in another study’s variance, consistent with previous
studies reporting wide variation between studies [9]. Strong outliers indicate high reproducibility for a
two pairs of studies (Figure 1B), but each such outlier is a correlation between separate studies done by
the same research group, suggesting the presence of additional variability sources between groups. The
high within-study reproducibility and low between-study reproducibility indicates the presence of large
systematic errors between studies.

Correlations are modest even between studies using similar methods (e.g., r = 0.81 between two RNA-
Seq datasets using Illumina instruments [11,19]). Comparing mRNA studies performed using similar or
different methods on a shared set of 4,595 genes revealed little difference in reproducibility whether
similar or different methods were used (Figure 1C, no t-test P < 0.05 for differences in correlation
when comparing studies employing shared methods versus independent methods after false discovery
rate correction).

Between-study correlations quantify the studies’ mean ratio of true variance to total variance, termed
the reliability [20,21] (see Methods). In turn, setting aside sampling error, the maximum observable
correlation between any two datasets is equal to the geometric mean of their reliabilities. Because virtually
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all reported global mRNA—protein correlations involve mRNA and protein levels measured in separate
studies, between-study reliabilities are the relevant quantity. The modest reliability values—setting aside
those of the same group reporting two studies, which we exclude from this analysis—sharply limit the
maximum observable mRNA-protein correlations. This limit has startling consequences: if steady-state
mRNA and protein levels actually correlated perfectly (true » = 1.0), then given the median observed
between-study correlations in Figure 1B, we would expect to observe mRNA-protein correlations of only
r =+/0.57 x 0.62 = 0.60.

The data reveal a wide range of modest mRNA-protein correlations with a median of r = 0.54
(Figure 1C) quantified either by the Pearson correlation between log-transformed measurements or the
nonparametric Spearman rank correlation (Figure S1; both measures produce similar results and we
employ the former throughout). Coverage of the 5,887 verified protein-coding genes in yeast [22] also
varies widely. The largest pair of datasets covers 4,367 genes and shows an mRNA-protein correlation
of r = 0.618 (r? = 0.38, 38% of protein-level variance explained by mRNA levels), close to consensus
values [6].

Reduction of correlations by noise can be corrected using information from repeated measurements
[16,21]. Quantitative corrections for correlation attenuation were first introduced more than a century
ago by Spearman [16], are widely used in the social sciences [21,23,24], and have found recent applications
in biology [20,25-27]. Given two measurements each of variables X and Y, each with uncorrelated errors,

the true correlation can be estimated using only correlations between the four measurements Xy, Xo, Y7,
Ys (see SI Materials and Methods):

~true \Aer1Y1 XY, TX1Y2T XYy
Xy = (2)
VTX1X:TY1Ys
The correction reflects a simple intuition: the denominator quantifies the reliabilities of the measure-
ments, which determine the maximum observable correlation, and the numerator quantifies the observed
correlation using a geometric mean of four estimates and is divided by this maximum value to yield an
estimate for the true value. In simulated data, this noise-corrected estimate accurately ascertains true
correlations in the presence of noise far exceeding that apparent in most mRNA and protein data (Fig-
ure S2). The estimate is not itself a correlation coefficient, and may take values outside (—1,1) due to
sampling error [21] (cf. Figure 52B,C).
Using Spearman’s correction, we estimated mRNA-protein correlations for pairs of studies, obtaining
a median corrected correlation of 0.92. Variability due to sampling error was large for small datasets
as expected (cf. Figure S2, and decreased with as size increased, with estimates stabilizing for large
datasets (> 3000 genes) at a mean of » = 0.88 £+ 0.02 (Figure 1C). This value is echoed by consideration
of the largest dataset with two mRNA [19, 28] and two protein [29, 30] measurements each. For these
data, the four observed mRNA—protein correlations are r = 0.60, 0.63, 0.62 and 0.64, and the correlation

between mRNA and protein measurements are ry,pnya = 0.86 and rprotein = 0.57 respectively, yielding

. A 4
the corrected estimate ptrue — V0.60x0.63x0.62x0.64 _ ) g9
0.85%0.57

Extending these estimates to the full genome requires a more sophisticated approach. Measurements
vary widely in coverage, are quantified on a range of scales arising from use of a diverse array of techniques,
and cannot be assumed to have equal levels of noise. Even seemingly simple approaches to reduce noise,
such as averaging measurements normalized to the same scale, are unworkable: only 16 proteins are
detected by all 11 protein quantification studies, and these proteins are all highly abundant. Throwing
out smaller datasets discards potentially valuable measurements, and it is unclear when to stop, since all
datasets are incomplete to some degree.

