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Abstract 

Chromatin modifiers and histone modifications are components of a chromatin-

signaling network involved in transcription and its regulation. The interactions 

between chromatin modifiers and histone modifications are often unknown, are 

based on the analysis of few genes, or are studied in vitro. Here, we apply 

computational methods to recover interactions between chromatin modifiers 

and histone modifications from genome-wide ChIP-Seq data. These interactions 

provide a high-confidence backbone of the chromatin-signaling network. Many 

recovered interactions have literature support; others provide hypotheses about 

yet unknown interactions. We experimentally verified two of these predicted 

interactions, leading to a link between H4K20me1 and members of the Polycomb 

Repressive Complexes 1 and 2. Our results suggest that our computationally 

derived interactions are likely to lead to novel biological insights required to 

establish the connectivity of the chromatin-signaling network involved in 

transcription and its regulation. 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 8, 2014. ; https://doi.org/10.1101/010132doi: bioRxiv preprint 

https://doi.org/10.1101/010132


Perner et al. 2

Introduction 

Transcription and its regulation are facilitated by a complex interplay between 

various molecular players such as transcription factors, chromatin modifiers 

(CMs), histone modifications (HMs) and RNA polymerase II (Pol II). Together 

these components form a chromatin-signaling network (1) whose signaling 

activity affects the transcriptional and the chromatin state of a particular 

genomic region. Thus, it is not surprising that the presence of certain HMs at the 

promoter or the gene body coincides with the transcriptional status of the 

corresponding gene (2, 3). This close link is further substantiated by the finding 

that there is even a quantitative relationship between HM levels and the steady 

state level of mRNAs (4-6). 

HMs are closely linked to the transcriptional process but their functional 

role in transcription remains largely unknown. On one hand HMs may modulate 

the stability of nucleosomes or the chromatin conformation (7) and thereby 

directly interfere with Pol II recruitment or processivity. On the other hand, HMs 

may play an indirect role by recruiting CMs to well-defined regions of the 

genome. Thus, because histones are firmly bound to DNA, HMs may restrict the 

signaling activity to certain genomic features such as enhancers and promoters. 

The activity of the chromatin-signaling network leads to co-localization of 

HMs and CMs on the genome, which can be determined by Chromatin 

Immunoprecipitation followed by sequencing (ChIP-Seq; (8-10)). Accordingly, 

clustering HM and CM ChIP-Seq data identifies patterns of co-localized HMs and 

CMs, which can be associated with genomic features like enhancers and 

promoters (11). The co-localization pattern specific to e.g. promoters unravels 
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those CMs and HMs that constitute the building blocks of the underlying 

chromatin-signaling network. However, such an analysis is unlikely to identify 

the specific interactions between CMs and HMs. 

Recently, two approaches, one based on Bayesian Network inference (12) 

and the other on a maximum entropy framework (13), have been proposed to 

infer chromatin-signaling networks in Drosophila melanogaster. Both approaches 

require discrete data. This, however, involves difficult decisions on optimal 

decision thresholds. To circumvent these problems we use the ChIP-Seq levels 

directly and infer a human chromatin-signaling network. We construct this 

network drawing on two complementary philosophies. We model each HM level 

as a weighted linear combination of the CM levels and select those CMs that have 

the most consistent quantitative information about the HM level using Elastic 

Nets (14). This approach accounts for interactions induced by correlations 

between CMs, but is not able to remove interactions induced by correlations 

between HMs. Consequently, we prune the so-derived candidate chromatin-

signaling network by computing sparse partial correlation networks (15), which 

is aimed to identify direct interactions between HMs and CMs accounting for 

correlations between CMs and HMs. 

Results 

HMs and CMs hold redundant information about gene expression 

As both, HMs and CMs, are components of the chromatin-signaling network 

involved in transcription and its regulation, both should contain information 

about gene expression. To test this idea we used linear regression models to 
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predict gene expression values from HM or CM levels at promoters in the human 

K562 cell line. The HM levels explain 76% of the variance in gene expression 

(Figure 1A), which is similar to the results from earlier work (4-6). The CMs 

capture 75% of the variance in gene expression (Figure 1B). The good predictive 

performance confirms that both HMs and CMs contain extensive information 

about gene expression. 

If HMs and CMs reflect the same chromatin-signaling network, both 

should contain redundant information about gene expression such that 

combining them should yield only a marginal increase in the predictive power. 

