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Abstract
Cellular information processing is generally attributed to the complex networks of

genes and proteins that regulate cell behavior. It is still unclear, however, what are the
main features of those networks that allow a cell to encode and interpret its ever changing
environment. Here we address this question by studying the computational capabilities
of the transcriptional regulatory networks of five evolutionary distant organisms. We
identify in all cases a cyclic recurrent structure, formed by a small core of genes, that
is essential for dynamical encoding and information integration. The recent history of
the cell is encoded by the transient dynamics of this recurrent reservoir of nodes, while
the rest of the network forms a readout layer devoted to decode and interpret the high-
dimensional dynamical state of the recurrent core. This separation of roles allows for the
integration of temporal information, while facilitating the learning of new environmental
conditions and preventing catastrophic interference between those new inputs and the
previously stored information. This resembles the reservoir-computing paradigm recently
proposed in computational neuroscience and machine learning. Our results reveal that
gene regulatory networks act as echo-state networks that perform optimally in standard
memory-demanding tasks, and confirms that most of their memory resides in the recurrent
reservoir. We also show that the readout layer can learn to decode the information stored
in the reservoir via standard evolutionary strategies. Our work thus suggests that recurrent
dynamics is a key element for the processing of complex time-dependent information by
cells.

Summary
Cells must monitor the dynamics of their environment continuously, in order to adapt

to present conditions and anticipate future changes. But anticipation requires processing
temporal information, which in turn requires memory. Here we propose that cells can
perform such dynamical information processing via the reservoir computing paradigm.
According to this concept, a structure with recurrent (cyclic) paths, known as the reservoir,
stores in its dynamics a record of the cell’s recent history. A much simpler feedforward
structure then reads and decodes that information. We show that the transcriptional gene
regulatory networks of five evolutionary distant organisms are organized in this manner,
allowing them to store complex time-dependent signals entering the cell in a biologically
realistic manner.

Introduction 1

The survival of any cell, either as an individual entity or as part of a multicellular organ- 2

ism, depends on its capacity to respond to changes in the environment. In a wide variety of 3
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situations such as stress responses, morphogen-driven embryogenesis, immune responses, and 4

metabolic adaptations to varying energy sources, cells need to sense multiple signals in their 5

surroundings, integrate them, and activate an adequate response. Orchestrating the best pos- 6

sible response with the right intensity is crucial, but so is doing it at the right moment and 7

promptly enough. The importance of timing and speed implies that cells able to anticipate 8

changes in the environment have a critical advantage. 9

Although many changes in the environment are stochastic from the point of view of a cell, 10

many others are predictable. In many cases, the likelihood of future events is encoded by the 11

recent history of the cell’s environment. In these cases, the ability to use the temporal character 12

of the information is clearly beneficial. Periodic changes in the environment, for example, 13

can be anticipated through molecular oscillators or cellular clocks, as seen in the way most 14

organisms on earth anticipate daily light-dark cycles, including relatively simple cyanobacteria 15

(Golden et al., 1997; Mori and Johnson, 2001). Another example is given by groups of events 16

that tend to occur together or in a specific order. This kind of association, for instance, allows 17

the bacterium Escherichia coli to prepare for oxygen depletion when it senses an increase 18

in temperature, an indication that it has been ingested by a mammal (Tagkopoulos et al., 19

2008). Similarly, enterobacteria anticipate sequential changes in sugars as they pass through 20

the intestinal tract, and yeast cells expect a specific sequence of stresses during alcoholic 21

fermentation (Mitchell et al., 2009). Pathogenic microbes are also known to detect variations 22

in their environment to anticipate changes in the host-pathogen interaction cycle (Rodaki 23

et al., 2009; Schild et al., 2007). Furthermore, experimental evolution studies have shown that 24

predictive environmental sensing can evolve in relatively short periods of time in a laboratory 25

setting (Dhar et al., 2013). 26

Beyond the ability to associate concurrent events, recent studies have shown that microbes 27

exhibit both short- and long-term memory. The stress response of Bacillus subtilis, for example, 28

depends not only on the condition in which it is currently growing but also on past growth 29

conditions (Wolf et al., 2008). However, the way in which this record of previous history – 30

i.e. memory– is integrated and stored in cells is not yet fully understood. Knowledge of the 31

conceptual limits of this cellular memory is also scarce. Since memory is a key limitation to 32

recognizing temporal structures, the prediction capabilities of cells remain to be delimited as 33

well. 34

While the passive prediction mechanisms of cells usually involve small circuits with only 35

a handful of biomolecules (such as in genetic clocks), cellular adaptability relies in general 36

on a complex network of interactions between genes and proteins, frequently at the level of 37

transcriptional regulation (Lee et al., 2009; Martínez-Antonio and Collado-Vides, 2003). Here 38

we hypothesize that the global structure of this network determines how memory is encoded. 39