To address these challenges, we adapted structural equation modeling to admit nonrandomly missing
data (see Methods). We introduce a structured covariance model (SCM) that explicitly accounts for
structured noise arising from replicates and use of shared measurement techniques, explicitly estimates
noise at multiple levels, and allows inferences of latent covariance relationships with imputation of missing
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data. The SCM (Fig. S3) recovers true correlations in simulated data when substantial data are missing
nonrandomly (Fig. S2), and satisfies posterior predictive checks using real data (Fig. S4). Fitting the
SCM yields estimates of mRNA and protein levels integrating all data (Figure 2A) and estimates a whole-
genome steady-state mRNA—protein correlation of r = 0.91 across all 5,854 genes for which an mRNA
transcript has been detected in at least one of the 38 mRNA quantitation experiments (FigurelC). We
emphasize that this method does not involve any attempt to maximize the mRNA-protein correlation or
any assumptions about the strength of the correlation.

To evaluate accuracy of the SCM estimates, we scaled them to molecules per haploid cell using high-
quality published values. Estimates of the number of mRNA molecules per cell range from 15,000 to
60,000 molecules per cell ( [31,32]). A more recent study argued that the earlier, lower estimate resulted
from misestimation of mRNA mass per cell and average mRNA length, with 36,000 molecules per cell as
a revised estimate also supported by independent measurements [33]. The higher estimate resulted from
rescaling the lower estimate to match expression of five genes measured by single-molecule fluorescence
in situ hybridization (FISH) [32]. We adopted the 36,169 mRNA molecules per cell measurement [33].
4.95pg total protein per haploid yeast cell [34]—and compared the results to small-scale gold-standard
independent measurements of absolute mRNA and protein levels not used in our analysis. (No gold-
standard genome-scale measurements of mRNA or protein levels exist for yeast or any other organism.)
SCM estimates of absolute mRNA levels matched FISH measurements well [32] (average difference of
1.2-fold between estimated and measured levels (Figure 2B, with one outlier estimate overshooting the
FISH value by 1.7-fold). Notably, these results demonstrate that the FISH estimates are compatible
with roughly 36,000 mRNA molecules per cell during exponential growth, and do not require the almost
two-fold higher number advanced in the FISH study. Absolute protein levels for a set of 21 proteins
differing up to 25,000-fold in cellular abundance have been measured using single-reaction monitoring
(SRM) with spiked-in stable-isotope standards [35]. SCM estimates correlate better with these absolute
levels (r = 0.93 between log-transformed values) than does any individual dataset, including the only
study [30] which reports levels for all 21 proteins (r = 0.90) (Figure 2C, average difference of 1.2-fold
between SRM measurement and SCM estimate). Relative protein levels estimated by integrating multiple
datasets using an alternative approach in which noise is not modeled [9] correlate with absolute levels
less well (r = 0.88). The structured covariance modeling approach thus estimates steady-state cellular
mRNA and protein levels with an unmatched combination of completeness, precision, and accuracy.

To evaluate imputation of missing data, we focused on the 813 genes with a detected mRNA transcript
but no protein detected in any of the 11 studies. Some of these genes encode well-studied proteins such
as the proteasomal regulator Rpndp and the cyclin Cln3p, indicating clear false negatives. Ribosome
profiling [11] provides an estimate of mRNA translation rate, a contributor to steady-state protein level.
At least one of two independent studies [11,36] detects ribosomes in the coding sequence of 542 of these
813 genes, suggesting active translation, and translation rate correlates with the imputed protein levels
(Figure 2D, » = 0.39 and 0.41 with the two studies). Because the missing protein data correspond to
genes at the detection limit of these ribosome profiling data (Figure 2D), we predict that many of the
remaining genes will be found to produce proteins at low levels in exponential phase.

