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Abstract

Germline copy number variants (CNVs) and somatic copy number alterations (SCNAs) are

of significant importance in syndromic conditions and cancer. Massive parallel sequencing

is increasingly used to infer copy number information from variations in the read depth in

sequencing data. However, this approach has limitations in the case of targeted re-sequencing,

which leaves gaps in coverage between the regions chosen for enrichment and introduces biases

related to the efficiency of target capture and library preparation.

We present a method for copy number detection, implemented in the software package

CNVkit, that uses both the targeted reads and the nonspecifically captured off-target reads

to infer copy number evenly across the genome. This combination achieves both exon-level

resolution in targeted regions and sufficient resolution in the larger intronic and intergenic

regions to identify copy number changes. In particular, we successfully inferred copy number

at equivalent to 100-kilobase resolution genome-wide from a platform targeting as few as 293

genes. After normalizing read counts to a pooled reference, we evaluated and corrected for

three sources of bias that explain most of the extraneous variability in the sequencing read
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depth: GC content, target footprint size and spacing, and repetitive sequences. We compared

the performance of CNVkit to copy number changes identified by array comparative genomic

hybridization. We packaged the components of CNVkit so that it is straightforward to use

and provides visualizations, detailed reporting of significant features, and export options for

compatibility with other software.

[Supplemental material is available for this article. The program CNVkit can be freely

downloaded from http://github.com/etal/cnvkit.]

1 Introduction

Copy number changes are a useful diagnostic indicator for many diseases, including cancer. The gold

standard for genome-wide copy number is array comparative genomic hybridization (array CGH)

(Pinkel et al. 1998; Pinkel and Albertson 2005). More recently, methods have been developed to

obtain copy number information from whole-genome sequencing data (Yoon et al. (2009); reviewed

by Zhao et al. (2013)). For clinical use, sequencing of genome partitions, such as the exome or a set

of disease-relevant genes, is often preferred to enrich for regions of interest and sequence them at

higher coverage to increase the sensitivity for calling variants (Dahl et al. 2007). Tools have been

developed for copy number analysis of these datasets, as well, including CNVer (Medvedev et al.

2010), ExomeCNV (Sathirapongsasuti et al. 2011), XHMM (Fromer et al. 2012), ngCGH (Gartner

et al. 2012), CoNIFER (Krumm et al. 2012), CONTRA (Li et al. 2012), VarScan 2 (Koboldt et al.

2012), EXCAVATOR (Magi et al. 2013) and recent versions of Control-FREEC (Boeva et al. 2011).

However, these approaches do not use the sequencing reads from intergenic and, usually, intronic

regions, limiting their potential to infer copy number across the genome.

During the target enrichment, targeted regions are captured by hybridization; however, a

significant quantity of off-target DNA remains in the library, and this DNA is sequenced and

represents a considerable portion of the reads. Thus, off-target reads provide a very low-coverage

sequencing of the whole genome, in addition to the high-coverage sequencing obtained in targeted

regions. While the off-target reads do not provide enough coverage to call single-nucleotide variants

(SNVs) and other small variants, they can provide useful information on copy number at a larger

scale.

We developed a computational method for analysis of copy number variants and alterations

2

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 29, 2014. ; https://doi.org/10.1101/010876doi: bioRxiv preprint 

http://github.com/etal/cnvkit
https://doi.org/10.1101/010876
http://creativecommons.org/licenses/by/4.0/


in targeted DNA sequencing data that we packaged into a software toolkit. This toolkit, called

CNVkit, implements a pipeline for CNV detection that takes advantage of off-target sequencing

reads and applies a series of corrections to improve accuracy in copy number calling. First, we

show that off-target reads map well to the genome and provide a meaningful indicator of copy

number. We compare binned read counts in targeted and off-target regions and find that they

provide comparable estimates of copy number, albeit at different resolutions. We evaluate several

bias correction algorithms to reduce the variance among binned read counts unlikely to be driven

by true copy number changes. Finally, we compare copy ratio estimates by the CNVkit method to

those of array CGH. In summary, we demonstrate that off-target reads provide reliable copy ratio

estimates and their inclusion in analyses maximizes the copy number information obtained from

targeted sequencing.

2 Results

We evaluated our method on DNA sequencing data from two sets of samples, referred to here as

“TR” and “EX”:

• Targeted sequencing (“TR”) comprises 82 melanoma samples, paired tumor and normal tissue

from 41 patients, sequenced with a 293-gene target capture protocol.

• Exome sequencing (“EX”) comprises 20 melanoma samples, paired tumor and normal from 10

patients, sequenced with a whole-exome capture protocol.