Specifically, we aim to establish how gene regulatory networks integrate complex inputs, and 40

especially how they process time-varying information. By analyzing different organisms, we 41

propose that gene regulatory networks encode temporal information in a state-dependent man- 42

ner: the recent history of the cell is encoded in the complex transient dynamics of the network, 43

through the interaction between its internal state (which depends on its recent past) and the 44

external inputs that are currently being received by the system. In the field of neural net- 45

works, this strategy has come to be known as reservoir computing (encompassing the concepts 46

of echo-state network from machine learning (Jaeger, 2001b) and liquid-state machine from 47

computational neuroscience (Maass et al., 2002)). 48

Reservoir computing is a functional network paradigm that allows processing of temporal 49

information while featuring a very efficient learning process. Its key characteristic is that it 50

separates memory encoding and prediction in two different network substructures (Fig. 1). 51

The first substructure, known as the reservoir, contains recurrent connections (i.e. cyclic 52

paths) and encodes information by projecting the stimulus nonlinearly into a high-dimensional 53

space (Buonomano and Maass, 2009). The recurrent network of the reservoir allows it to 54

retain information for a certain time, providing fading memory to the system. The second 55

substructure, the readout layer, is a feedforward structure (i.e. a directed acyclic graph) 56

placed downstream of the reservoir. This readout layer uses the history record encoded in the 57

state of the reservoir to make a prediction or classification. Feedforward structures, lacking 58
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Figure 1: Structural and functional organization of reservoir computing. The reservoir
(green) is a subgraph with cyclic paths that can maintain a record of the recent history in its dynamics.
The readout (red) is a directed acyclic subgraph that reads the information encoded in the reservoir
state to perform a given task. The structures shown correspond to the Escherichia coli network (see
Results). The nodes in the readout are grouped by the length of the longest path reaching them from
the reservoir.

cyclic paths, are much easier to train (i.e. to adapt the strength of the interactions to produce 59

the expected dynamics). This separation of roles allows the training process to be focused 60

solely on the readout, giving this method the computational power of a recurrent network 61

combined with the ease of training of a feedforward architecture (Buonomano and Maass, 2009). 62

Furthermore, by adding independent readouts the system avoids catastrophic interference, i.e. 63

it can incorporate additional tasks without interfering with the existing ones (Lukoševičius and 64

Jaeger, 2009). 65

In this study we propose that transcriptional networks can operate according to the reser- 66

voir computing paradigm. To do so, we first analyze the topology of the gene regulatory 67

networks of five different, evolutionary distant organisms, and examine how efficient these net- 68

works are at encoding and processing time-varying signals. Next we show that this capability 69

can be attributed to the reservoir-like structures found in the networks. We then consider 70

biologically realistic inputs, in the form of different types of stress signals, and investigate how 71

the information arriving through the corresponding pathways can be stored in the reservoirs. 72

Finally, we show that the readout layer can be trained in a biologically realistic manner through 73

evolutionary processes. 74

Results 75

Network structure 76

We analysed the transcriptional networks of five evolutionary distant organisms: Bacillus sub- 77

tilis, Escherichia coli, Saccharomyces cerevisiae, Drosophila melanogaster, and Homo sapiens. 78

The regulatory interaction data was obtained from different publicly available databases and 79

publications (see Methods section). We limited ourselves to gene regulatory networks because 80

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 5, 2017. ; https://doi.org/10.1101/010124doi: bioRxiv preprint 

https://doi.org/10.1101/010124
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: Relative sizes of functional groups for each network. The fraction of the total
number of nodes that belong to each network substructure are shown. Reservoir nodes are the ones
left over after network pruning. The nodes placed downstream of the reservoir are assigned to the
readout structure, distinguishing between terminal nodes, which have zero out-degree, and the rest.
Finally, all nodes that do not fall in any of the previous groups are counted as ‘others’.

in other types of cellular networks (such as protein-protein interaction networks) the direc- 81

tionality of the interactions, and thus of the information flow, is not so well documented. 82

Additionally, the degree distributions of all the networks show that they have a non-trivial 83

structure, resembling in most of the cases a scale-free architecture (Fig. S1, see also top half 84

of Table 1 for other network descriptors). 85

Table 1: General properties of the gene regulatory networks and their recurrent cores.
Nodes Edges Self loops Mean degree