The structured covariance model provides direct estimates of dataset-specific noise levelsl, which allow
us to inquire about the main sources of noise. Cell-to-cell variability and non-systematic instrument error
cannot be dominant contributors, because the very high replicate correlations within studies, the vast
majority of which are biological replicates, restrict the possible noise from these sources to less than 4%
of the variance in mRNA levels and 6% for protein levels on average. We therefore examined the data
for signs of systematic differences.

Because growth conditions perturb cell physiology, differences in cell culturing and harvesting may also
contribute to noise. The 25 experiments in our dataset report culturing yeast cells to an optical density
(OD, absorbance at 600nm) of 0.36-1.0 or, when cell density was reported, from 0.3-4 x 107 cells/mL.
Budding yeast cells begin to deplete glucose and enter the diauxic shift at similar densities. Depletion
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of nutrients induces a stereotypic response in which instantaneous growth rate slows and, concomitantly,
ribosomal protein gene expression is strongly repressed [37,38]. We reasoned that any differences arising
from such transcriptional responses would introduce unintended variation—i.e., noise. This, in turn,
would reduce the observed between-study mRNA-protein correlation.

To test for systematic gene regulatory responses as a cause of noise, we treated noise as if it were
an experimental perturbation, and analyzed how gene expression depended upon the noise level. We
calculated the slope in each gene’s transcript level as a function of decreasing dataset noise quantified by
the SCM-estimated signal-to-noise ratio. Many genes showed systematic increases and decreases in level
with increasing noise (Figure 3A). GO process analysis on the top 100 genes by slope yielded “translation”
and “cytoplasmic translation” as enriched terms (P < 107%), and ribosomal genes show systematically
higher mRNA values in less-noisy datasets (Wilcoxon signed-rank test P < 10716) (Figure 3B). Because
ribosomal proteins are highly abundant, we were concerned that some systematic regression toward the
mean or other abundance-related effect might influence these results. As a control, we examined mRNA
levels of genes encoding glycolytic enzymes, which have comparable abundance in yeast, but whose levels
are not strongly responsive to cellular stress [38]. Glycolytic genes, exemplified by CDC19, showed
no significant slope differences (P > 0.05). These results suggest systematic determinants of variability
between experiments, consistent with nutrient depletion, which occurs under conditions virtually identical
to those used to generate many of the analyzed samples.

Our results indicate that the true correlation between steady-state mRNA and protein levels in
budding yeast is far higher than previously recognized, which might be taken as evidence that post-
transcriptional regulation plays a minor role. Yet positive evidence exists for strong contributions from
posttranscriptional regulatory processes, most prominently substantial per-gene variation in translational
efficiency [11], prompting us to re-examine these results.

We focused first on the recent report that translation rates estimated by ribosome profiling explained
more than twice the protein-level variation than did measured mRNA levels [11]. We wondered whether
these findings might reflect noisier mRNA measurements than translation-rate measurements. Consistent
with this, correlations using SCM-integrated protein levels are substantially higher for both mRNA and
translation rate (Figure4A). Noise-corrected correlations indicate no significant difference in the predictive
power of either measure for protein levels—both correlate with roughly » = 0.9 (Figure 4A).

Major contributions to protein levels from mechanisms other than mRNA level become obvious upon
inspection of the data. The dynamic range of protein expression is much wider than that of mRNA
levels [30]; in the SCM estimates, consistent with previous studies, the range of mRNA expression between
genes at the 1st and the 99th percentile is 1,044-fold whereas the range of protein expression is 1,039,000-
fold, a thousand times broader. A surprising consequence of the relative dynamic ranges of mRNA and
protein expression, coupled with the strong correlation between mRNA and protein levels, is that absolute
protein levels cannot be proportional to absolute mRNA levels at the genome scale. Equation 1 predicts
that, given equal rates of translation and degradation, a gene with a thousand-fold higher mRNA level
should have a thousand-fold higher protein level, but the data show that this estimate is too low by three
orders of magnitude, indicating that rates of translation, degradation, or both must differ profoundly and
systematically between genes.

This simple analysis illustrates a fundamental asymmetry: although absence of posttranscriptional
regulatory processes would produce a perfect mRNA-protein correlation [1], a perfect mRNA-protein
correlation would not indicate a negligible posttranscriptional contribution to relative protein levels. In
fact, contrary to the assumptions of some influential analyses, it is possible for mRNA levels and (for
example) translation rates to each explain more than 50% of protein-level variation—all that is required
is that these contributions not be independent.

