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Abstract  

Recent breakthroughs in exome sequencing technology have made possible the 

identification of many causal variants of monogenic disorders. Although extremely 

powerful when closely related individuals (e.g. child and parents) are simultaneously 20	
  

sequenced, exome sequencing of individual only cases is often unsuccessful due to the 

large number of variants that need to be followed-up for functional validation. Many 

approaches remove from consideration common variants above a given frequency 

threshold (e.g. 1%), and then prioritize the remaining variants according to their allele 

frequency, functional, structural and conservation properties. In this work, we present 

methods that leverage the genetic structure of different populations while accounting for 

the finite sample size of the reference panels to improve the variant filtering step. Using 

simulations and real exome data from individuals with monogenic disorders, we show that 

our methods significantly reduce the number of variants to be followed-up (e.g. a 36% 
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reduction from an average 418 variants per exome when ancestry is ignored to 267 when 30	
  

ancestry is taken into account for case-only sequenced individuals). Most importantly our 

proposed approaches are well calibrated with respect to the probability of filtering out a 

true causal variant (i.e. false negative rate, FNR), whereas existing approaches are 

susceptible to high FNR when reference panel sizes are limited. 

Introduction 

Vast decreases in the cost of exome sequencing have allowed for major advancements in 

the identification of causal variants for rare monogenic traits and disorders1-4.  Although 

each individual carries 20,000-24,000 single nucleotide variants in their exome that differ 

from the human reference genome, most of these variants are common in the population or 

do not have a damaging effect and therefore are unlikely to explain a rare monogenic trait. 40	
  

Finding causal variants for monogenic traits through exome sequencing follows a two-step 

approach. First, variants that are too common to be consistent with the prevalence of a rare 

disorder are discarded2. Variants that remain under consideration are then prioritized based 

on frequency, functional, structural and conservation properties5; 6, with more recent 

approaches using cross species comparisons7 or a combination of scores from several 

stand-alone methods or other data sources8-11. When pedigrees or cohorts of patients (with 

the same disorder) and their close relatives (e.g. parents or siblings) are sequenced, this 

two-step approach has proven to be extremely powerful in refining the list of prioritized 

variants to just a few variants2-4; 12-16. However, when only the case individual is available 

for sequencing, the number of variants that are left for follow-up in functional analysis is 50	
  

often on the order of hundreds of plausible variants 10; 17; 18, thus making it difficult to 

identify the causal variant(s). 
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 In this work we present methods that leverage population structure (i.e. the 

variability in variant frequencies across populations) to improve the performance of exome 

sequencing studies of monogenic traits. Although it is commonly accepted in studying all 

types of disease that large well-matched control cohorts are important in limiting false 

positives19, monogenic disease studies often estimate variant frequencies across large 

databases of human variation at the level of continental ancestry (e.g. the Exome Variant 

Server20 European or African American data) instead of reference panels more finely tuned 

to the ancestry of the case individual(s); this is especially true when it is not practical to 60	
  

obtain a well-matched control group. Here, we investigate the use of matched allele 

frequency estimates (typically at the level of a country) to the ancestry of the sequenced 

individual21; 22. Since rare variants tend to be present in only a few closely related 

populations and absent from the rest23-27, the frequency estimates of alleles present in a 

given population will show a downward bias if estimated across individuals of multiple 

ancestries. That is, a variant might appear rare (<1%) across many populations, when in 

reality it is only rare in most populations and less rare or even common (>1%) in a few (see 

Supplemental Figure 1). As an example, consider variant rs17046386, it is generally rare or 

non-existent in non-Africans and present in Africans and those of African descent (see 

Figure 1). Based on European reference panels (or a global ancestry-unaware panel), this 70	
  

variant would not be excluded even though it’s relatively high frequency in Africans makes 

it unlikely to be pathogenic.  