Whole graph
B. subtilis 886 1358 49 3.06
E. coli 3236 8366 126 5.17
S. cerevisiae 6725 201972 197 60.06
D. melanogaster 9432 231174 0 49.01
H. sapiens 16354 163271 28 19.96

Recurrent core
B. subtilis 13 30 7 4.61
E. coli 70 317 55 9.05
S. cerevisiae 289 9046 195 62.60
D. melanogaster 486 23470 0 96.58
H. sapiens 207 1434 26 13.85

Despite the complexity and large size of the networks, only the subgraphs containing recur- 86

rent connections are relevant for information processing according to the reservoir computing 87

paradigm (Rodan and Tino, 2011). To identify these substructures, we pruned the networks 88

by eliminating all the strictly feedforward nodes (see Methods section). The pruning process 89

consists in iteratively removing all the nodes with either no output or no input connections 90

until no more nodes can be removed. This procedure leads to a single main recurrent structure 91

in each network, which will be referred to in what follows as the core or reservoir of the network 92

(bottom half of Table 1). As can be seen in Fig. 2, the recurrent cores in all five cases are much 93

smaller, in terms of number of genes involved, than the corresponding whole network (see also 94

Table 2). 95

In order to establish where each small subgraph of nodes is located within its network, we 96

also show in Fig. 2 the fraction of genes located downstream of the reservoir (forming what we 97

call the readout, following the organization depicted in Fig. 1). It can be observed that the vast 98
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Table 2: Number of nodes in the different network substructures.
Total Reservoir Readout (terminal) Other

B. subtilis 886 13 537 (500) 336
E. coli 3236 70 3133 (3025) 33
S. cerevisiae 6725 289 6436 (6419) 0
D. melanogaster 9432 486 8795 (8721) 151
H. sapiens 16354 207 13497 (13449) 2650

majority of nodes are placed downstream of the recurrent core (the nodes labeled other are 99

either upstream of the reservoir or fully isolated)1. The obvious implication of the location of 100

the core is that most of the network is affected by its dynamics. It is worth noting again that 101

by definition there are no recurrences outside the reservoir, and thus none of the readout nodes 102

can affect back the reservoir. Furthermore, Fig. 2 also shows that a very large proportion of the 103

readout nodes are terminal (i.e. nodes with no output connections). That limits the potential 104

complexity of the readout topology, and thus its ability to process information, giving an even 105

more central role to the recurrent core or reservoir, as we show below. 106

Encoding ability 107

Next, we inquired if these recurrent cores are able to encode temporal information in their 108

dynamics. To do so we confronted them to the 10th order Nonlinear Auto-Regressive Moving 109

Average (NARMA) task, a memory-demanding benchmark commonly used in the reservoir 110

computing context (Appeltant et al., 2011) (see Methods section). To test if the dynamics of 111

the network cores can represent the recent history, the network was simulated with simplified 112

dynamics and a time-varying random input (zt in Fig. 3) was applied to it. Then, an ad hoc 113

readout node was trained (i.e. the readout weightsW out are adjusted) to reproduce the output 114

yt of the 10th order NARMA system using only the instantaneous state of the network (Fig. 3). 115

The challenge is that the output of the 10th order NARMA task depends on the input and 116

output values of the last 10 time steps. This information about the past must be encoded in 117

the reservoir state for the output ỹt of the readout node to be able to accurately model the 118

NARMA system. Fig. 4 shows a representative time trace of the input signal zt, the actual 119

NARMA system output yt, and the reconstruction ỹt obtained with each of the biological 120

networks. The figure shows that the reconstructed output mimics closely the expected output 121

for large enough reservoir sizes (bottom four rows, see Table 2 for core sizes). 122

Input
signal (zt)

Input
weights (V)

Output (ỹt)

Readout
weights (Wout)

Reservoir state (X)
and internal weights (W)

Figure 3: Setup to test the memory of a network. A reservoir is built with a connectivity
matrix W extracted from the topology of the biological network. An input signal zt is applied to the
nodes of the reservoir with different strengths, defined by the input weight vector V . Then, one or
more readout nodes compute a weighted sum of the state of the reservoir X. The weight vector W out

is tuned so that the output ỹt of the readout approximates a target output signal yt.

1The list of genes belonging to each of the substructures for the five networks, and the connections between
them, is given in Dataset 1.
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Figure 4: Representative time series of the test phase of a 10th order NARMA task. For
each biological network studied, pruning was used to build a reservoir core, and a readout node was
trained to reconstruct the output of the 10th order NARMA system, using the state of this reservoir.
Gray lines represent the random input of the system, black lines the actual output of the NARMA
function, and colored lines the output reconstructed by the readout node in each case.