As an example of a non-independent contribution, posttranscriptional processes can shape the the
dynamic range of protein levels compared to mRNA levels. Such a contribution can be quantified by the
slope of the linear relationship between log-transformed protein and mRNA levels, which is the exponent
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relating the untransformed absolute levels.

Previous work has reported this slope to be roughly unity for smaller datasets using ordinary least
squares (OLS) linear regression [10], a result we confirmed (Figure 4B). However, OLS regression assumes
the independent variable is error-free [39,40] and thus it is improper to apply OLS regression to these
data when the objective is to determine the functional relationship between variables [40]. As with
correlations, error causes systematic underestimation of slopes, a phenomenon called regression dilution
bias [39]. Indeed, the million-fold protein-level variation, compared to the thousand-fold mRNA-level
variation, provides strong guidance that the actual slope is closer to 2 (protein levels are proportional to
squared mRNA levels) than 1. Use of a noise-tolerant technique, ranged major-axis (RMA) regression [40],
yielded substantially steeper slopes, with more-complete datasets producing larger slopes (Figure 4B).

Also as with correlations, non-randomly missing data can also cause underestimation of regression
slopes due to restriction of range. We looked for this effect by analyzing datasets constructed using
data from two of the largest studies [11,29], but only computing the RMA slope using genes with
proteins detected in each of the smaller studies. Smaller artificial datasets yielded sharply reduced
slopes (Figure 4C), confirming that missing data suffices to cause severe understimation of the nonlinear
relationship between mRNA and protein levels.

The SCM approach, which accounts for both noise and missing data, yields an estimated slope of 2.2
(Figure 4B), consistent with the expectation derived from simple examination of the relative dynamic
ranges. Residual noise unaccounted for by the model will tend to inflate this value, but all pairwise esti-
mates exceed 1.0. Steady-state protein levels therefore reflect a dramatic amplification of the transcrip-
tional signal: rather than competing with transcriptional regulation as often assumed, posttranscriptional
regulation cooperates.

If translational regulation drives much of this cooperative amplification, as anticipated, then transla-
tion rate (the number of mRNAs multiplied by the translation rate per mRNA) must rise nonlinearly with
mRNA level. This is visually clear from examination of the linear fit (slope = 1) compared to the RMA
regression line (slope = 1.65, Figure 4D). Data from an independent study using a similar methodology
shows a slope of 1.70 (Figure 4E). Thus, most of the superlinear relationship between mRNA and protein
levels can be attributed to translational regulation, likely at the level of translation initiation.

Discussion

Our results demonstrate that the widely accepted consensus that steady-state mRNA levels explain less
than half ( 40%) of the variation in protein levels is a significant underestimate; the true value, taking
into account the reduction in correlation due to experimental noise, is closer to 80%.

Our study is restricted to a single well-studied growth condition for a single well-studied organism. The
principles of accounting for noise, but not precise results, can and should be extrapolated to regulatory
contributions in other settings and other organisms. An influential study on mouse fibroblasts measured
mRNA and protein levels and degradation rates for thousands of genes [2], concluding that mRNA levels
explained 41% of the variation in protein levels. However, a recent follow-up study concluded that, once
effects of error and missing data were accounted for, mRNA levels explain 75% or more of the protein-
level variation in these data [13]. Although translation rates were inferred to cause most protein-level
variation in the original study, measured translation-rate variation is insufficient to explain the observed
protein-level variation [13]. Our results support similar conclusions.

The strong correlation between steady-state mRNA and protein levels may seem to validate the use of
mRNA levels as relatively faithful proxies of protein levels. We urge caution, as a tempting conclusion—
that mRNA changes serve as faithful proxies for protein changes—does not follow. Attempts to infer
the correlation between transcript and protein changes from steady-state mRNA-—protein correlations
confuse two distinct and complex phenomena. The genome-scale relationship between mRNA levels and
protein levels is an evolved property of the organism, reflecting natural selection’s tuning of each gene’s
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transcriptional and posttranscriptional controls, not merely an input-output relationship between mRNA
and protein. Two genes with steady-state mRNA levels differing by 10-fold may have 100-fold differences
in protein levels due to evolved differences in their posttranscriptional regulation. This information does
not indicate how the protein level for a gene will change if its transcript level is induced 10-fold in a cell,
because no regulatory evolution is possible at this timescale.