 The limited size of existing reference panels, especially when defining ancestry at 

the level of a country, induces significant statistical variance in the allele frequency 

estimates that must be accounted for. For example, a variant with a true frequency of 0.5% 
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has an 8% chance of being observed with frequency >1% (and thus discarded) in a 

reference panel of 100 individuals as compared to only a 0.1% chance of being disregarded 

when frequencies are estimated over 1,000 individuals. To account for this effect, we 

introduce an false negative rate (FNR) filtering technique that protects against filtering a 

potential causal variant at a pre-specified significance level. 80	
  

 Starting from the 1000 Genomes24 and the NHLBI Exome Sequencing Project 

(ESP) Exome Variant Server (EVS)20 data sets, we use simulations to show that correctly 

matching reference panels to the country-level ancestry of the sequenced individual 

reduces the number of candidate causal variants from 418 to 351 in case-only simulations. 

Furthermore, by comparing frequencies across multiple populations, more variants can be 

removed (267 remaining if removing variants above the 5% FNR threshold in any 

population).  In addition to case-only simulations, we simulate trio data for dominant and 

recessive diseases and show that ancestry aware filtering yields similar improvement under 

these scenarios. We validate our approach using exome-sequencing data from 20 real 

individuals with monogenic disorders for which the causal variants are known. In this data, 90	
  

without ever filtering out the true causal variant, our approach successfully reduces the 

mean number of heterozygous variants to be functionally tested from 750 to 604 

(FNR<5%) when only matching to one population and to 435 (a 42% reduction) when 

leveraging all population data. Our results demonstrate that existing filtering pipelines for 

exome sequencing studies of monogenic traits can be significantly improved by taking 

ancestry into account. Finally, our results suggest that utilizing narrowly defined ancestry 

matched reference panels (i.e. at the country level) overcomes the reduction in performance 

due to higher statistical noise from the smaller panels. 
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Methods 

Datasets 100	
  

The 1000 Genomes Project24 has produced a public catalog of human genetic variation 

through sequencing individuals from different populations across the world. We use the 

1000 Genomes individuals (1,092 in total) to evaluate the effectiveness of various filtering 

approaches (we removed the IBS from simulations due to the small number of individuals). 

Following the commonly accepted assumption that 85% of causal variants for monogenic 

traits are found in the exome29, we restrict our analysis only to variants found in the coding 

regions of autosomal chromosomes. For admixed individuals we matched ancestry locally 

using the local ancestry calls provided by the 1000 Genomes Project (the consensus calls of 

four different local ancestry inference methods30-33). Damaging scores for each single 

nucleotide variant were computed using the KGGSeq software with default parameters10 110	
  

that combines the functional annotation scores in the dbNSFP34 database v2.0.  

 The NHLBI Exome Sequencing Project (ESP) Exome Variant Server (EVS) has 

released allele counts on 4,300 European-Americans and 2,203 African Americans20. 

PolyPhen2 scores are also provided for missense variants; the probably and possibly 

damaging predicted variants were used in the EVS-based analyses. We simulate different 

size reference panels using a binomial sampling with the allele frequencies estimated 

across all the European (or African American) EVS data as the true frequency.  

 To compare results seen in simulations to real data, we used exomes of 101 

individuals with self-reported countries of origin including Turkey, Jordan, Tunisia, Egypt, 

Israel, Iran, Syria and Palestine. We grouped these individuals into a single supplemental 120	
  

reference population for estimating best matching allele frequencies. Of the 101 
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individuals, 20 had identified causal variants of monogenic disorders. Nine individuals 

were known to harbor heterozygous variants in genes causing autosomal dominant 

disorders, 10 individuals had homozygous variants, and one individual had potential 

compound heterozygous variants in genes causing an autosomal recessive disorder. We 

filtered out all variants except those with damaging annotations: splice acceptors, stop 

gains, frame shifts, stop losses, initiator codon changes, inframe insertions, inframe 

deletions, missense variants, splice region variants and KGGSeq predicted damaging 

variants. For consistency, the individual being examined was removed from the rest of the 

data that served as a reference panel. For comparison purposes, we included these 130	
  

individuals when estimating average frequencies across all populations in the 1000 

Genomes project for the real data only.  