Indeed, using both, CMs and HMs, improves the explained variance in gene 

expression only by 3% (4%) compared to using only HMs (CMs) at the expense 

of a higher model complexity (Figure 1C). Thus, these findings support that CMs 

and HMs jointly constitute a chromatin-signaling network involved in 

transcription and its regulation. 

CM levels predict HM levels and vice versa 

Given that CMs and HMs are coupled together by the chromatin-signaling 

network, the levels of CMs should contain information about the HM levels and 

vice versa. To test this idea we separated the HMs from the CMs and modeled 

each group of variables using the other. For each HM we built simple linear 

regression models using 10-fold cross-validation (CV) and predicted the HM 

level based on a weighted combination of the CM levels.  For all HMs the models 

account for at least 50% of the variance in the HM or CM level (Figure 2A). For 

H3K9ac, H3K4me3, H3K4me2 and H3K27ac the model explains even more than 

85% of the variance, which is close to the agreement between biological 
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replicates (Supplementary Figure S1). The high explanatory power of CMs for 

these four HMs suggests that many CMs interact with these HMs. Indeed, roughly 

half of the CMs are known to interact with modifications of the H3K4, the H3K9, 

or the H3K27 residue (Supplementary Table S1).  

We repeated this analysis by predicting CM levels from a linear 

combination of HM levels. For about half of the CMs the models account for over 

50% of the variance (Figure 2B).  Thus, for those well-predicted CMs the HMs in 

the data set cover the bulk of the recruitment mechanisms and enzymatic 

targets. 

Under the assumption that the chromatin-signaling network is a common 

mechanism underlying transcription and its regulation, we expect that the 

contribution of a CM to the prediction of an HM in one cell type is similar in 

another cell type. Thus, given the regression model trained on the data from 

K562 cells we should be able to predict the HM levels in another cell type. We 

tested this using ChIP-Seq data for 14 CMs and 11 HMs in human embryonic 

stem cells (hESCs) that were also measured in the K562 cells. Indeed, the 

regression models learned from the data available for both cell types show good 

agreement (Figure 2C and D). The lower performance of the models when tested 

on the data from a different cell type is expected due to biological variation, e.g. 

different expression levels of the CMs. Thus, the quantitative effects of the 

interactions within the chromatin-signaling network are preserved suggesting a 

cell-type independent chromatin-signaling network involved in transcription 

and its regulation. 
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From co-localization to interactions 

We have shown that CM levels accurately predict HM levels and vice versa. We 

argued that the prediction accuracy depends on the expression and biochemical 

activities of the available CMs towards the HMs. To identify CM-HM pairs that are 

likely to interact with each other, we selected those CMs that contributed most to 

the prediction of an HM level. The most straightforward approach is to select 

those CM-HM pairs that show the highest pair-wise correlation. This has been 

done in recent work by clustering HMs and CMs into correlated subgroups based 

on their co-occupancy patterns (11).  

There are groups of HMs and CMs that exhibit very high pairwise 

correlation (Supplementary Figure S2), suggesting that they are functionally 

related. However, within these groups no internal structure is visible, rendering 

an identification of interactions between the group members difficult. As CMs 

and HMs constitute a chromatin-signaling network, this high correlation is 

expected due to direct interactions between its components. However, high 

correlations could also be induced by other factors connecting the respective CM 

and HM. In general, the identity of these additional factors is not known, but we 

can account for those factors that are present in the dataset. Thus, we want to 

recover interactions between CMs and HMs that cannot be "explained away" by 

other variables in the dataset. 

We recovered these interactions by applying a two-step procedure (see 

Methods). First, we used a regularized regression technique called "Elastic Net", 

where the CMs are used to predict HMs, to select only CMs that are informative 

for the prediction of a HM. Moreover, in case of groups of strongly correlated 

CMs the members of these groups tend to remain all in the model or are removed 
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together (14). This approach accounts for possible interactions induced by 

correlations within the CMs but does not take into account correlations between 

the HMs. This indicates that highly correlated HMs might be predicted by similar 

sets of CMs, while only certain CMs actually interact with specific HMs. Second, to 

remedy this situation we used a technique called "Sparse partial correlation 

networks" (SPCN; (15)), where the pairwise rank correlation between a CM and 

a HM is conditioned on all other variables in the data set. This method takes into 