A related consequence is that the number of proteins per mRNA, often treated as roughly constant,
increases steeply with gene expression level. The increased density of ribosomes on high-expression tran-
scripts suggests increased rates of translation initiation as a major contributor to this evolved nonlinearity.
Consistent with this, recent work has shown that in yeast and a wide range of other organisms, the sta-
bility of mRNA structures in the 5’ region weakens as expression level increases, favoring more efficient
translation initiation [41].

Our results underscore the urgent need for genome-scale gold-standard measurements of absolute
mRNA and protein levels to enable identification and correction of systematic errors in widely used gene-
expression measurement techniques. That different groups have, as yet, been unable to reliably reproduce
these bread-and-butter measurements using different methods implies that advantages can be gained in
improved accuracy, rather than mere precision.

Materials and Methods
Reliability

We wish to measure latent variables ¢ and ¥ but, due to noise, actually observe variables X = ¢+ ¢ and
Y =1+ § where the random noise variables € and § have zero mean and are uncorrelated with the latent
variables and with each other. The reliability

_ Var(¢) _ Var(¢)
Var(X)  Var(¢) + Var(e)

ax

®3)

quantifies the ratio of latent-variable variance to total (latent plus noise) variance in X. Given two
random variables X; and X» representing replicate measurements of ¢, the latent (true) variance can
be estimated by Cov(X1, Xa2) = cov(¢ + €1, ¢ + €2) = Cov(¢, ¢) = Var(¢), where the error terms vanish
because they are uncorrelated. Thus, the expected correlation between replicates is

COV(Xl,XQ) _ COV(¢,¢)
V/Var(Xy) Var(Xz)  +/Var(X;) Var(Xs)

[N va@) _
_\/Var(Xl)Var(Xg) T Ve e, )

which is the geometric mean of the reliabilities of the two measurements.

TX1,Xy =
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Spearman’s correction

Cov(¢,¢)

v/ Var(¢) Var(y)

We wish to measure the Pearson correlation coefficient between latent variables ry =

but, due to noise, actually observe

Cov(X,Y)
Var(X) Var(Y)
Cov(e,v)
v/ (Var(¢) + Var(e))(Var(y) + Var(6))
< Ty (5)

Uncorrelated noise has no average effect on the numerator because errors cancel (see above), but the error
terms in the denominator do not cancel. This effect additively inflates the variances in the denominator,
biasing the observed correlations downward relative to the truth.

Given the reliabilities ax and ay, Spearman’s correction is given by

rxy =

XYy

Ty = ——— =T 6
W= ey T (6)

with equality in expectation.
Given two measurements each of X and Y, all with different unknown reliabilities, the true correlation
can then be estimated using only correlations between measurements:

\/TX1Y1 XYy TX1Y1TX2Ys
TX1X2TY1Ys VEX; OXy/Qy; Ay,
X171 TX2Ys
=Tgy (7)

VOX, Oy, /O X, Y,

We extend this estimate to

N "X iTXoYo T X 1Y, T XY,
Toy = §
TX1X27‘Y1Y2

which again has expected value 14, and has the further desirable properties of exploiting all pairwise
correlations and being independent of the choice of indices. In practice, each of correlations contributing
to Spearman’s correction are replaced with correlations estimated from the data, such that the result is
also an estimate of the true correlation.

Data collection

We gathered 16 data sets that measure mRNA expression and 11 that measure protein concentrations,
mostly published, yielding a total of 58 high-throughput measurements of mRNA and protein levels from
5,854 genes in budding yeast. The measurements were taken using different technologies including custom
and commercial microarrays, high-throughput sequencing and mass spectrometry. All yeast cultures were
growing in rich media and sampled during the exponential growth phase. Details of the data sets are
summarized in Table 1.

We gathered 16 data sets that measure mRNA expression and 11 that measure protein concentrations,
mostly published, yielding a total of 58 high-throughput measurements of mRNA and protein levels from
5,854 genes in budding yeast. The measurements were taken using different technologies including custom
and commercial microarrays, high-throughput sequencing and mass spectrometry. All yeast cultures were
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growing in rich media and sampled during the exponential growth phase. Details of the data sets are
summarized in Table 1.