False negative rate estimation 

 We estimate the probability of filtering out a true causal variant (false negative rate) 

at a given frequency threshold as a function of a given reference panel and the maximum 

true allele frequency of the causal variant. The filtering threshold can be adjusted in order 

to provide a desired FNR. Let t be the nominal frequency threshold that is used for 

filtering. We define the corresponding FNR at this threshold as: 

FNR(t) =
fP( fref ,N > t f )P( f )df

0

max( fc )

∫

fP( f )df
0

max( fc )

∫
 

where f is the frequency of the variant in the population, max(fc) is the maximum assumed 140	
  

frequency of the causal variant in the population, P(f) is the proportion of variants with 

frequency f in the population and P(fref,N	
  >t	
  |	
  f)	
  is the probability that a variant with 
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frequency f  is observed at a frequency greater than t in the reference panel of N individuals 

randomly drawn from the population.  

 The FNR computation at a threshold t requires knowledge about the distribution of 

variants across all frequencies in the population; this can be estimated from population 

genetic theory under various demographic assumptions25; 35-39 or empirically from the data. 

In this work, we estimate the distribution P(f) from reference panel allele counts and 

perform the above integration across the observed site frequency spectrum as follows: 

FNR(t) =
fiP( fref ,N > t fi )P '( fi )fi≤max( fc )

∑
fiP '( fi )fi≤max( fc )

∑
 150	
  

Here fi represents each of the unique allele frequencies observed in the reference panel of N 

individuals and P`(fi) represents the proportion of variants in the reference panel that have 

estimated frequency fi.  The function sums over the discrete frequency values less than the 

max(fc). P(fref,N	
  >t	
  |	
  fi)	
   is modeled as a binomial draw with the frequency of success equal 

to fi and the number of draws equal to the number of allele counts (2N). Since the 

integration is over a discrete space we calculate the probability that the number of success 

is greater than the threshold times 2N. The max(fc) must also be larger than (2N)-1 for the 

FNR estimate to function. Having estimated a FNR for all possible filtering thresholds t, 

we propose to filter variants using the minimum frequency threshold t such that FNR(t)< 

5%.  160	
  

Leveraging population structure for improved filtering 

 We compared different filtering approaches using simulated exomes from the 1000 

Genomes data. For non-admixed individuals (e.g. not African-Americans) we use 

simulations where four haplotypes are drawn from a specific 1000 Genomes population 
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and then paired to form two parental genomes. An offspring genome was then simulated 

from the parental genomes by passing variants according to Mendelian inheritance under 

the assumption that all sites are independent. We filtered out variants that do not result in 

an amino acid change or do not create or remove a stop codon. We compare three different 

scenarios likely to be encountered in a clinical diagnostic setting with 40 simulated 

offspring genotypes per scenario for each 1000 Genomes population (not including the 170	
  

IBS). The Case-Only scenario assumes there is no information on parental genotypes and 

there is no known mode of inheritance. The Trio-Dominant scenario assumes that both 

parental exomes are sequenced and the offspring and one of the parents has the disorder. 

The Trio-Recessive scenario assumes that both parents are exome sequenced and 

heterozygous for the causal allele and that the offspring had two copies of the causal allele. 

We repeated the same analysis only using the variants for which there is a predicted 

damaging KGGSeq score (the variants in dbNSFP). 

 The cosmopolitan filtering approaches (NoAncestry, f>1% and NoAncestry, 

FNR<5%) estimate allele frequencies and FNRs across all 1000 Genomes individuals. The 

key intuition behind these approaches is that statistical noise is decreased with large 180	
  

reference panels at the cost of ignoring population structure. NoAncestry, f>1% filters out 

variants with allele frequency >1% without regard for the FNR, whereas NoAncestry, 

FNR<5% filters out variants above a threshold determined to ensure a desired FNR. We 

propose two ancestry-aware filtering approaches. The first (PopMatched, FNR<5%) uses 

only the reference individuals from the sub-continental population (country-level, see 1000 

Genomes24) that best matches the sequenced individual. The second approach (AllPop) 

uses data across multiple sub-continental populations, by simply requiring that variants not 
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be filtered out at each population’s FNR <5% threshold in each of a randomly chosen set of 

sub-continental populations. Sets sizes ranged between none and all the 1000 Genomes 

populations. The intuition behind this approach is that a variant common in at least one 190	
  

population is unlikely to be causal for monogenic disorders.  