We next compared the performance of our biological networks with the de facto standard 123

topologies in the reservoir computing literature. To quantify this performance we used the 124

Normalized Root Mean Squared Error (NRMSE) between the reconstructed and the expected 125

output signals (see Methods section). Fig. 5 shows the median NRMSEs achieved by our reser- 126

voirs, and compares them with control topologies of diverse core sizes. The control networks 127

take the form of random (Erdös-Renyi) echo-state networks for which the network density 128

(dESN) or mean degree (kESN) are kept constant (and equal to their biological counterparts) 129

as the network size varies. We also include results for simple cycle reservoirs (SCRs), linear 130

cyclic reservoirs with the minimum recurrence that allows them to operate as echo-state net- 131

works (Rodan and Tino, 2011). As the figure shows, all the biological cores perform as well 132

as the random dESN and kESN control networks of the same size, and for large enough core 133

sizes (S. cerevisiae, D. melanogaster, H. sapiens), the performance is much better than the 134

corresponding SCR. In fact, differences between SCR and both the biological networks and 135

ESN variants increase with size within the interval analysed. Results also suggest that the 136

different performance of each GRN is related with their size. In this regard it is worth noting 137

that despite the fact that the number of edges in the control networks scales linearly with the 138

size for kESNs and quadratically for dESNs, they show similar performance to each other for 139

all the range of sizes. That discards any major effect of the number of edges in the performance 140

of the reservoir in these conditions. 141

To quantify the amount of temporal information that our networks can store, we computed 142

their critical memory capacity (maximum number of past time steps that can be recovered with 143
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Figure 5: Performance of the biological reservoirs compared with control topologies.
Performance is evaluated with the Normalized Root Mean Squared Error (NRSME) between expected
and reconstructed outputs. The NRMSE value shown for each biological network topology corresponds
to the median of 10000 trials (with edge weights and data series randomization). The values plotted
for each control network (dESN, kESN and SCR) correspond to the median value of 100 trials for
each network size from 10 to 500 nodes. In each case, dESN and kESN are produced keeping the
network density and mean degree, respectively, of the biological core with which they are compared
(see Methods section).

a given accuracy). For each gene regulatory network, we applied this test to three subnetworks: 144

the recurrent reservoir, the readout, and the largest connected component (which contains the 145

first two). The results shown in Fig. 6 confirm that most of the ability of our networks to encode 146

history is provided by their reservoirs (the green and blue bars in the figure have very similar 147

heights in all cases). In contrast, the readouts have much lower memory capacities, in spite of 148

being much larger in size than the reservoirs, see Fig. 2. The critical memory capacities of the 149

readouts are mainly determined by length of the longest path (Fig S2), as expected from their 150

feedforward structure. These results confirm that the recurrent cores are responsible for most 151

of the capacity to dynamically store temporal information of the gene regulatory networks. 152

We have considered so far that information is introduced in the reservoirs via randomly 153

selected nodes. However, realistic biological inputs act upon specific sets of nodes. To deter- 154

mine whether the reservoir computing paradigm holds in the presence of such realistic inputs, 155

we identified nodes from the reservoir that belonged to particular stress-response pathways, 156

and studied the effect of the corresponding stresses. We worked specifically with the E. coli 157

reservoir in order to keep a balance between methodological tractability and network perfor- 158

mance. For each stress type, each reservoir node was scored depending on the level of evidence 159

(according to the literature cited in the EcoCyc database) supporting that the stress signal 160

acts upon it. Table 3 lists the number of nodes that are considered to receive information from 161

every stress with a confidence score equal or larger than a given threshold (see Dataset 2 for a 162

detailed list). 163

We next subjected the E. coli reservoir to a variation of the NARMA test, in which the 164

stress signals act solely upon the input genes selected above. Figure 7 shows the resulting 165

NRMSE as a function of the number of input nodes for the different stresses (encoded with 166

distinct colors), and for all confidence thresholds (which correspond to different sizes, according 167

to Table 3). As a control, the figure also shows the NRSME obtained applying the input signal 168

to random sets of nodes (gray line). The most obvious conclusion from these results is that 169

biologically realistic inputs are as efficient as randomly selected nodes at encoding information 170

in the reservoir. Also, the precision of the system increases monotonically with the size of the 171

input set, and eventually saturates. Besides, it is noteworthy that although the different stress 172

signaling pathways affect different sets of nodes, their ability to introduce information in the 173

system is comparable. This highlights the fact that memory is encoded in the network in a 174
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Figure 6: Critical memory capacity of the different network substructures. Results are
shown for the reservoir (green) and readout (red) substructures, and for the largest connected com-
ponent —which comprises the other two— (blue), for each of the gene regulatory networks analyzed.
Median values are shown (n = 30 trials). The error bars indicate the 98% confidence interval (CI)
computed by bootstrapping.