For each panel of targets, on-target and off-target genomic regions are each partitioned into bins

(Table 1) in which unique reads are counted in the initial step of copy number estimation. The

read counts and percentages in on-target and off-target regions for each of these samples are shown

in Supplemental Table S1. The targets and bin locations used for both sets are included in the

CNVKit distribution, along with a test suite which can be executed to repeat our copy number

analysis.
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Statistic TR on-target TR off-target EX on-target EX off-target

Number of bins 8216 19453 301258 55064
Total bin footprint 1,799,531 2,848,623,246 70,666,905 2,479,689,994
Mean bin size 219.0 146,400 234.6 45,030
Min. bin size 37 10,010 115 6,000
1st quartile bin size 184 148,200 198 11,340
Median bin size 204 149,800 228 45,030
3rd quartile bin size 260 151,100 269 86,870
Max. bin size 398 223,800 400 135,000

Table 1: Binning statistics. EX covers a slightly smaller total genomic footprint than TR because
most introns are smaller than the minimum size allowed for off-target bins, and thus discarded from
the EX bins, while the TR off-target bins span both the introns and exons of non-targeted genes.

2.1 On– and off-target read depths similarly reflect copy number

Empirically, we have observed extreme amplifications in off-target areas as sharply demarcated

regions with increased read depth (Figure 1A). Since read depth and copy number have been

previously shown to be closely correlated (Alkan et al. 2009; Chiang et al. 2009; Xie and Tammi

2009; Yoon et al. 2009), we therefore hypothesized a proportional relationship between read counts

and copy number in on-target and off-target bins. The overall agreement in target and off-target

bin read counts can be visually verified within selected regions of an individual sample by plotting

both values together (Figure 1A).

We quantified the level of agreement between on– and off-target read counts more objectively

using the TR and EX cohorts. In each cohort we identified the genes containing or adjacent to at

least three on– and off-target bins each. For each sample, we performed copy number segmentation

with CNVkit and identified the subset of genes in which segmentation indicated a copy number

change of at least 0.4-fold at any point within the gene. For each of these genes in this subset, we

then calculated the mean of the median-centered log2 read counts of the on– and off-target bins

separately for each sample. We compared these values from all qualifying genes of all samples and

confirmed that the mean on– and off-target log2 read counts correlated strongly within genes and

appeared to be linearly related across a considerable range (Figure 1B). Thus, off-target read depth

provides similar information on copy number status as the on-target read depth.

A substantial amount of noise remains in the relationship between on– and off-target read counts,

however. To reduce systematic noise from the copy number signal derived from targeted sequencing
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Figure 1: Copy number changes affect read counts in both targeted and off-target intervals. (A)
An amplicon including the targeted gene MITF shows similarly increased read depth in both the
targeted exons and the adjacent off-target regions. Top row: Coverage depth in and near the
MITF region in a melanoma sample, visualized in logarithmic scale in the Integrative Genomics
Viewer. Middle: Read counts in on– and off-target bins, log2-transformed and median-centered
separately. Bottom: RefGene exonic structure of the MITF gene, and baited intervals used for
target enrichment. (B) Correlation of mean on– and off-target bin coverages within genes across all
samples in the TR and EX sets. Density of data points along each axis is shown as a histogram at
the top and right edge of each plot, and as color saturation in the EX plot.
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data, we next sought to identify and remove extraneous sources of variation in read depth.

2.1.1 Off-target reads reliably map to the genome

In using off-target read counts to estimate copy number, we raised the question of whether the

discrepencies in read counts between on– and off-target regions are partly due to unreliable mapping

of off-target reads; in particular, whether the mapping quality of off-target reads is significantly less

than that of on-target reads.

The mapping quality score (MAPQ) assigned to each aligned read by BWA and similar software

indicates the reliability of the read’s position, taking into account read base qualities as well as

the alignment scores of the best alignment and secondary or suboptimal alignments, and assigning

lower scores for reads mapped to repetitive sequence regions of the reference genome (Li et al. 2008;

Li and Durbin 2010). The maximum reported quality score (MAPQ = 60) indicates unambiguous

mapping of a read.

For each of the sample cohorts described above (TR, EX), we extracted the mapping qualities of

reads in target and off-target regions and compared them to address this question. In the TR samples

98.5% of on-target reads but slightly fewer of the off-target reads (88.3%) were mapped with the

maximum quality, while in the EX set there was no overall difference in mapping qualities between

on– and off-target reads, with 99.0% mapped with maximum quality in both cases (Figure 2).