Raw data (with missing values), data normalized and imputed using the SCM, and merged molecules-
per-cell estimates are archived in Dryad (http://datadryad.org) with DOI doi:10.5061/dryad.rg367.

The structured covariance model (SCM)

The model has two components: an observation model p(I; ;|X; ;), which provides the probability of
observing a value for mRNA /protein i in replicate j, given the underlying mRNA /protein level, and a
hierarchical model p(X; ;|...) for the underlying mRNA /protein levels themselves. The full model is
specified as

Xij = Lii)Grp) + Tiep)

+ E@k[j] + R +v (8)

L; ~ N2(0, %) (9)
Tt ~ Ny (0,71) (10)
By~ N(0, &) (11)
R; ; ~N(0,0;) (12

)
! )

g g 1+ exp(=nRy;; — Mgy Xing)

Random variables L;; correspond to the true denoised protein (I = 1) and mRNA (I = 2) levels, for
mRNAs and proteins ¢ = 1,...,N, and L; = [L;1,L;2]’. The random variables T;; and E; ; capture
common technological variation and batch effects, respectively, t = 1,..., Ny, k = 1,...,Ng. R;; are
measurement noise for replicate j =1,..., Ng.

Both technology effects and batch effects between experiments are assumed to be independent,
Cov(T;, 41, Tiyt,) = 0 if 1 # t9, and Cov(E;, iy, iy k,) = 0 if k1 # ko. Measurement noise is inde-
pendent between replicates, Cov(R;, j,, Ri, j,) = 0 if j1 # jo.

The parameter v; reflects replicate specific bias common to all mRNAs/proteins. The coefficient Gy,
is an experiment specific scaling factor for the true underlying expression and abundance, and reflects
the amount of post-transcriptional amplication.

Missing data model

Equation 13 models the probability that measurement X; ; is missing, p(I; ; = 0), as a logistic function
of the value of the measurement. The parameters of the missing data mechanism, 7} and 7}, are shared
by all replicates within an experiment; they uniquely determine the probability that measurements are
observed, conditional on X ;.

Prior specifications

To complete the model specifications we place priors on ¥, 74, &, 0;, 75 and 7). We use either flat,
or weakly informative priors on all parameters so as to bias the inference as little as possible. For the
parameters 1 and 7, of the logistic observation model we use a Cauchy prior with mean zero and scale
2.5 as suggested by [42]. We assume flat priors on the scaling factors, Gy, and the measurement bias
parameters v;. For the replicate and experiment variances 6; and &, we use independent conjugate Inv-
Gamma(3/2, 3/10) prior. Finally, for the estimand of interest, we assume W is a priori drawn from the
set of correlation matrices with marginally uniform correlations [43].
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Figure Legends

Figure 1. Quantification and consequences of noise on the correlation between measurements of
steady-state mRNA and protein levels. A, Steady-state protein levels reflect the balance of mRNA
translation and protein removal. B, Global measurements of mRNA and protein levels vary widely in
reproducibility and coverage. Each point represents a pair of studies. Dots show between-study
correlations (median shown by dashed line), a measure of reliability. Dotted line, median of
within-study correlations. Blue dots show pairs of studies from the same research group. C,
Correlations between studies sharing the same quantification method or different methods (dark and
light gray bars, respectively), using mRNA datasets with > 5000 genes (4,595 genes quantified by all
datasets). For example, the second column from the left shows the 18 correlations between each of three
commercial microarray studies and six studies using custom microarrays or RNA-Seq. D, Large-scale
datasets vary widely in coverage of 5,887 yeast coding sequences and in resulting estimates of the
mRNA-protein correlation. Shown are all pairwise correlations between 14 mRNA and 11 protein
datasets, with within-study replicates averaged if present. Correlations are shown between mRNA and
protein levels reported without correction (dots); using Spearman’s correction on pairs of datasets
(binned, boxes show mean and bars indicate standard deviation); using Spearman’s correction on the
largest set of paired measurements (red box); and as estimated by structured covariance modeling for
5,854 genes with a detected mRNA or protein (red diamond). E, Correlations obtained for the largest
set of paired measurements, two of mRNA and two of protein levels (N=3,418).
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Figure 2. Integrated estimates of mRNA and protein levels using structured covariance modeling
(SCM). A, Integrated estimates across 58 global measurements reveal a strong genome-wide
dependence between steady-state protein and mRNA levels (r = 0.91). Light gray points and marginal
density indicate genes with detected mRNA but no detected protein. B, Absolute mRNA level
estimates versus single-molecule fluorescence in situ hybridization counts [32]. C, Absolute protein level
estimates versus stable-isotope-standardized single reaction monitoring measurements [35]. Dotted lines
in B and C show perfect agreement. D, Evidence for active translation of undetected proteins inferred
from ribosome profiling; data from one [36] of two [11] studies. Dashed line shows ranged major-axis
regression best fit. Marginal densities show ribosome density for all detected transcripts (medium gray),
all transcripts with a detected protein (dark gray), and transcripts with no detected protein (light