Table 3: Number of nodes affected by stress type for each evidence threshold.
Evidence threshold

Stress type 1 2 3 4 5
Antibiotics 16 10 6 3 1
Anaerobiosis 6 6 5 3 2
Osmotic stress 13 13 7 6 3
Oxidative stress 17 17 13 9 5
Starvation 30 29 25 18 10
Changes in temperature 8 8 7 6 5
Changes in pH 15 14 10 7 1
Any stress 58 57 52 43 29

delocalized manner, without depending on specialized circuits or structures. 175

Finally, we tested whether biological processes can shape a readout structure that can use 176

the temporal information encoded in the dynamics of a reservoir. Specifically, we examined 177

if a readout can be evolved in a situation where the information about recent events gives 178

a evolutionary advantage. For that purpose, we simulated an evolutionary process using the 179

covariance matrix adaptation evolutionary strategy (CMA-ES) (Jiang et al., 2008). Using the 180

E. coli reservoir, a population of single-node readouts was let to evolve with a selective pres- 181

sure to predict the 10th order NARMA system. Figure 8 features a representative instance of 182

such evolutionary processes (green), compared with the behavior of a standard ridge regres- 183

sion training method (purple). The performance of both types of readouts were practically 184

indistinguishable after 2000 generations, indicating that evolution can, indeed, tune a readout 185

structure to read the temporal information stored in a reservoir. 186

Discussion 187

In the present study we propose a new paradigm to understand how cellular regulatory networks 188

can store and process temporal information. Specifically, we suggest that these networks can 189

function as reservoir computing systems. A division of labor allows to separate the processes of 190

memory encoding and decision making in two distinct regions of the network. The first region, 191

the reservoir, has recurrences —i. e. cyclic paths— that give it a fading memory property so 192

that it can efficiently encode recent history. The latter region, the readout, has a feedforward or 193
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Figure 7: Efficiency of signaling pathways feeding an input signal to the reservoir. Median
NRMSE obtained in the NARMA test using as input nodes those genes affected by signaling pathways
that react to different stress types. The gray line marks the NRMSE obtained when applying the
input to a random set of nodes of a given size. The median values are shown of 1000 replicates for
each random input size and 2000 for each biological input set. Error bars and shaded area indicate
the 98% CI computed by bootstrapping.

Figure 8: Training of a readout through an evolutionary process. NRMSE during the
evolutionary training process of a readout for the E. coli reservoir. The weights of the reservoir node
were trained using the CMA-ES (Jiang et al., 2008) algorithm to model the 10th order NARMA
system Conceptually, a population of 200 candidate solutions is let to evolve while giving a selective
advantage to those obtaining a lower NRMSE. The green line shows the NRMSE of the centroid of the
best solutions in each generation. The purple line shows the NRMSE obtained in the same situation
by a readout trained using standard ridge regression.

acyclic structure and uses the information it receives from the reservoir to make a classification 194

or prediction. This separation of roles allows the system to process temporal information while 195

still being very efficient when learning new tasks (Buonomano and Maass, 2009). 196

The results of analyzing gene regulatory networks of five evolutionary distant organisms 197

support this hypothesis. First, the topology of all five networks matches the structural charac- 198

teristics of a reservoir computing system. Second, we show that these loosely defined reservoir 199

structures are able to encode in their dynamics an amount of temporal information that is 200

non-trivial given their sizes. As a matter of fact, for all networks the reservoir is one to two 201

orders of magnitude smaller than the readout, and yet its critical memory capacity is up to 202

around 30 times higher. Moreover, in the case of E. coli, biological signals relevant for the 203

cell (specifically, physiological stresses) arriving at the reservoirs at different locations are en- 204
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coded with similar performance, indicating that the ability to store temporal information is 205

distributed in the reservoir. This independence of the specific entry point of the information 206

in the system confers robustness to failure: while some of the input streams may get compro- 207

mised, it is unlikely that a large group of them would fail simultaneously. Finally, we show 208

that evolution can produce readout structures that are able to decode the state of a reservoir, 209

as long as temporal information provides a selective advantage. 210

Non-recurrent gene network architectures have been proposed in the past as mechanisms 211

of information integration and storage (Bray, 1995; Scheres and Van Der Putten, 2017), as- 212

sociative learning (McGregor et al., 2012; Sorek et al., 2013), and cellular decision making 213