 For admixed populations (MXL, PUR, CLM and ASW) we only assessed the Case-

Only scenario and used the genotypes of the real admixed individuals from 1000 Genomes.  

In each individual at loci that are homozygous for African, European or Native American 

ancestry, we used continental allele frequency estimates obtained by averaging across the 

CEU, FIN, GBR and TSI for European frequencies, the YRI and LWK for African 

frequencies and the JPT, CHB and CHS for Native American frequencies. In local ancestry 

heterozygous regions we used a 50-50 weighting of the matching continental frequencies. 

In order to determine the FNR threshold, we first calculated the FNR threshold for the 

CEU, JPT and YRI and used the maximum threshold of those three populations. This is an 200	
  

overestimate of the true threshold because the allele frequencies will be downwardly biased 

and there is higher confidence in the allele frequency estimates due to larger reference 

panel sizes. 

Results 

Modeling statistical uncertainty increases filtering efficacy 

 We use simulations from the European-American Exome Variant Server (EVS)20 

dataset to assess the increase in performance of FNR-based filtering as a function of panel 

size in a homogenous population. Figure 2a shows the threshold on the observed frequency 

as a function of reference panel size such that a FNR of 5% is maintained under different 

maximum frequencies of the causal variant (max(fc)). As expected, the frequency threshold 210	
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that maintains a 5% FNR increases as reference panel sizes decrease (see Figure 2a). As the 

reference panel size is increased the filtering threshold that maintains a 5% FNR 

approaches max(fc).  

 Figure 2b shows the average number of damaging or possibly damaging variants for 

follow-up (according to the EVS Polyphen2 40 annotation scores) below the <5% FNR 

threshold. There is a diminishing return in filtering efficacy for reference panels larger than 

500 individuals. This shows that as the assumed maximum frequency of the true causal 

variant (max(fc)) decreases, the 5% FNR threshold and number of variants for follow-up 

per individual also decrease.  

 Next, we investigated the effect of different maximum allele frequencies of the 220	
  

causal variant (max(fc)) and reference panel sizes on frequency-based and FNR-based 

filtering methods. Table 1 shows that for small reference panels (e.g. ~100 reference 

individuals, approximately the size of a 1000 Genomes country-level population) the 

frequency-based approach is mis-calibrated with respect to the probability of filtering out 

the true causal variant. Although the approach that maintains a proper FNR<5% 

significantly increases the number of variants for follow-up from 298.0 to 724.1 on 

average, this is necessary as it reduces the FNR from 25% for the frequency-based 

approach to 5% for the FNR-based approach. In contrast, when reference panels are large, 

the frequency-based approach is too conservative (due to the lack of a FNR calculation) 

leading to an increased number of follow-up variants. For example, the FNR<5% approach 230	
  

reduces the number of variants for follow-up from 311 to 150 variants, under the 

assumption that the max(fc) is 0.1% and 2500 reference individuals. Qualitatively similar 
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results were observed when simulating exomes from the EVS African-American data (see 

Supplemental Figure 2). 

Leveraging ancestry to increase filtering performance 

  We next assessed the performance of filtering with or without including ancestry 

information to account for the highly structured nature of rare variants23-25; 41 in simulations 

of non-admixed individuals starting from the 1000 Genomes data. We compared several 

methods for filtering variants in exome studies under Case-Only, Trio-Dominant and Trio-

Recessive scenarios.  Under all disease architecture and trio scenarios the methods that take 240	
  

ancestry into account outperform methods that do not (Table 2). The PopMatched, FNR 

<5% and NoAncestry, FNR <5% each filter based on a threshold determined to ensure a 

FNR of at most 5%. The difference is that the NoAncestry method uses the entire 1000 