2.2 Correction of systematic biases affecting read counts

Read depth alone is an insufficient proxy for copy number because of systematic biases in coverage

introduced during library preparation and sequencing. For example, others have observed that

read depth is affected by GC content, sequence complexity and the sizes of individual targeted

intervals (Boeva et al. 2011; Magi et al. 2013; Boeva et al. 2014). Here we describe methods to

remove these biases in coverage, and demonstrate the utility of these corrections to improve copy

number estimates from targeted sequencing data.

As a first step in correcting the initial copy number estimates obtained from read counts in

target and off-target bins, CNVkit normalizes read counts in each bin to the expected read count

derived from a reference of normal samples that the user supplies. Normalizing copy number to an

appropriate reference is expected to remove much of the biases attributable to GC content, regional
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Figure 2: Mapping quality scores of on-target and off-target reads are comparable. For each
sample, reads are counted and grouped by MAPQ score within each range labeled on the x-axis,
then normalized to the total number of reads obtained from the sample. Bar height indicates the
mean of these percentages within each bin; error lines indicate 95% confidence intervals. Scores are
shown separately for the targeted (TR) and exome (EX) samples.
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Figure 3: Bin read counts are systematically biased by GC content and other factors. (A) GC
coverage bias follows a unimodal distribution in sample TR_37_T. Target bins are sorted according
to bin GC content (x-axis), and the uncorrected, median-centered log2 bin read counts are plotted
(y-axis). A rolling median of the bin log2 read counts in order of GC value is drawn in red, showing
a systematic deviation from 0 in the selected sample. (B) Trendlines summarize each bias type in
each sample. TR and EX samples are shown in the top and bottom rows, respectively. Columns
show biases due to GC content in target bins and off-target bins, repeat content in off-target bins,
and density bias in target bins.

targeting density, and repetitive sequence as well as systematic variations introduced by library

preparation and sequencing. However, the extent of each of these systematic biases varies from

sample to sample (Figure 3), requiring additional correction measures of the residual biases.

To account for each of these potentially remaining biases, CNVkit uses a rolling median technique

to recenter each on– or off-target bin with other bins of similar GC content, repetitiveness, target

size or distance from other targets, independently of genomic location. In the next sections we

describe how these biases are addressed in CNVkit.

2.2.1 Read depths vary as a function of regional GC content, targeting density and

sequence repeats

DNA regions with higher GC content are less accessible to hybridization and amenable to amplifica-

tion during library preparation (Aird et al. 2011; Benjamini and Speed 2012). The degree of GC

bias may vary between samples due to differences in the quality of each sample’s DNA or efficiency

of hybridization between runs. To remove this bias, CNVkit applies the rolling median correction to

GC values on both the target and off-target bins, independently.

Repetitive sequences in the genome can complicate read-depth calculations by causing a given

read to map similarly well to multiple locations (Magi et al. 2013). Consequently, there is a potential
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association between sequence repetitiveness and read counts in a region. The strength of this

association may vary between samples due to differences in the relative amount of Cot-1 DNA used

to block repetitive DNA during library preparation. The human genome sequence provided by the

UCSC Genome Bioinformatics Site has repetitive regions masked out by RepeatMasker. CNVKit

calculates the proportion of each bin that is masked and uses this information for bias correction.

The CNVkit implementation applies the RepeatMasker correction to only the off-target bins. The

on-target bins are much smaller, and usually are exonic, and therefore generally have no overlap

with repeats. For those on-target bins that were identified as containing repeats (~7% in the TR

panel), we found them mostly entirely covered by the repeat, leaving very few intermediate points

to infer a continuous trend for correction by the rolling median.

We also noted systematic bias in read depth related to the size of the baited interval and

the distance between nearby baited intervals. Two distortions to read depth consistently occured

at the edges of each targeted interval (see Methods; Figure 7). The “shoulder” of each interval

showed reduced read depth due to incomplete sequence match to the bait, creating a negative bias

in the observed read depth inside the interval near each edge; this effect was greatest for short

intervals. Some off-target capture also occurred in the “flanks” of the baited interval due to the same

mechanism. Where targets are closely spaced or adjacent, this flanking read depth may overlap with

a neighboring target, creating a positive bias in its observed read depth. We accounted for these

two “density” biases, negative and positive, in a single correction (see Methods). While the density

bias was significantly reduced by normalizing each sample to a reference, the density bias was found

to vary between samples, likely due to differences in the insert sizes of sequence fragments. Since

both these values are calculated in proportion to the target size, the density bias correction also

accounts for the bias due to interval size that has been described by others (Magi et al. 2013). Our

implementation in CNVkit applies the density correction to only the on-target bins. The negative

bias is not expected to occur in off-target regions because those regions are not specifically captured

by baits, and the positive bias from neighboring targets is avoided by allocating off-target bins

around existing targets with a margin of twice the expected insert size.
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2.2.2 Corrections improve copy ratio estimates

We evaluated the effect of each of our bias corrections by comparing the deviation of read counts for

on– and off-target bins at each processing step to the final segmented copy number data (Figure 4).