(Bates et al., 2015; Filicheva et al., 2016). However, processing of time-dependent information 214

requires recurrent topologies such as the ones investigated in this paper. The nonconventional 215

computation framework proposed here also implies that the integration of information is dis- 216

tributed across the network in large and diffuse structures with well-defined functional roles. 217

A similar connection between gene regulatory networks and reservoir computing systems was 218

hinted by Jones et al (Jones et al., 2007). However, that study uses as putative reservoir a 219

gene regulatory network that does not include any recurrences other than self-regulations of 220

some scarcely interconnected nodes, and the system is tested with a task that does not require 221

memory. 222

Even though it is clear that cells benefit from anticipating the environment, we know 223

no example yet of a single cellular system that processes complex temporal information in 224

nature. The most studied types of anticipation, involving periodic (Golden et al., 1997; Mori 225

and Johnson, 2001) and sequential (Mitchell et al., 2009; Tagkopoulos et al., 2008) events 226

are mechanistically fairly simple. However, ad hoc experiments have shown that Physarum 227

polycephalum, also known as slime mold, and Plasmodium cudatum can learn very efficiently 228

new temporal structures. Slime mold, in particular, can anticipate a shock after experiencing a 229

single series of three ten-minute low-temperature shocks at one-hour intervals. Moreover, if the 230

organism experiences a new shock several hours later, it pre-emptively reacts to the two missing 231

following shocks (Saigusa et al., 2008). Similarly, P. cudatum can learn that an electric shock 232

follows an innocuous vibratory or luminous stimulus (Armus et al., 2006; Hennessey et al., 233

1979). All these results hint at capabilities to learn temporal structures larger than what can 234

be easily explained with current models. 235

We propose that cells can process temporal information and anticipate their environment by 236

using their regulatory networks as computational reservoirs. To that end, here we explored the 237

potential of transcriptional networks to encode the recent history of cells, but other regulatory 238

networks such as protein-protein interaction or metabolic networks may play a similar role. 239

The combination of the different timescales (minutes or seconds) and learning mechanisms 240

(evolution, chromatin regulation for transcriptional reservoirs, or expression regulation for 241

post-transcriptional reservoirs) could give rise to much richer behaviours. 242

In our study, the dynamics of the networks have been largely simplified with a formal- 243

ism used for neural networks. The real dynamics, with nonlinear interactions and different 244

time scales for each gene, would add more complexity to the network behaviour and increase 245

the memory of the system (Büsing et al., 2010; Dambre et al., 2012; Tanaka et al., 2016). 246

Furthermore, the interaction of layers of regulatory networks with different time scales —e.g. 247

transcriptional, protein protein interaction or metabolic networks— also could increase the 248

memory capacity of the system (Dambre et al., 2012; Gallicchio and Micheli, 2016). Far from 249

invalidating our results, our simplification of the dynamics makes our tests more stringent. 250

Additionally, the NARMA task is known to be highly demanding, as it requires a significant 251

level of precision in the results. Probably life does not need to be as precise. 252

Methods 253

Cellular regulatory networks 254

We used published transcriptional regulatory interactions to build our gene regulatory net- 255

works. Data for Bacillus subtilis was obtained from DBTBS (Sierro et al., 2008). Data for 256
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Escherichia coli was extracted from EcoCyc (Keseler et al., 2011), including the sigma factors 257

as transcription factors. Data for Saccharomyces cerevisiae was obtained from YEASTRACT 258

(Teixeira et al., 2014). The gene regulatory network for Drosophila melanogaster was obtained 259

from the modENCODE initiative (Roy et al., 2010). Finally, data for Homo sapiens was 260

extracted from the ENCODE project (Gerstein et al., 2012). 261

Network pruning 262

The networks were simplified to a minimal recursive subgraph, i.e. a subgraph containing only 263

the nodes and edges that form cyclic paths and the nodes that interconnect them. To do so we 264

pruned the networks by iteratively removing any node that had either in-degree or out-degree 265

equal to zero, until no more nodes could be removed. 266

Simulation of network dynamics 267

The dynamics of the gene regulatory networks were simulated using a discrete time updating 268

rule defined as 269

xi,t+1 = tanh

vizt +
n∑

j=1
wijxj,t

 , (1)

where we follow the notation shown in Fig. 3: zt is the system input at time t, xi,t is the state 270

of the i node of the reservoir at time t (corresponding to the elements of the reservoir state 271