Genomes data set as a single reference population whereas PopMatched uses only the 1000 

Genomes individuals from the same population as the simulated case individual as 

references. The population matching decreases the number of variants by at least 15% 

under the Case-Only, Trio-Dominant and Trio-Recessive scenarios; this is true when only 

using KGGSeq predicted damaging variants as well (Table 2). This improvement comes 

regardless of the fact that the <5% FNR filtering threshold in the PopMatched method 

(average filtering threshold is 2.2% and always >2%) is on average twice that of that 250	
  

NoAncestry method (filtering threshold is 1.1%) due to the significantly reduced reference 

panel size (average of 93 individuals per 1000 Genomes population). This demonstrates 

that the benefit of better population matching outweighs the cost of higher statistical noise 

resulting from the small reference panels. The Trio-Dominant scenario has approximately 

half as many variants for follow-up as the Case-Only scenario (288 compared to 582 for 
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the PopMatched, FNR<5% method, Table 2), this would be expected assuming one parent 

were also affected. The Trio-Recessive scenario, simulated without inbreeding, shows very 

few variants for follow-up (<6 under all scenarios and filtering methods), this is expected 

when looking for rare variants appearing homozygotically in an individual (Table 2). 

 We observe that the NoAncestry, FNR <5% approach leads to a slightly increased 260	
  

number of variants that need to be functionally followed up over the NoAncestry, f>1% 

approach (Table 2). The increase in the number of variants is necessary to attain a correct 

5% FNR rate (NoAncestry, f>1% attains a FNR of 6.0%). 

 Finally, we assessed a method that filters variants observed in any population above 

each population’s 5% FNR threshold in addition to the best-matched population (AllPop). 

All FNR-based approaches assume that max(fc) <1% in all populations. The AllPop 

approach does not account for multiple testing, but does demonstrate that as more 

population are randomly sampled, many variants can be eliminated due to high frequency 

in some populations that are inconsistent with causal allele frequency assumptions. This 

method shows a 40% reduction from the NoAncestry, FNR<5% method in the Case-Only 270	
  

scenario (Table 2). In Figure 3, we investigated how the number of follow-up variants 

decreases as a function of the number of reference populations available in the Case-Only 

scenario. With data from more populations available, there is a greater chance of observing 

that a given variant is common in at least one population, and is thus unlikely to cause a 

rare disorder. This demonstrates that there are a significant number of variants that are 

common in some populations but rare in the population of the case individual. Careful 

selection of a few populations genetically distant from a case individual’s population can 
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further reduce the number of variants remaining beyond what is obtainable through only 

the PopMatched, FNR<5% method and will reduce the effects of multiple testing. 

 Finally, we observe a similar pattern of improved performance when restricting to 280	
  

functionally damaging variants as predicted by KGGSeq (Table 2). Taken together, this 

shows that in all the aforementioned scenarios the improvements of ancestry-aware 

filtering do not come exclusively from variants that would have been filtered later due to 

non-damaging predictions, but rather, from variants removed proportionally from 

damaging and non-damaging predicted variants. 

Ancestry-aware filtering in admixed individuals 

 Results above were obtained using individuals of homogeneous ancestry. We 

extend our approach to populations of admixed ancestry (e.g. African Americans) by 

considering their local ancestry structure. Individuals with recent ancestry from multiple 

continents have genomes that are a mosaic of segments each originating from different 290	
  

ancestral populations. We incorporate the local ancestry structure in the filtering step with 

the PopMatched-LA, FNR <5% approach that matches reference panels by ancestry 

according to each site in an individual’s genome (see Methods). This significantly lowers 

the number of variants for follow-up in the admixed populations as compared to the local 

ancestry naïve method (PopMatched, FNR <5%)  (see Figure 4). When using information 

from all populations in the 1000 Genomes dataset, there is improvement for all admixed 

populations over the method that ignores ancestry (NoAncestry, FNR <5%)  (see Figures 4 

and Supplemental Figure 3). For example, in African American individuals we observe a 

reduction from 668 to 592 variants from just matching the local ancestry to continental 

populations as compared to using all 1000 Genomes data with a FNR <5%. There is 300	
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significant diversity within subpopulations of Mexico that may make finding well-

matching reference panels difficult42. While correct matching has been shown to be very 

beneficial, incorrect matching may increase the number of variants remaining for follow-

up. This could explain why the  PopMatched-LA, FNR <5%  approach performs worse for 

the MXL than the  PopMatched, FNR <5% approach .  