For each sample in the TR and EX cohorts, we used CNVkit to perform each of the corrections

described above and infer copy number segments. We subtracted the log2 copy ratio values of the

segments from the median-centered log2 read counts of each corresponding on– and off-target bin

to obtain the deviations of each bin from our final estimate of true log2 copy ratio. From these

deviation values, we calculated the standardized median absolute deviation (MAD; a robust measure

of scale comparable to standard deviation) across all on– and off-target bins in a given sample. We

repeated the MAD calculation at each of the subsequent steps of bias correction: (i) the log2 ratios

after filtering out poor-quality bins and normalizing to the reference, but before bias corrections;

(ii) after GC bias correction; and (iii) after the density and repeat corrections (target and off-target

respectively).

The first step of normalizing to the reference in CNVkit involves filtering out bins failing certain

predefined criteria: those where the reference log2 read count is below a threshold (default -5), the

spread of read counts among all normal samples in the reference is above a threshold (default 1.0),

or the RepeatMasker-covered proportion of the bin is above a threshold (default 99%). To separate

the effect of this filtering from that of normalization to a reference of pooled normal samples, we

repeated the analysis using a “generic” reference constructed to have a log2 read count of 0 assigned

to all bins, so that when normalization is performed (but prior to correcting the GC, repeat and

density biases) the resulting “copy ratios” are simply equal to the median-centered log2 read counts

in each bin. Since the generic reference has no meaningful information about read depth derived

from normal samples, the effect of using this reference is only to remove the bins with highly

repetitive sequence content.

In these results, the MAD values decreased monotonically across all steps, indicating that each

step of corrections reduces random deviations from the true copy number signal/value. The spread

of MAD values also decreased overall, indicating that the improvements are seen consistently and are

reliable; even outlier data points (representing samples with poor overall sequencing quality) were

consistently improved. The greatest improvement was seen from filtering repetitive bins, followed by
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normalization to the pooled reference and GC bias correction. The GC bias correction step reduced

the MAD values similarly when using a generic reference or one constructed from normal samples.

The improvements from the density and repeat bias corrections were comparatively minor here;

however, the MAD values considered are medians aggregated across many bins in a sample, and so

this measure would not reflect improvements that are only important in a minority of bins.

We also found that the MAD of the off-target bins was inversely related to the off-target bin size,

or equivalently, directly related of the number of reads captured in each off-target bin. Thus, by

choosing the off-target bin size to match the average read counts for on-target bins, we ensured that

the deviations or random error in the read counts per bin was similar between on– and off-target

bins.

2.3 Validation by array CGH and FISH assays

The preceding analyses showed that read counts in on– and off-target bins were both consistent

indicators of copy number and that consistency can be improved by additional bias corrections.

Thus, in CNVkit we combined the bias-corrected log2 ratio data from both on– and off-target bins

to produce the final estimates of copy number ratio. These copy number ratios were used as input to

a segmentation algorithm to infer discrete copy number segments. We used this data to validate the

copy ratio calls by CNVkit with respect to two widely used methods for copy number measurement,

array CGH and fluorescence in situ hybridization (FISH). For this validation we used the C0902 cell

line, derived from a melanoma, which underwent targeted sequencing using a similar protocol as the

samples in cohort TR.

CNVkit analysis was performed with default settings and a reference constructed from two

unrelated normal tissue samples. We also performed array CGH using a 180K Agilent arraycontaining

174183 probes. Segmentation was performed on the CNVkit bins and raw array CGH probe-level

log2 ratios using CBS with the same parameters as default in CNVkit.

We compared CNVkit and array CGH copy number ratios across the whole genome (Figure 5A,B).