account the correlation structure of both, CMs and HMs, and is conservative in 

proposing interactions. As a consequence, in groups of strongly correlated CMs 

and/or HMs, interactions may be explained away by individual members of the 

group (15). Thus, in the SPCN framework an identified interaction is likely to 

represent a direct interaction in the sense that it cannot be explained by other 

variables in the dataset. However, the failure to recover an interaction does not 

imply the absence of a biologically meaningful interaction. Within the SPCN 

framework some interactions between CMs and HMs arise from logical 

dependencies induced by sharing a common target. Thus, to recover interactions, 

we establish first the necessary condition that a CM is consistently highly 

predictive for an HM level by the Elastic Net approach and in a second step we 

prune those interactions that may be induced by correlations between the HMs 

using the SPCN approach. Thus, we focus only on interactions that are recovered 

by both methods. These interactions may originate from a direct function of the 

CM in setting, erasing or binding the HM but also from indirect interactions via 

unobserved CMs. 
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Distinct sets of CMs associate with each HM 

In the Elastic Net network each HM is linked to a different set of CMs indicating 

the different specificities of the CMs towards the individual HMs (Supplementary 

Figure S3A). The densest part of the network connects several CMs to the HMs 

H3K4me3, H3K9ac, H3K27ac and H3K79me2. The effect of the SPCN framework 

becomes most apparent on this dense cluster (compare Supplementary Figure 

S3A and B) where most of the interactions are resolved. It is important to note 

that the lack of a predicted interaction by the SPCN is not sufficient evidence to 

prove the absence of a biological relevant interaction. However, an interaction 

recovered by both approaches is likely to represent a true interaction between 

the CM and the HM.  

The chromatin-signaling network recovers biologically meaningful interactions 

Many of the interactions identified by both Elastic Net and SPCN (Figure 3) are 

supported by published experimental evidence (Supplementary Note S1 and 

Supplementary Table S2), strengthening our confidence in the recovered 

interactions. For example, H3K27me3 has a positive interaction with members of 

the Polycomb Repressive Complex (PRC) 1 (CBX2 and CBX8; (16, 17)) and 

members of the PRC2 (EZH2 and SUZ12 (17)), as well as a negative interaction 

with Pol II phosphorylated at serine 5 (RNAPIIS5P). 

The interaction between H3K27me3 and EZH2 is direct, because EZH2 

sets H3K27me3 (18-21). The interaction between H3K27me3 and SUZ12 may be 

direct, because it cannot be “explained away” by EZH2. However, EED which 

forms a trimeric complex together with SUZ12 and EZH2 binds H3K27me3 

directly (22), and most likely explains the interaction between H3K27me3 and 
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SUZ12 (23). The interaction between the PRC1 components CBX2 and CBX8 and 

H3K27me3 is direct, because CBX2 and CBX8 bind to H3K27me3 (20).  

A negative interaction connects RNAPIIS5P and H3K27me3 in our 

network. The serine 5 phosphorylation of Pol II is mediated by the pre-initiation 

complex factor TFIIH (24-27) and is present in the initiating and the elongating 

form of Pol II (28). A role of H3K27me3 is to repress transcription, which is 

accompanied by low levels of initiating and/or elongating Pol II marked by 

serine 5 phosphorylation, explaining the negative interaction with RNAPIIS5P in 

our network. 

Using H3K27me3 as an example, these results show that our approach 

identifies biological meaningful interactions between the members of PRCs and 

H3K27me3. If we did not have any prior information about the interactions 

between H3K27me3 and PRC, we would conclude that members of the PRCs are 

involved in setting and/or reading H3K27me3 and that high levels of H3K27me3 

are incompatible with high levels of Pol II phosphorylated at serine 5. 

In summary, 19 (58%) of the 33 identified interactions are supported by 

experimental evidence as collected from the literature, showing a direct 

interaction or involving only one unobserved, additional protein (Supplementary 

Note S1 and Supplementary Table S2). Our predictions complement the 

experimental evidence obtained either in vitro or by using one or few genes as 

model system. In addition, as we used ChIP-Seq data the inferred interactions 

between CMs and HMs provide evidence for the interactions in vivo and genome-

wide. Finally, we provide testable hypotheses regarding novel interactions, 

which may be instrumental to define chromatin signaling and its impact on 

transcription. 
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Verification of two predicted interactions links H4K20me1 to Polycomb-mediated 

repression 

Two predicted interactions involve the HM H4K20me1 and CBX2 and EZH2, 

which are components of PRC1 and 2, respectively. In both cases the interaction 

is positive suggesting that CBX2 and EZH2 are involved in setting, stabilizing 

and/or reading H4K20me1.  