Analysis of 20 exomes of individuals with monogenic traits 

 To examine the performance of the different filtering strategies when applied to 

actual data, we used the data from 20 real exome sequenced individuals with monogenic 

disorders where the causal variants have been previously identified. We assumed a 

maximum causal allele frequency of 1% for all cases because there was no prevalence 310	
  

data2. For all modes of inheritance, the number of variants in an individual for follow-up 

after filtering was lower when filtering with the PopMatched, FNR <5% and AllPop 

approaches as opposed to the  NoAncestry, f>1%  approach that does not account for the 

FNR (See Supplemental Table 1). For example, using our approach only 604.8 (434.6 if 

using all populations’ data) variants need to be followed-up for a dominant disorders as 

compared to 749.7 for the  No Ancestry, f>1%  approach (see Table 4). Importantly, for all 

of the filtering schemes, the true causal variant identified in these real individuals was 

never filtered out. This demonstrates population matching for filtering allele frequencies 

significantly reduces the number of variants remaining for follow-up analysis, while still 

maintaining an appropriate false negative rate. It also shows that when researchers can 320	
  

safely assume a causal allele frequency <1% in many populations, they can substantially 

further reduce the number of variants remaining for follow-up analysis. This real data 

analysis shows the importance of being able to first filter with a well-matched reference 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 4, 2014. ; https://doi.org/10.1101/010017doi: bioRxiv preprint 

https://doi.org/10.1101/010017


	
   15	
  

panel, even of just 100 individuals. In Supplemental Table 1 we report the variants 

remaining in each individual along with country data, reported inheritance pattern, the 

zygosity of the causal variant and assumed disorder architecture. 

Discussion 

Exome sequencing for rare monogenic disorders has proven to be very useful for 

discerning the causal genes for these traits. Although extremely powerful when closely 

related individuals are simultaneously sequenced, current pipelines for exome sequencing 330	
  

of a single individual often yield too many variants to be tractable for functional follow-up. 

In this work, we introduce approaches that account for the finite sample size of the existing 

reference panels used in filtering while jointly modeling the ancestry to improve the 

filtering step. Both the real data analysis of 20 exomes of individuals with known 

monogenic disorders and the simulations show that our approaches reduce the number of 

variants that need to be further investigated, thus increasing the effectiveness of identifying 

causal variants using exome sequencing of unrelated individuals. This work demonstrates 

that in a clinical setting, even a small reference panel of 100 individuals from a well-

matched population can have significant impact on the filtering ability of a case individual.

 The current bottleneck in using population structure to help identify rare variants is 340	
  

the limited size of the reference panels for specific narrowly defined populations. Current 

reference panels show that at the 1% allele frequency level that there are significant 

differences between populations. However, it is difficult to assess allele frequencies below 

this level due to reference panel size for specific populations. This demonstrates the need 

for larger reference panels of more narrowly defined populations (not just continental level) 

in order to fully assess the structure of rare variation. As the panel sizes increase, 
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researchers studying monogenic disorders will be able to use smaller maximum causal 

allele frequencies when appropriate for the trait of interested. Furthermore, the larger 

reference panels will also lower filtering thresholds. 

 With the increasing availability of public databases it may be possible to obtain 350	
  

accurate estimates of disorder prevalence across populations. Our proposed approaches 

could be further extended to take this information into account by using different 

thresholds on the maximum frequency of causal variants (max(fc)) across populations. We 

leave that as ongoing and future work. 