The Pearson correlation coefficient between CNVkit and array CGH copy ratios at all copy number

segments overlapping with targeted genes was 96.8% (Figure 5B). The CNVkit and array CGH

estimates substantially disagreed at only 1 of the 357 segments. In the gene CEBPA, a 27.5-kilobase

loss with a log2 copy ratio of -1.5691 is detected by 8 array CGH probes (chr19:33781309-33808811),
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Figure 5: CNVkit copy ratios agree with experimental results array CGH and FISH on cell line
DNA. (A) Whole-genome profiles of log2 copy ratio by CNVkit (top) and array CGH (bottom) are
shown. (B) Segmented copy ratio values over targeted genes correlate closely between array CGH
and CNVkit. (C) Genes additionally assayed by FISH are labeled.

but the corresponding CNVkit bins showed neutral copy number. These bins cover sequence regions

with very high GC content (73–82%) and the CNVkit reference indicated an expected read depth

significantly below the genome-wide average, which may have masked any true copy number loss at

this locus in the sequencing data.

Next, we used FISH to determine the absolute copy number at loci harboring cancer-relevant

genes: ALK, ROS1, MET, BRAF and RET. We compared the log2 ratios obtained by both CNVkit

and array CGH to the average signal counts per nucleus obtained by FISH. We transferred the

average FISH signal counts into log2 copy ratios, by calculating the difference between the log2 of

their average nuclear signal counts and the log2 of the cell’s ploidy, which we determined to be 6n.

In all five of the genes assayed by FISH, the copy ratio inferred by CNVkit is close to the true value

(Figure 5C).

2.4 Software pipeline

We implemented CNVkit as a command-line program, cnvkit.py, and reusable Python library,

cnvlib.
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CNVkit uses both the on-target reads and the nonspecifically captured off-target reads to

calculate log2 copy ratios and segments across the genome for each sample (Figure 6). Off-target

bins are calculated from the genomic positions of targets, with the average off-target bin size being

much larger than the average on-target bin to match their read counts (Table 1).

Both the on– and off-target locations are then separately used to calculate the mean read depth

within each interval. This procedure outputs two separate tabular files of the median-centered log2

read depths for on– and off-target bins. The on– and off-target read depths are then combined,

normalized to a reference derived from normal samples, corrected for several systematic biases to

result in a final table of log2 copy ratios. A segmentation algorithm selected by the user is run on

the log2 ratio values to infer discrete copy number segments. The log2 ratios and segments can then

be used for visualization and further analyses supported by CNVkit, exported to other formats, and

used with third-party software such as the tumor heterogeneity analysis program THetA (Oesper

et al. 2013).

These steps are implemented entirely in CNVkit so that the complete workflow can be performed

in a reasonable amount of time on a commodity workstation or laptop. The most computationally

demanding step, read depth calculation, takes on the order of 30 minutes for an exome or 3 minutes

for a 293-gene target panel using a single 3.7GHz CPU. Initial GC region calculation from a genome

takes about one minute, and all other steps complete in a few seconds at most. The implementation

is designed to be memory-efficient, so that many samples can safely be run in parallel on a single

machine.

The input to the program is one or more sequencing read alignments in BAM format (Li et al.

2009) and the bait locations or a pre-built “reference” file. All additional data files used in the

workflow, such as GC content and the location of sequence repeats, can be extracted from user-

supplied genome sequences in FASTA format using scripts included with the CNVkit distribution.

The workflow is not restricted to the human genome, and can be run equally well on other genomes.

3 Discussion

We show that off-target reads from partitioned sequencing data are a useful additional indicator

of copy number. With an appropriately chosen off-target bin size that matches their read counts

15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 29, 2014. ; https://doi.org/10.1101/010876doi: bioRxiv preprint 

https://doi.org/10.1101/010876
http://creativecommons.org/licenses/by/4.0/


to that of on-target bins, we found that the copy ratio estimates in off-target regions can be as

reliable or even more reliable than estimates made from on-target regions alone. The combination

of on– and off-target reads in copy number estimation can thus achieve both exon-level resolution in

targeted regions and greater overall support in the larger intronic and intergenic regions. When

samples are sequenced to sufficient depth, target capture design can yield extremely high resolution

at specific sites of interest (such as cancer genes and their promoters): Genomic regions around

known recurrent structural variation breakpoints, regardless of exon structure, can be tiled to

achieve a level of resolution comparable to or even higher than off-the-shelf high-density array CGH.

High-throughput targeted sequencing can be performed with less DNA than is needed for array

CGH. Similar to array CGH, samples with low quality or low sequencing coverage (e.g. those with

low library complexity, a high number of PCR duplicates and relatively few usable sequencing reads)

will have more random variation or “noise” in bin read depths, and overall worse results, due to

the fixed size of targeted exons. In these challenging cases it may only be possible to confidently

detect CNAs at the chromosome arm level. The off-target bin size used in CNVkit can be increased

to improve the fidelity of the copy number signal (at the expense of lower resolution) to identify

larger-scale CNAs, particularly those that occur over both on-target and off-target bins.

