Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

The role of standing variation in geographic convergent adaptation

Peter L. Ralph, View ORCID ProfileGraham Coop
doi: https://doi.org/10.1101/009803
Peter L. Ralph
1Computational Biology and Bioinformatics University of Southern California, Los Angeles, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Graham Coop
2Center for Population Biology & Department of Evolution and Ecology University of California – Davis, Davis, CA, 95616
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Graham Coop
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

The extent to which populations experiencing shared selective pressures adapt through a shared genetic response is relevant to many questions in evolutionary biology. In a number of well studied traits and species, it appears that convergent evolution within species is common. In this paper, we explore how standing, genetic variation contributes to convergent genetic responses in a geographically spread population, extending our previous work on the topic. Geographically limited dispersal slows the spread of each selected allele, hence allowing other alleles – newly arisen mutants or present as standing variation – to spread before any one comes to dominate the population. When such alleles meet, their progress is substantially slowed – if the alleles are selectively equivalent, they mix slowly, dividing the species range into a random tessellation, which can be well understood by analogy to a Poisson process model of crystallization. In this framework, we derive the geographic scale over which a typical allele is expected to dominate, the time it takes the species to adapt as a whole, and the proportion of adaptive alleles that arise from standing variation. Finally, we explore how negative pleiotropic effects of alleles before an environment change can bias the subset of alleles that contribute to the species’ adaptive response. We apply the results to the many geographically localized G6PD deficiency alleles thought to confer resistance to malaria, where the large mutational target size makes it a likely candidate for adaptation from standing variation, despite the selective cost of G6PD deficiency alleles in the absence of malaria. We find the numbers and geographic spread of these alleles matches our predictions reasonably well, consistent with the view that they arose from a combination of standing variation and new mutations since the advent of malaria. Our results suggest that much of adaptation may be geographically local even when selection pressures are homogeneous. Therefore, we argue that caution must be exercised when arguing that strongly geographically restricted alleles are necessarily the outcome of local adaptation. We close by discussing the implications of these results for ideas of species coherence and the nature of divergence between species.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted April 22, 2015.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
The role of standing variation in geographic convergent adaptation
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The role of standing variation in geographic convergent adaptation
Peter L. Ralph, Graham Coop
bioRxiv 009803; doi: https://doi.org/10.1101/009803
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
The role of standing variation in geographic convergent adaptation
Peter L. Ralph, Graham Coop
bioRxiv 009803; doi: https://doi.org/10.1101/009803

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Evolutionary Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (3504)
  • Biochemistry (7346)
  • Bioengineering (5321)
  • Bioinformatics (20259)
  • Biophysics (10013)
  • Cancer Biology (7742)
  • Cell Biology (11298)
  • Clinical Trials (138)
  • Developmental Biology (6437)
  • Ecology (9950)
  • Epidemiology (2065)
  • Evolutionary Biology (13318)
  • Genetics (9360)
  • Genomics (12581)
  • Immunology (7700)
  • Microbiology (19016)
  • Molecular Biology (7439)
  • Neuroscience (41029)
  • Paleontology (300)
  • Pathology (1229)
  • Pharmacology and Toxicology (2135)
  • Physiology (3157)
  • Plant Biology (6860)
  • Scientific Communication and Education (1272)
  • Synthetic Biology (1895)
  • Systems Biology (5311)
  • Zoology (1089)