Given the biochemical properties of CBX2 and EZH2, a role in setting or 

stabilizing H4K20me1 seems unlikely. However, CBX2 and EZH2 may directly or 

indirectly bind to H4K20me1. To test the latter possibility, we performed an 

immunoprecipitation (IP) against H4K20me1 and probed for the presence of 

CBX2 and EZH2 (Figure 4A). The presence of a positive signal of CBX2 and EZH2 

in the H4K20me1 IP and the absence in the control IgG IP suggests that both 

proteins interact with H4K20me1 Our results are in line with the idea that 

H4K20me1 is linked to Polycomb-mediated repression by interacting with PRCs 

1 and 2. 

Discussion 

Taken together, we propose a novel computational approach to enrich for 

potential direct interactions linking CMs and HMs within a chromatin-signaling 

network. We have applied this approach to the most comprehensive set of CMs 

and HMs in human cells and identified interactions between the CMs and HMs. 

Furthermore, we have demonstrated that at least two of the predicted but yet 

unknown interactions can be verified by experimental means. These verified 

interactions provide an unexplored link between Polycomb-mediated repression 

and H4K20me1.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 8, 2014. ; https://doi.org/10.1101/010132doi: bioRxiv preprint 

https://doi.org/10.1101/010132


Perner et al. 11

Analyzing the pairwise correlation patterns between the levels of CMs 

and HMs identifies groups of CMs and HMs, which are likely to constitute the 

building blocks of a chromatin-signaling network. However, unraveling specific 

interactions between the group members by focusing only on the pairwise 

correlations is difficult. This difficulty arises from the propagation of correlations 

along the direct interactions of the network components. For example, 

H3K27me3 is set by EZH2, which is in a complex with SUZ12 and EED, which 

itself binds to H3K27me3 (Figure 5A). Thus, the H3K27me3 ChIP-Seq levels 

correlate with those of EZH2, EED and SUZ12. However, only in the case of EZH2 

and EED this is due to a direct interaction with H3K27me3. To remedy such a 

situation, in our example we need to ask how much more information SUZ12 

provides on H3K27me3 given the information provided already by EZH2 and 

EED. We achieve this by modeling H3K27me3 levels as a weighted linear 

combination of EZH2, EED and SUZ12 levels. Here, the correlations between 

EZH2, EED and SUZ12 are taken into account, such that we obtain a weight for 

SUZ12, which corresponds to the remaining information that SUZ12 has on 

H3K27me3 after the information of EZH2 and EED on SUZ12 (Figure 5B) and 

H3K27me3 (Figure 5C) has been subtracted (Figure 5D). 

We use this mathematical framework to explain away indirect 

interactions and thus to obtain the most direct interactions given the data. This 

implies that the uncovered interactions may change if additional information is 

added. For example, we had only data for H3K27me3, EZH2 and SUZ12, but 

lacked data for EED. Our analysis uncovers an interaction between H3K27me3 

and EZH2, which has been shown to set H3K27me3 (18-21). We also identified 

an interaction between H3K27me3 and SUZ12. The latter interaction is 
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independent of EZH2, but may dependent on the unobserved EED, such that the 

addition of EED to the dataset will remove the indirect interaction between 

SUZ12 and H3K27me3. 

Within this mathematical framework, we have shown that HM levels are 

accurately predicted by CM levels and vice versa (Figure 2), suggesting a close 

relationship between CMs and HMs. Given the high predictive power, we are 

confident to take the weights of the Elastic Net as evidence for an interaction 

between a HM and a CM. By combining Elastic Net and SPCN we further 

eliminated indirect interactions moving closer towards a mechanistic 

understanding of the interactions between HMs and CMs (Figure 3). 

These interactions should not be confused with causal interactions. 

Inference of causality from data requires perturbation experiments as discussed 

extensively in the literature (29). In our setting such experiments are notoriously 

difficult to perform, because perturbations of CMs usually either lead to 

pleiotropic effects, including cell death (30), or are buffered by redundant 

mechanisms (31, 32). Additionally, manipulation of the histones, i.e. single amino 

acid substitutions, is not feasible in most organisms except for yeast (33) and 

Drosophila (34, 35).  