The copy number reference file plays an important role in the CNVkit pipeline. If the reference

is constructed from a large number (e.g. >10) of normal samples, the systematic coverage biases

that CNVkit attempts to correct may be largely removed simply by normalization to the reference,

and subsequent corrections for GC, repeat and density biases have relatively little effect. However,

if using a “generic” reference (with a log2 ratio of 0 assigned to all bins), or a reference built from

a smaller number of normal samples, or inappropriate normal samples (such as those containing

large-scale germline CNVs or sequenced using a different protocol), the additional bias corrections

can help compensate for deficiencies in the reference. Ideally, a reference should be constructed

specifically for each target capture panel (i.e. set of baits), and match the type of sample (e.g.

FFPE-extracted or fresh DNA), and library preparation protocol or kit used. If it is unclear whether

a given reference file is suitable for an analysis, one can repeat the analysis with a generic reference

and compare the CNAs found with both the original and generic reference for the same samples.

In summary, the CNVkit toolkit provides a suite of programs that maximizes copy number

information obtained from targeted DNA sequencing. In addition to making use of both on-target
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and off-target reads, CNVkit provides robust and efficient implementations of methods to improve

estimates of copy number from NGS data.

4 Methods

4.1 Sequencing

The targeted sequencing cohort (TR) was composed of 41 archived microdissected FFPE melanomas

and separately dissected non-lesional “normal” samples from the same patients. All samples were

obtained from the archives or the Dermatology Section of the the Departments of Pathology and

Dermatology at the University of California San Francisco. The exome sequencing cohort (EX)

was composed of 10 fresh frozen melanomas and matching blood samples acquired from Memorial

Sloan Kettering Cancer Center. The study was approved by the Institutional Review Boards of

both institutions.

Following the manufacturers’ protocols, DNA was extracted using Qiagen DNeasy Blood &

Tissue Kit and libraries were prepared for sequencing using the NuGen Ovation Ultralow DR

Multiplex System 9-16 (p/n 0331-32). Hybrid capture of the whole exome (EX) and of a targeted

panel of 293 cancer-associated genes (TR) was performed using the Agilent SureSelectXT Human

All Exon V4+UTRs library (p/n 5190-4638) and the Roche Nimblegen SeqCap EZ Choice Library

(p/n 06266339001), respectively. Multiplexed samples were sequenced on an Illumina HiSeq 2500

instrument.

Sequencing reads were aligned to the UCSC reference human genome (hg19; NCBI build 37)

with the Burrows-Wheeler Aligner (BWA) version 0.7.5 (Li 2014). PCR duplicates were flagged

with Picard MarkDuplicates, and indel realignment and base quality recalibration were performed

with the Genome Analysis Toolkit (GATK) to produce the BAM files used as input to CNVkit.

4.2 Generating the off-target interval BED files

Genomic intervals for counting off-target reads were initially calculated from the genomic positions

of the targeted intervals. The CNVkit antitarget command accepts a list of targeted regions, in

Browser Extensible Data (BED) or interval format, and divides the off-target regions between each

target into large bins (of 150 kilobases for the TR set and 75kb for EX). The appropriate off-target
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bin size can be computed as the product of the average target region size and the fold-enrichment

of sequencing reads in target regions, such that roughly the same number of reads are mapped

to target and off-target bins on average. The preliminary coverage information can be obtained

with the script CalculateHsMetrics in the Picard suite (http://picard.sourceforge.net/), or from the

console output of the CNVkit coverage command when run on the target regions.

Another file listing the sequencing-accessible chromosomal regions can also be provided in order

to exclude telomeres, centromeres and other sequencing-inaccessible regions from the off-target

intervals when creating the off-target bins. This “access” file has been pre-calculated for the UCSC

hg19 genome and is included in the CNVkit distribution; an equivalent file can be generated for any

other genome using the bundled script genome2access.py, which scans a given FASTA sequence

file for long spans of ‘N’ characters in each contig and outputs the coordinates of the regions between

them. (Short spans of ‘N’ characters are permitted up to a specified threshold.)

The antitarget command divides each contiguous off-target region into equal-sized bins such

that the average bin size is as close as possible to the specified bin size. A lower limit on bin size

can also be specified to avoid evaluating very small off-target regions, such as some introns, where it

is expected that too few reads would be captured to give a reliable estimate of copy number. Once

a satisfactory set of off-target bins have been generated and saved as a BED file, the same BED

file can be reused with CNVkit for copy number analysis of other samples prepared with the same

library preparation protocol and sequenced on the same platform.