vector X), n is the number of nodes in the reservoir, wij is the weight of the link from the jth 272

to the ith node (representing the elements of the weighted adjacency matrix W ), and vi is the 273

weight of the link from the input to the ith node (corresponding to the elements of the input 274

weight vector V ). The values of vi are randomly chosen to be either −0.05 or 0.05. At the same 275

time, the values of wij are real numbers drawn from a uniform distribution between −1 and 1 276

if the link exists, and 0 otherwise (if the sign of the interaction, i.e. activation vs repression, 277

is known, the sign of wij is set accordingly). Additionally, the W matrix was normalized to 278

have a spectral radius of 0.9 to assure the echo-state property (Jaeger, 2001b; Lukoševičius 279

and Jaeger, 2009). 280

NARMA task 281

The Nonlinear Auto-Regressive Moving Average (NARMA) task has been widely used as a 282

memory test in the context of reservoir computing (Jaeger, 2002). It consists in training a 283

network to model the output of the 10th order NARMA system (Atiya and Parlos, 2000), 284

a discrete time system where the input values s(t) are drawn from the uniform distribution 285

U(0, 0.5) and the output y(t) is defined by 286

y(t+ 1) = 0.3y(t) + 0.05y(t)
9∑

i=0
y(t− i) + 1.5s(t− 9)s(t) + 0.1 (2)

For the task, we simulated a network with the studied topology with a single input node 287

feeding the s(t) series in the system. A readout node was then trained via ridge regression 288

(see below) to model the y(t) series. For each realization a NARMA series of 10000 steps was 289

generated, using 9000 of them for the training phase and 1000 to test the performance. The 290

evaluation of the NARMA modeling was done using the normalized root mean squared error 291

measure, defined as 292

NRMSE =

√
〈(ỹ(t)− y(t))2〉t
〈(y(t)− 〈y(t)〉t)2〉t

, (3)

where ỹ(t) is the output predicted by readout, y(t) is the output of the actual NARMA system, 293

and 〈·〉t indicates the mean over time. 294

The following topologies were used as controls: 295

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 5, 2017. ; https://doi.org/10.1101/010124doi: bioRxiv preprint 

https://doi.org/10.1101/010124
http://creativecommons.org/licenses/by-nc-nd/4.0/


• Echo State Network – fixed mean degree (kESN): Erdös-Rényi random network with the 296

same mean degree (2 × nedges/nnodes) as the topology of the corresponding biological 297

network. 298

• Echo State Network – fixed network density (dESN): Erdös-Rényi random network 299

with the same network density —i.e. fraction of existing links over all possible ones— 300

(nedges/n
2
nodes) as the topology of the corresponding biological network. 301

• Simple Cycle Reservoir (SCR): a directed circular graph, which is the simplest topology 302

that can work as a computational reservoir (Rodan and Tino, 2011). 303

Note that for control networks with the same number of nodes as the problem topology, kESN 304

is equal to dESN. This is not the case, however, when the number of nodes changes. 305

Ridge regression nodes 306

A ridge-regression readout computes a weighted sum of the state of the nodes it receives 307

information from (Fig. 3): 308

Ỹ = W outX , (4)

where W out is a vector of the wout
i weights given to the ith node by the readout, and Ỹ is a 309

vector with all predicted outputs over time. A ridge regression is a type of linear regression in 310

which the regression coefficients are obtained from 311

W out = Y XT
(
XXT + γ2I

)−1
, (5)

where XT is the transpose of X, Y is a matrix with all expected outputs over time, I is the 312

identity matrix and γ is a regularization parameter. 313

Ridge regression favors regression coefficients with smaller absolute values. In doing so it 314

introduces a certain bias, but on the other hand it also reduces the variance of the estimate. 315

This allows estimating the parameters of a linear regression when the predictor variables are 316

strongly correlated, making it a common readout choice in the context of reservoir computing 317

(Wyffels et al., 2008). 318

Critical memory capacity 319

To quantify the memory of our networks, we applied a variation of the short-term memory 320

capacity (Boedecker et al., 2012; Jaeger, 2001a). Specifically, we simulated the network with 321

a single input node feeding a signal u(t) drawn from a random uniform distribution between 322

−1 and 1. Then, a ridge-regression node was trained to obtain an output ỹ(t) that aims to 323

reconstruct a delayed version of the input signal u(t−k). The k-delay memory capacity (MCk) 324

is then defined as 325

MCk = cov2(u(t− k), ỹ(t))
σ2(u(t− k)) · σ2(ỹ(t)) (6)