Our analysis predicted many interactions between CMs and HMs, of which 

many are supported by the literature (Supplementary Note S1 and 

Supplementary Table S2). Others provide novel hypotheses about yet unknown 

interactions between CMs and HMs, which are amenable to experimental 

verification. To demonstrate this, we validated two interactions involving the HM 

H4K20me1 and the CMs EZH2 and CBX2 by co-immunoprecipitation (Figure 4A). 

These results link H4K20me1 to Polycomb-mediated repression by PRCs 1 and 2, 
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which may form a mechanistic basis for the maintenance of Polycomb-

repression through the cell cycle. 

The progression of cells through the cell cycle constitutes two challenges 

for the maintenance of Polycomb-mediated repression: (i) During DNA 

replication old and newly synthesized nucleosomes are randomly distributed to 

the daughter strands (36). This leads to an effective dilution of H3K27me3-

bearing nucleosomes by half. (ii) During mitosis HMs, chromatin composition 

and structure change dramatically, rendering the proper transmission of 

H3K27me3 difficult.  

H4K20me1 is tightly regulated during the cell cycle. It starts accumulating 

during S-phase and attains high levels during mitosis (37). Given this pattern, 

H4K20me1 may play an important role in maintaining PRCs at their target sites 

throughout the replicative and mitotic challenges by recruiting PRCs 1 and 2 to 

regions with old H3K27me3- and new H4K20me1-bearing nucleosomes (Figure 

4B). 

Taken together, we provide a chromatin-signaling network in K562 cells 

that links CMs to specific HMs. Our approach aims at high specificity and 

sacrifices sensitivity leading to high-confidence interactions. We verified two yet 

unknown interactions, which gives rise to novel biological insights about the 

interplay between Polycomb-mediated repression and H4K20me1. 
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Methods 

ChIP-Seq and gene expression data  

The raw HM and CM ChIP-Seq reads were obtained from the SRA Archive 

(GSE29611 and GSE32509). We merged multiple replicates and mapped 

uniquely mapping reads to the hg19 genome using Bowtie (38). We counted the 

number of reads falling into a �2000bp window centered at the TSSs of all 

known RefSeq genes (accessed: Oct. 19th, 2012). Only promoter regions with at 

least one sample having a read count larger than the input control were used. 

The expression data from Cap Analysis of Gene Expression (CAGE) was obtained 

from the UCSC genome browser (accessed: Nov. 14th, 2012; 

K562CellPapAlnRep1/2.bam and H1hescCellPapAlnRep1/2.bam). The CAGE-

counts were averaged over the available replicates. 

Read count normalization 

We normalized the HM and CM read counts by the following procedure: We 

estimated the slope of the correlation between the read counts of the sample (S) 

vs. the read counts of the input control (C) (adding a pseudo-count of 1) by the 

median (m � median��S 
 1�/�C 
 1�) of the ratio between the two over all 

promoters. The read counts were then replaced by the enrichment of the sample 

over the input normalized by the median (S���� � �S 
 1�/�C 
 1�  �  1/m� . This 

procedure shrinks all the read counts that are highly correlated with input 

towards zero. The normalized read counts and average CAGE-counts were log-

transformed and scaled to have mean zero and standard deviation one.  
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Linear regression and regularization using Elastic Nets 

We use a combination of computational methods to decipher the chromatin-

signaling network as described in the result section. First, we would like to 

uncover direct interactions between each HM and the CMs taking into account all 

other CMs at hand. This can be done by predicting each HM from the CMs using 

linear regression. Linear regression has been applied in various problems for 

outcome prediction. Here, apart from achieving good prediction accuracy, we are 

interested in determining the subset of variables (CMs) that is most useful for 

the prediction. The latter can be obtained with regularized linear regression 

methods, which, in contrast to simple linear regression models, impose soft 

constraints on the number of non-zero coefficients. Moreover, it would be 

desirable that correlated variables, i.e. equally good predictors, have similar 

weights. This is especially useful for our case, where we might have sets of CMs 

that interact with an HM only when being in a complex. For this reasons, we used 

Elastic Nets (14) as implemented in the glmnet-package (39) for R (40). The 

objective function of Elastic Net (as for simple linear regression) is the RSS 

criterion: RSS � ∑ �y� � β� � ∑ X��β�
�

�	
 ���
�	
  which is the sum of squared errors 

that should be minimized. In the Elastic Net this objective function is subjected to 

the constraint: �1 �  α�||β||
 
  α ||β|| �  �  t  where ||β||
 �  ∑ |β�|
�

�	
  

and ||β||�
� �  ∑ β�

��

�	
 , for α � �0,1! and some t. The first constraint is based on 

the L1-norm and forces the coefficients to shrink to 0, thereby favoring sparsity 