4.3 Estimation of copy number by read depth

The log2 mean read depth of each on– or off-target bin is computed for a given sample using the

coverage command. Given an alignment of reads to the reference genome, in BAM format, and a

list of the on– or off-target bins, in BED or Picard interval format, for each bin the read depths at

each base pair in the bin are calculated and summed using pysam, a Python interface to samtools

(Li et al. 2009), and then divided by the size of the bin. The output is a table of the average read

depths in each of the given bins, log2-transformed and centered to the median read depth of all

autosomes.

To produce the input BAM file, we recommend that an aligner such as BWA-MEM be used

with the option to mark secondary mappings of reads, and that PCR duplicates be flagged with a
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program such as SAMBLASTER (Faust and Hall 2014) or Picard MarkDuplicates, so that CNVkit

will skip these reads when calculating read depth.

4.4 Construction of a pooled reference from a panel of normal samples

The reference command combines the bin read depths of multiple, ideally normal-tissue samples

into a single copy-number reference, which can then be used to correct other individual samples.

The output reference dataset contains, for each bin, a weighted average of the log2 read depths from

the input samples, calculated as Tukey’s biweight location, and the spread or statistical dispersion

of read depth values, calculated as Tukey’s biweight midvariance (Lax 1985; Randal 2008).

If a FASTA file of the reference genome is given, the GC content of the corresponding genomic

region, calculated as the proportion of “G” and “C” characters among all “A”, “T”, “G” and “C”

characters in the subsequence, ignoring “N” and any other ambiguous characters. For efficiency, the

samtools FASTA index file (.fai) is used to locate the binned sequence regions in the FASTA file.

For the human genome and many model organism genomes, repetitive sequences have been

identified using RepeatMasker and masked out with lowercase characters in the genome sequences

provided for download by the UCSC Genome Bioinformatics Site (http://genome.ucsc.edu/) and

the RepeatMasker website (http://repeatmasker.org). CNVkit calculates the fraction of each bin

that is masked and records this fraction in an additional column in the reference file. When using

the reference to normalize and correct individual samples, CNVkit can then filter out bins covering

highly repetitive genomic regions, or those with very low average coverage or high spread in the

reference.

As with the target and off-target BED files, once a satisfactory reference file has been generated,

it can be reused with CNVkit for copy number analysis of other samples sequenced with the same

platform and protocol.

4.5 Calculation of “density” bias

Two consistent biases in read depth occur related to the size and regional density of baited intervals,

which we refer to here as the “density” biases: a negative bias at the interval “shoulder” and a

positive bias in the interval “flank” regions. These biases occur within a distance of the interval

edges equal to the sequence fragment size. For simplicity (since only a monotonic function of the
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Figure 7: Baited region size and spacing affect read depth systematically. (A) Example of typical
coverage observed at a targeted exon, as viewed in IGV, and simplified geometric models of the
negative coverage biases (yellow) that can occur as a function of the relative sizes of sequence
fragments and the baited region. (B) Coverage observed at two neighboring targeted exons, and
models of the positive coverage biases (red) that can occur where intervals are separated by less
than half the insert size of sequence fragments.

actual read depth bias is needed for the bias correction to work properly, rather than the magnitude

of the bias itself), the effect of the biases is modeled as a linear decrease in read depth from inside

the target region to the same distance outside (Figure 7).

Letting i be the average insert size and t be the target interval size, the negative bias at interval

shoulders is calculated as i/4t at each side of the interval, or i/2t for the interval (Figure 7A).

When the interval is smaller than the sequence fragment size, the portion of the fragment extending

beyond the opposite edge of the interval should not be counted in this calculation. Thus, if t < i,

the negative bias value must be increased (absolute value reduced) by (i−t)2

2it .

Additionally letting g be the size of the gap between consecutive intervals, the positive bias

that occurs when the the gap is smaller than the insert size (g < i) is (i−g)2

4it (Figure 7B). If the

target interval and gap together are smaller than the insert size, the reads flanking the neighboring

interval may extend beyond the target, and this flanking portion beyond the target should not be

counted. Thus, if t + g < i, the positive value must be reduced by (i−g−t)2

4it .

These values are combined into a single value by subtracting the estimated shoulder bias from

the flank bias. The result is a negative number between -1 and 0, or 0 for target with immediately

adjacent targets on both sides. Thus, dividing a large targeted interval into a consecutive series of

smaller targets does not change the net “density” calculation value.
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4.6 Correction of coverage biases

The fix command combines target and off-target copy number tables for a single sample, removes

bins failing predefined criteria, subtracts the reference log2 read depth from each bin to yield the

log2 ratio of observed to expected copy number, corrects for systematic biases in bin coverage (see

below), and finally re-centers the corrected copy ratios.