Supplemental Data 

 The supplemental data contains three figures and one table. 
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Web Resources 

We provide publicly available software implementing our approach: 370	
  

http://bogdan.bioinformatics.ucla.edu/software/ 

Figure 1 was generated using the following website with data from the Human Genome 

Diversity Panel43; 44: 

http://hgdp.uchicago.edu/cgi-bin/gbrowse/HGDP/ 
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  100	
  Reference	
  Individuals 2500	
  Reference	
  Individuals 

Max	
  True	
  
Frequency Method Threshold 

Number	
  of	
  
Variants	
  for	
  
Follow-­‐up 

Probability	
  
of	
  Filtering	
  
True	
  Causal Threshold 

Number	
  of	
  
Variants	
  for	
  
Follow-­‐up 

Probability	
  
of	
  Filtering	
  
True	
  Causal 

1.00% (f  > 1%)  1.0% 298.0 25.4% 1.0% 310.9 2.2% 
FNR<5% 6.5% 724.1 4.6% 0.9% 298.3 4.8% 

0.10% (f > 1%) 1.0% 298.0 12.1% 1.0% 310.9 0.0% 
FNR<5% 1.5% 356.0 4.3% 0.1% 149.8 3.6% 

0.05% (f > 1%) 1.0% 298.0 8.0% 1.0% 310.9 0.0% 
FNR<5% 1.5% 356.0 1.9% 0.1% 141.2 2.3% 

 

Table 1. Method comparisons for different reference panel sizes and maximum causal 520	
  

allele frequencies.  We compare two methods. The first is a method (f > 1%) that filters out 

any variants at an observed frequency >1% ignoring the statistical noise on the frequency 

estimates (and thus the FNR). The second is a method (FNR<5%) that filters out variants if 

observed above a threshold frequency guaranteed to provide less than a 5% chance of 

filtering out the true causal variant. At small reference panel sizes it is critical to 

incorporate statistical noise from the reference panel to not over-filter the true causal 

variants. Conversely, with large reference panels, a hard 1% frequency filter is too 

conservative and significantly increases the number of variants remaining for follow-up 

analysis. 

 530	
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 540	
  

Table 2. Average number of variants that remain for follow-up post-filtering in simulations 

of non-admixed individuals. All FNR approaches assume the maximal causal variant 

frequency of 1%. Poorly matched reference panels greatly affect the number of variants for 

follow-up analysis more so than accounting for increased statistical error from smaller 

reference panels. The top method,  has an increased FNR (6.0%) 

relative to all the other methods. Case-Only represents filtering with exome data from a 

single individual and makes no assumptions about disease architecture. Trio-Dom assumes 

the case individual and both parental exomes are sequenced and that only one parent has 

the dominant disorder. Trio-Rec assumes there is exome data from the case individual and 

both parents and that both parents are carriers of one copy of the causal variant but do not 550	
  

have the recessive disorder.  

 

 Number of variants for 

follow-up 

Number of variants for 

follow-up, with KGGSeq 

variants 

 Case-

Only 

Trio-

Dom 

Trio-

Rec 

Case-

Only 

Trio-

Dom 

Trio-

Rec 

NoAncestry, f>1%  678.9 334.7 5.3 409.5 202.4 2.9 

NoAncestry, FNR<5% 695.7 342.7 5.6 418.2 206.5 3.1 

PopMatched, FNR<5% 581.9 288.2 3.1 350.6 173.8 1.7 

AllPop 415.9 207.8 1.6 267.3 133.3 1.0 
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1000 Genomes 
Population 
(Number of 
Individuals) 

NoAncestry,  
FNR <5%, (s.d.) 

PopMatched,  
FNR <5%, (s.d.) 