gray).

Figure 3. Cellular responses linked to growth are apparent in gene expression data. A,
Gene expression varies systematically with noise; shown are normalized mRNA levels for genes encoding
large ribosomal protein 23A (RPL23A), the glycolytic enzyme pyruvate kinase 1 (CDC19), and a
proteasome lid subunit (RPNG). Lines show linear fits; slopes for RPL23A and RPN6 are significantly
nonzero with P < 0.05. B, Expression of classes of genes changes systematically with noise. Box and
whisker plots show all genes with at least 25 measurements (N=>5,326), 133 ribosomal proteins, and 20
glycolytic enzymes. Wilcoxon signed-rank tests, *** P < 10716; n.s., P > 0.05.

Figure 4. Transcriptional and translational regulation act coherently to set protein levels. A, The
correlation of mRNA (light gray) and rates of translation (dark gray) reported in the original
ribosome-profiling study, using averaged mRNA and protein levels, and corrected for noise using
Spearman’s correction on the same set of genes (N=3,266). Diamond shows whole-proteome SCM
estimate. B, The exponent relating protein and mRNA concentrations estimated by noise-blind
(ordinary least squares) and noise-aware (ranged major-axis) regression analyses. Gray points, all pairs
of datasets; black points, pairs of datasets with > 3500 measurements. Dotted line shows perfect
agreement; dashed line marks SCM estimate. C, Missing data leads to underestimation of the
mRNA-protein exponent. The exponent from two large mRNA and protein studies was computed after
limiting analysis to only genes with proteins detected in each of the 11 protein studies. D, Ribosome
density depends nonlinearly on mRNA level. Dashed line shows linear (slope = 1) fit. Solid gray line
shows RMA regression fit. E, mRNA-ribosome-density exponents estimated from independent

studies [11, 36].


https://doi.org/10.1101/009472
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/009472; this version posted September 21, 2014. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

15
Tables
Data set, reference Technology, replicates % miss
CAUSTON [44] Commercial microarray, 5 19-22
DUDLEY [45] Custom microarray, 4 5
GARCIA [46] Custom microarray, 1 1
HOLSTEGE [31] Commercial microarray, 1 12
INGOLIA [11] RNA-Seq, 6 4-10
LIPSON [28] RNA-Seq, 6 1
LIPSON.ma [28] Commercial microarray, 1 4
MACKAY [47] Custom microarray, 1 28
MIURA [33] Competitive PCR, 4 26-29
NAGALAKSHMI [48] RNA-Seq, 1 22
PELECHANO [49] Custom microarray, 1 14
ROTH [50] Commercial microarray, 2 59-70
VELCULESCU [51] SAGE, 1 58
YASSOUR [19] RNA-Seq, 4 5
FUTCHER [12] 2D gel, 1 99
GHAEMMAGHAMI [30]  Western blot, 1 34
DEGODOY [29] LC MS/MS, 1 25
avat [3] 2D gel, 1 98
LEE [52] LC MS/MS, 3 67-76
LU [10] LC MS/MS, 1 83
NAGARAJ [53] LC MS/MS, 6 31
NEWMAN [54] GFP /flow cytometry, 1 60
PENG [55] LC MS/MS, 1 74
THAKUR [506] LC MS/MS, 3 84-85
WASHBURN [57] LC MS/MS, 1 7

Table 1. List of mRNA data sets (above the midline) and protein concentration data sets (below the
midline). The number of replicates in each data set is given after the technology name.
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