Bins are removed according to hard thresholds applied to the additional fields in the reference

file: when the reference coverage is too low, the spread of read depth values in the normal panel is

too high, or repeat-masked fraction of the bin is too high.

For each of the biases (GC, density, repeat-masked fraction), the bias value is calculated for

each bin. Bins are sorted by bias value. A rolling median is then calculated across the bin log2

ratios ordered by bias value to obtain a midpoint log2 ratio value representing the expected bias for

each bin. This value is then subtracted from the original bin log2 ratio for the given sample to offset

the observed bias. Local regression (LOWESS) (Cleveland 1979) and a Kaiser window function

(Kaiser and Schafer 1980) were also evaluated in place of the rolling median to estimate the trend

due to bias; all three functions produced similar fits on sample data, and rolling median was chosen

as the default for its simplicity and robustness.

The GC content and repeat-masked fraction of each bin are calculated during generation of

the reference from the user-supplied genome. Density biases are calculated from the start and end

positions of a bin and its neighbors within a fixed window around the target’s genomic coordinates,

as described in the previous section. In the common case of no other targets within the window

surrounding the given target, there is a one-to-one correspondence of the density value to target

size. Thus, interval size (the difference between the interval start and end coordinates) is not used

as an additional bias correction by default, as it is redundant with the density correction.

In the case of many similarly sized target regions, there is the potential for the bias value to be

identical for many targets, including some spatially near each other. To ensure that the calculated

biases are independent of genomic position, the probes are randomly shuffled before being stably

sorted by bias value.
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4.7 Segmentation

The sample’s corrected bin-level copy ratio estimates can be segmented into discrete copy-number

regions using the segment command. The default segmentation algorithm used is cicular binary

segmentation (CBS) (Olshen et al. 2004), via the R package PSCBS (Olshen et al. 2011). Alterna-

tively, the HaarSeg algorithm (Ben-Yaacov and Eldar 2008) or Fused Lasso (Tibshirani and Wang

2008) can be used in place of CBS. In either case, the segmentation output is in a tabular format

similar to the copy number and copy ratio tables used by CNVkit.

4.8 Cell line sequencing, array CGH and FISH

4.9 Targeted sequencing

Targeted sequencing on C0902 cells was performed using a panel of targeted genes different from

those used in the TR set, but similarly focused to about 300 genes. The target panel covered 6915

baited regions; binning yielded 8699 target bins and 19797 off-target bins, for a total of 28496 bins.

4.9.1 Comparative genomic hybridization

DNA was extracted from the C0902 cell line using a Flexigene DNA extraction kit (Qiagene,

Germantown, MD, USA) according to manufacturer’s protocol. Array CGH was carried out with

1000 ng of genomic DNA on Agilent 4x180K microarrays (Agilent, Santa Clara, CA, USA). The

raw microarray images were processed with Agilent Feature Extraction software. Probe copy ratio

values were then converted to the CNVkit format with a Python script, skipping unassigned contigs

and “dummy” probes.

4.9.2 Fluorescence in situ hybridization (FISH)

ROS1 and RET break-apart FISH probes were labeled commercial probes purchased from Kreatech

Diagnostics (Amsterdam, The Netherlands). ALK probes were from Abbott Molecular (Des Plaines,

Illinois, USA). BRAF, MET and NTRK1 break-apart FISH probes were prepared from BAC clones

using standard procedures, and labeled with Fluorolink Cy3-dUTP (GE Healthcare, Waukesha, WI,

USA) and ChromaTide Alexa Fluor 488-5-dUTP (Life Technologies, Gaithersburg, MD, USA).
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After 10 minutes of incubation at 37°C in a hypotonic solution of cell culture medium/distilled

water (5:7), C0902 cells were fixed in methanol/glacial acetic acid (3:1) and dropped on a slide.

After two days of aging, the slide was treated with RNAse and proteinase K before the probes were

hybridized. The number and localization of the hybridization signals was assessed in interphase

nuclei with well-delineated contours using a Zeiss fluorescence microscope.

4.10 Visualization

Plots were generated using the Python programming language and Biopython (Cock et al. 2009),

matplotlib (http://matplotlib.org), Seaborn (https://github.com/mwaskom/seaborn) and CNVkit

software libraries. Figures were arranged and labeled using Inkscape (http://inkscape.org).

5 Data access

Data files used for the evaluation of CNVkit are available at http://github.com/etal/cnvkit-examples.
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