AllPop,	
  (s.d) 

ASW* (61) 668.2 (75.9) 591.5 (39.9) 398.8 (40.2) 
CEU (85) 298.9 (32.4) 336.2 (36.2) 221.4 (26.7) 
CHB (97) 320.7 (31.4) 298.7 (34.2) 234.0 (27.4) 
CHS (100) 326.8 (18.2) 295.0 (24.1) 238.1 (15.2) 
CLM* (60) 342.0 (39.2) 438.0 (40.0) 242.0 (20.5) 

FIN (93) 288.5 (25.1) 270.2 (36.9) 179.3 (21.2) 
GBR (89) 286.6 (27.0) 309.8 (33.1) 206.4 (22.5) 
JPT (89) 342.1 (22.6) 302.0 (25.9) 237.4 (18.5) 

LWK (97) 814.5 (38.3) 507.9 (36.6) 388.7 (29.0) 
MXL* (66) 332.9 (25.1) 446.6 (37.2) 232.7 (22.6) 
PUR* (55) 353.3 (48.5) 434.3 (44.9) 250.2 (29.0) 
TSI (98) 315.6 (24.6) 336.0 (26.7) 238.9 (21.4) 
YRI (88) 757.7 (29.9) 482.5 (33.5) 345.4 (20.6) 

 
Table 3. Different levels of genetic diversity across populations induce a variation in the 

average number of variants remaining for follow-up in an individual. The highest number 

of variants remaining for follow-up is seen in African populations (YRI and LWK) as well 

as African-Americans (ASW); this is consistent with these populations have the greatest 

amount of genetic diversity. * denotes admixed populations where a local ancestry aware 560	
  

method was utilized (see Methods). 
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Table 4. Average number of variants that remain for follow-up post-filtering in real exome 

studies of 20 individuals with Mendelian disorders. None of the filtering approaches 

removed the true casual variants from consideration. Across all disorder architectures, we 

observe a significant decrease in the number of variants that need to be followed up if 

ancestry is incorporated in the filtering step. Parentheses denote standard deviations. 

Variants were eliminated from consideration as potentially true causal variants if they are 570	
  

not annotated as damaging (see Methods) and if they are not observed twice if the disorder 

is assumed to be autosomal recessive or at least once if it is assumed to be dominant 

(heterozygous) or compound heterozygous.  

 

Method 

Recessive  

(#cases=10) 

Dominant 

(#cases=9) 

Compound 

Heterozygous 

(#cases=1) 

NoAncestry, f>1%  57.7 (34.8) 749.7 (91.0) 604 

PopMatched, FNR<5% 40.1 (32.5) 604.8 (107.1) 426 

AllPop 27.3 (20.2) 434.6 (57.1) 352 
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Titles	
  and	
  Legends	
  to	
  Figures	
  
	
  
Figure 1. Geographic distribution of rs17046386 across the Human Genome Diversity 

Panel CEPH data. The minor allele is rare in non-African populations, but not rare in 

African populations. 580	
  

 

Figure 2. Reference panel size impacts the efficacy of filtering in exome sequencing in 

European simulations from the EVS data. Figure 2a shows the threshold on the variant 

frequency needed to achieve a 5% FNR for various assumptions about the maximum 

frequency of the causal variant in the population (from 0.001 to 0.01). Figure 2b displays 

the number of variants that remain to be followed up post-filtering at a 5% FNR rate. As 

expected with larger reference panel sizes, the estimated frequency from the reference 

panel becomes more accurate making the 5% FNR threshold converge to the maximum 

assumed frequency of the causal variant (fM) which in turn increases the efficacy of 

filtering. We observe limited gains in accuracy for reference panels over 500 individuals. 590	
  

Similar results are obtained for simulations of African Americans (see Supplemental Figure 

2). 

 

Figure 3. Estimates of the number of case-only variants for follow-up for the AllPop 

method for various numbers of additional comparison populations. Starting form the results 

of the PopMatched, FNR < 5% approach (shown at x-axis=0 in the plot) additional 

randomly chosen populations are added to the reference panels. Increasing the amount of 

information about various populations can further reduce the number of variants for follow-

up analysis thus increasing the efficacy of filtering. 
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 600	
  

Figure 4. Population matching using local ancestry information improves performance over 

local ancestry naïve population matching in admixed populations. The MXL has worse 

local ancestry aware performance as compared to local ancestry naïve performance likely 

due to reference panels being poorly matched given the high levels of diversity in 

Mexicans. 
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