The short-term memory capacity is typically defined as MC =
∑∞

k=1 MCk, where the 326

infinite summation is approximated by a long enough finite one (Boedecker et al., 2012; Jaeger, 327

2001a). The limitation, though, is that the time series needs to be orders of magnitude longer 328

than the size of the network to ensure that limk→∞MCk = 0. Otherwise, MCk will never 329

reach 0 and MC will never converge. Since we dealt with fairly large networks, computing the 330

short-term memory capacity with a reasonable precision was not feasible. As an alternative 331

measure we defined the critical memory capacity k∗ as the maximum delay k that fulfills 332

MCk > 0.5. 333
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Stress signal inputs 334

We analyzed which of the 70 genes present in the E. coli reservoir were known to be affected 335

by signaling pathways that react to different stress classes. Biological stresses of seven dif- 336

ferent classes were considered, namely: presence of antibiotics, anaerobiosis, osmotic stress, 337

oxidative stress, starvation, changes in temperature, and changes in pH. Using the annota- 338

tions of the Ecocyc database (Keseler et al., 2011), we manually set a confidence score to 339

each possible stress-gene interaction. This score indicates the level of evidence supporting that 340

the product of a given gene is affected by a signaling pathway in response to a given stress. 341

Both post-transcriptional and transcriptional regulations were considered to determine if a 342

signaling pathway could reach a given gene, as long as they were not already included in the 343

network structure (i.e. only transcriptional interactions coming from outside the reservoir were 344

considered). 345

Using this information, an input weight vector V was constructed for each stress class and 346

confidence threshold. Given a threshold, all interactions with lower score were set to zero while 347

the others were initiated normally. Additionally, the sign of each entry was set to be positive 348

(negative) if the interaction was known to produce an activation (repression) of the gene, and 349

randomly set otherwise. 350

Evolutionary training 351

Reservoir computing usually relies on ridge regression, described above, to train the readout 352

weights. Cellular networks, however, should use biologically realistic means to perform this 353

training. A reasonable possibility is that the readout weights are tuned through evolutionary 354

processes. To assess this possibility, we used here an evolutionary algorithm. Starting from 355

a first generation of random candidate weight vectors, we iteratively generate new genera- 356

tions by duplicating and introducing variations to the best performing solutions in the current 357

generation. 358

Specifically we used the implementation of the Covariance Matrix Adaptation Evolutionary 359

Strategy (CMA-ES) algorithm (Jiang et al., 2008) provided in the package ‘Distributed Evo- 360

lutionary Algorithms in Python’ (DEAP) (Gagn, 2012) . The CMA-ES algorithm learns the 361

covariance matrix of mutations in successful individuals, so that beneficial mutations are sam- 362

pled more often. This approach reduces the computational cost while preserving the biological 363

relevance. 364

In Fig. 8, a single input node feeds into the E. coli reservoir a s(t) signal drawn from a 365

random uniform distribution U(0, 0.5). Besides, the input vector V was defined so that the 366

signal would only reach genes known to be affected by at least one stress type with a confidence 367

score of 3 or more. Then, a population of readout nodes represented by their weight vectors 368

W out was let to compete and evolve, giving a selective advantage to the ones that reproduced 369

better the output of the NARMA system. Furthermore, for each generation in the evolutionary 370

process a new realization of the s(t) input signal was used, recomputing the reservoir dynamics 371

and the expected output. On the other hand, the internal weights of the reservoir W and the 372

input weights V were kept constant for the whole simulation. 373
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Supporting information

Figure S1: Degree distribution of the gene regulatory networks. Each plot corresponds
to one of the networks: Bacillus subtilis (A), Escherichia coli (B), Saccharomyces cerevisiae (C),
Drosophila melanogaster (D), and Homo sapiens (E). In the case of Saccharomyces cerevisiae, the
deviation observed in the degree distribution plot (panel C) is thought to be an artefact: since most
of the data in this database comes from compiling a large number of low throughput studies, nodes
with lower degree can be expected to be under-represented, as studies tend to focus on genes involved
in more regulatory interactions.
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Figure S2: Topology and critical memory capacity of the readout structures of the gene
regulatory networks. Hierarchical representation of the readout of the five gene regulatory networks:
B. subtilis (A), E. coli (B), S. cerevisiae (C), D. melanogaster (D), and H. sapiens (E). Nodes are
ordered in layers from top to bottom according to the length of the longest path reaching them from
the reservoir. Panel (F) shows the relation between the length of the longest path in each of the
readouts and their critical memory capacity k∗, which measures the number of time steps in the past
that can be remembered with a certain precision in the system dynamics.
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