(LASSO-type). The second constraint is based on the L2-norm and favors similar 

values for the coefficients (Ridge-type), thereby avoiding picking one variable 

over another when both are redundant. The α -parameter specifies the 
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contribution of each constraint. Throughout the paper we first choose α between 

0.01 and 0.99 using 10-fold cross-validation (CV) on each cross-fold. The best α 

is selected such that the average RSS of the selected α lies within standard 

deviation of the α having the minimal average RSS. Once α is fixed, the t-

parameter is then automatically optimized by the cv.glmnet- function in a similar 

fashion. 

We estimated the importance of a CM in predicting a specific HM using 

Elastic Nets and 10-fold CV. Due to the large number of promoters and due to the 

smoothing operated by the L2-norm, we expect all coefficients to be non-zero, as 

the prediction accuracy will increase more with one coefficient than the penalty. 

However, the L1-norm will enhance the contrast between useful and unuseful 

variables, and will make the selection for the network representation easier. For 

the graphical representation of the important CMs we select only those CMs that 

have an average coefficient that deviates from the average of all coefficients by at 

least one standard deviation (Supplementary Figure S4). 

Partial correlations and the sparse partial correlation network 

We combine the Elastic Net approach described above with Sparse Partial 

Correlation Networks (SPCN) (15), which take into account both HMs and CMs. 

The SPCN approach is based on the partial correlation coefficient P(X,Y|Z)  that 

gives the correlation coefficient between X and Y after they are controlled for Z. 

In other words, X and Y are both regressed against the control set Z, and the 

correlation between their respective residuals r(X) and r(Y) is computed. This 

allows us to focus on associations that are as direct as possible within the dataset 

at hand. For a dataset D, the pairwise partial correlations P(X,Y|D\{X,Y}) 
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between every pair X and Y, where all other variables D\{X,Y} are in the control 

set, can be efficiently computed by inverting and normalizing the covariance 

matrix of a dataset D.  

We build the SPCN on all CMs and HMs(15). In short, we compute the 

pairwise partial correlation between the ranked ChIP-Seq levels of a CM and an 

HM conditioned on all other variables (Supplementary Figure S5). Only those 

edges having a significant, non-zero partial correlation coefficient are retained. 

Sparseness is introduced in a 10-fold CV scheme which, at the same time, is 

designed to maintain high accuracy of the resulting (15). For the graphical 

representation we select only those links from the full SPCN that are between 

HMs and CMs. 

Cell Lysis and Immunoprecipitation  

K562 cells (3 x106) were lysed in 350 µl cytoskeletal (CSK) lysis buffer (10mM 

PIPES, 100 mM NaCl, 300 mM Sucrose, 3mM MgCl2, 0.1% NP40) for 10 minutes 

on ice. The lysate was then centrifuged at 5,000 x g for 5 minutes and the 

supernatant discarded. The pellet was resuspended in 350 µl of chromatin lysis 

buffer (300 nM NaCl, 50 mM Hepes pH 7.4, 0.5% Igpal, 2.5 mM MgCl2, 5 U 

Benzonase from Novagene, 1x protease inhibitor cocktail from Roche) for 30 

minutes on ice, with periodic mixing. The lysate was centrifuged at 13,000 x g for 

10 minutes and the supernatant collected.  

2 µg of a mouse IgG control antibody (Diagenode C15200007) or 2 µg of a 

monoclonal mouse H4K20me1 antibody (Diagenode C15200147) were 

incubated with 10 µl of magnetic protein G beads (Dynabeads Life Technologies) 

for 2 hours under rotation at 4°C and then washed several times in the IP buffer. 
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150 µl of nuclease digested chromatin lysate was diluted with dilution buffer 

(100 nM NaCl, 50 mM Hepes) to 500 µl and incubated with the antibody coated 

beads for 4 hours under rotation at 4°C. The beads were then washed 3 x with IP 

buffer and resuspended in 50 µl of chromatin lysis buffer supplemented with 10 

µl of 5x Lammeali buffer. The input and immunoprecipitations were then heated 

to 99°C for 10 minutes prior to loading on a 4 - 12% gradient gel (Invitrogen). 

The immunoblot was detected with specific antibodies against H4K420me1 

(Abcam ab9057), EZH2 (Epitomics 1940-7) and CBX2 (Abcam  ab18968 and 

Bethyl A302-524A). 
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Figures 

Figure 1 HMs and CMs hold redundant information about gene expression. 

Scatterplots with the predicted gene expression by HMs (A), CMs (B) and both 

(C) on the x-axis and the measured gene expression (CAGE-tags) on the y-axis. 

The blue color indicates the densities of points, the darker the denser. The grey 

dashed line indicates identity. In the left upper corner of each plot the coefficient 

of determination (R2), i.e. the variance in the gene expression measure explained 

by the model, is indicated. 

Figure 2 CM levels predict HM levels and vice versa. (A, B) Boxplots showing 

the range of coefficients of determination (R2) obtained by 10-fold cross-

validation using CMs to predict HMs (A) and HMs to predict CMs (B). The boxes 

indicate the range of R2 values between the first and third quartile, the 

horizontal thick line indicates the median and the whiskers extend the range to 

1.5 fold the range from the median to the lower and upper hinge of the box. R2 

values outside this range are depicted as points. The dashed grey line indicates 

an R2 of 0.5. (C, D) Barplots showing the coefficients of determination (R2) 

obtained by training the model with data from the K562 cell line and testing it in 

the H1 cell line (C) and by training in H1 and testing in K562 (D). The total height 

of the bar indicates the average R2 obtained by 10-fold cross-validation in the 

training cell line, while the darker part indicates the R2 obtained by testing in the 

other. 

Figure 3 Chromatin-signalling network. Graphical representation of the 

interactions between CMs (circles) and HMs (squares). Shown are the 

interactions recovered both by the Elastic-Net and SPCN approach. Red lines 
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indicate positive and blue lines negative interactions. The continuous lines 

indicate interactions with supporting evidence in the literature, while the dashed 

lines indicate interactions without supporting evidence. The stars indicate the 

two interactions confirmed in this study. 

Figure 4 Verification of two predicted interactions links H4K20me1 to 

Polycomb-mediated repression. (A) H4K20me1 co-immunoprecipitation: 

K562 cells were immunoprecipitated with a control IgG and an H4K20me1 

specific antibody and analysed by immunoblot for the co-precipitation of EZH2, 

CBX2 and H4K20me1. 10% Input was loaded. (B) Model of the role of H4K20me1 

in the maintenance of Polycomb-mediated repression through the cell-cycle. 

During the G1-phase PRCs bind to H3K27me3 (indicated by three red circles) on 

two adjacent nucleosomes. During S-phase one of the two nucleosomes is 

replaced by a new one, which acquires H4K20me1 (indicated by a single red 

circle). After replication PRCs bind to H3K27me3 on the old nucleosome (in 

blue) and H4K20me1 on the new (in green), possibly via a yet unknown factor 

(indicated by the violet circle with the question mark). In M-phase, serine 28 gets 

phosphorylated (indicated by a yellow circle), which prevents PRCs from 

binding. PRCs are maintained on chromatin by their interaction with H4K20me1. 

Figure 5 From correlation to direct interactions. (A) Model of the interaction 

of the PRC2 trimeric complex (EZH2, SUZ12 and EED) with H3K27me3. The blue 

lines indicate protein-protein interactions. The red arrows indicate direct causal 

interactions, with EZH2 setting H3K27me3 and EED reading H3K27me3. The 

orange double-headed arrow indicates a correlation between SUZ12 and 

H3K27me3 induced by either EZH2 and/or EED. (B – D) Toy example of the de-

correlation action of multivariate regression. Modeling of e.g. H3K27me3 levels 
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by a linear combination of EZH2, EED and SUZ12 leads to an estimate of the 

influence of SUZ12 independent on the influence of EZH2 and EED. This is 

achieved by modeling SUZ12 (B) and H3K27me3 levels (C) by a linear 

combination of EZH2 and EED. The predictions of these models are subtracted 

from the actual SUZ12 and H3K27me3 levels (residuals, depicted by blue 

(SUZ12) and red (H3K27me3) vertical lines). The residuals of SUZ12 after 

incorporating the information of EZH2 and EED are used to predict the 

corresponding residuals of H3K27me3 (D), which in this case fails because there 

is no information of SUZ12 on H3K27me3 left after considering EZH2 and EED 

levels. 
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