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Abstract 25 

Expanding populations incur a mutation burden – the so-called expansion load. Previous studies of 26 

expansion load have focused on co-dominant mutations. An important consequence of this 27 

assumption is that expansion load stems exclusively from the accumulation of new mutations 28 

occurring in individuals living at the wave front. Using individual-based simulations we study here the 29 

dynamics of standing genetic variation at the front of expansions, and its consequences on mean 30 

fitness if mutations are recessive. We find that deleterious genetic diversity is quickly lost at the front 31 

of the expansion, but the loss of deleterious mutations at some loci is compensated by an increase of 32 

their frequencies at other loci. The frequency of deleterious homozygotes therefore increases along 33 

the expansion axis whereas the average number of deleterious mutations per individual remains 34 

nearly constant across the species range. This reveals two important differences to co-dominant 35 

models: (i) mean fitness at the front of the expansion drops much faster if mutations are recessive, 36 

and (ii) mutation load can increase during the expansion even if the total number of deleterious 37 

mutations per individual remains constant. We use our model to make predictions about the shape 38 

of the site frequency spectrum at the front of range expansion, and about correlations between 39 

heterozygosity and fitness in different parts of the species range. Importantly, these predictions 40 

provide opportunities to empirically validate our theoretical results. We discuss our findings in the 41 

light of recent results on the distribution of deleterious genetic variation across human populations, 42 

and link them to empirical results on the correlation of heterozygosity and fitness found in many 43 

natural range expansions.  44 
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Introduction 45 

Identifying and understanding the ecological and evolutionary processes that cause range 46 

expansions, range shifts, or contractions has a long tradition in evolutionary biology (Darwin 1859; 47 

MacArthur 1972; Sexton et al. 2009). More recently, the growing appreciation of the consequences 48 

of dynamic range margins on the ecology, population genetics, and behavior of species has changed 49 

our views about several evolutionary processes, such as the evolution of dispersal (Phillips et al. 50 

2006; Shine et al. 2011; Lindström et al. 2013), life-history traits (Phillips et al. 2010), and species 51 

range limits (Peischl et al. 2014).  52 

The evolutionary processes at the margins of expanding populations allow neutral genetic 53 

variants to quickly spread into new territories (Klopfstein et al. 2006), a phenomenon called “gene 54 

surfing”. Gene-surfing of neutral variation has been investigated both theoretically (Hallatschek and 55 

Nelson 2008; Excoffier et al. 2009; Slatkin and Excoffier 2012) and empirically (Hallatschek and 56 

Nelson 2008; Moreau et al. 2011; Graciá et al. 2013). Gene surfing can also affect the spread of 57 

selected variants (Travis et al. 2007; Burton and Travis 2008; Lehe et al. 2012; Peischl et al. 2013; 58 

Peischl et al. 2014). Population-genetics models of range expansions predict that expanding 59 

populations incur a mutation burden – the “expansion load” (Peischl et al. 2013). Expansion load is a 60 

transient phenomenon, but it can persist for several hundreds to thousands of generations, and may 61 

limit the ability of a species to colonize new habitats (Peischl et al. 2014). 62 

Previous studies of expansion load assumed that mutations were co-dominant. An important 63 

consequence of this assumption is that standing genetic variation has no effect on the dynamics of 64 

mean fitness at the front of expanding populations (Peischl et al. 2013). In particular, the total 65 

number of mutations per individual, and hence the individual’s fitness, remains approximately 66 

constant if new mutations are ignored (Peischl et al. 2013; Peischl et al. 2014). In additive models, 67 

expansion load thus stems exclusively from the accumulation of new mutations that occur in 68 

individuals living at the front of the expansion.  69 
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Empirical evidence for expansion load may come from humans, where a proportional excess 70 

of deleterious mutations in non-African populations has been found (Lohmueller et al. 2008; 71 

Subramanian 2012; Torkamani et al. 2012; Peischl et al. 2013; Fu et al. 2014; Lohmueller 2014). 72 

Importantly, when focusing on mutations that occurred during or after the out-of Africa expansion, 73 

the excess of deleterious variants is not restricted to rare variants (Peischl et al. 2013). This suggests 74 

that proportionally more deleterious mutations have risen to high frequencies in human populations 75 

located in newly settled habitats. In contrast to what would be expected from expansion-load theory, 76 

a recent analysis found no significant differences in the average allele frequency of predicted 77 

deleterious alleles (Simons et al. 2014). The average number of predicted deleterious mutations 78 

carried by an individual is, however, significantly larger in non-Africans (Fu et al. 2014). In addition, 79 

non-African individuals have significantly more loci homozygous for predicted deleterious alleles than 80 

African individuals (Lohmueller et al. 2008; Subramanian 2012; Fu et al. 2014; Lohmueller 2014). The 81 

debate whether human past demography affected the efficacy of selection and the spatial 82 

distribution of mutation load is thus still ongoing (Lohmueller 2014).  83 

There is mounting evidence that deleterious mutations tend to be recessive (Agrawal and 84 

Whitlock 2011). Importantly, if mutations are completely recessive the number of deleterious 85 

mutations per individual is not informative about the mutation load (Kimura et al. 1963). Instead, 86 

mutation load is determined by sites that are homozygous for deleterious alleles. Thus, if mutations 87 

are (partially) recessive, the genotypic composition of deleterious genetic variation is more important 88 

than the total number of deleterious mutations carried by an individual. Range expansions are 89 

known to affect the genotypic composition of neutral standing genetic variation (Excoffier et al. 90 

2009). The role of standing genetic variation in models of expansion load remains, however, unclear 91 

if mutations are recessive.  92 

We investigate here the effect of recessive mutations on the dynamics of expansion load. In 93 

particular, we use individual based-simulations to investigate the role of standing genetic variation, 94 
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the width of the habitat, and the composition of expansion load with respect to allele frequencies 95 

and mutational effects. 96 

Model and Results 97 

Model 98 

We model a population of diploid monoecious individuals that occupy discrete demes 99 

located on a one- or two-dimensional grid (Kimura and Weiss 1964). Generations are discrete and 100 

non-overlapping, and mating within each deme is random. Mating pairs are formed by randomly 101 

drawing individuals (with replacement) according to their relative fitness, and each mating pair 102 

produces a single offspring. The process is repeated N  times, where N  is the total number of 103 

offsprings of the parental generation, leading to approximately Poisson-distributed numbers of 104 

offspring per individual. Individuals then migrate to adjacent demes with probability m  per 105 

generation. Migration is homogeneous and isotropic, except that the boundaries of the habitat are 106 

reflecting, i.e., individuals cannot migrate out of the habitat. 107 

Population size grows logistically within demes. The expected number of offspring in the next 108 

generation produced by the jN  adults in deme j is 109 

 𝑁𝑗
∗ =  

0R  

1 +(
0R −1)𝑁𝑗/𝐾

𝑁𝑗  ,  110 

where 
0R  is the fundamental (geometric) growth rate and K  is the deme’s carrying capacity 111 

(Beverton and Holt 1957). To model demographic stochasticity, the actual number of offspring, jN  , 112 

is then drawn from a Poisson distribution with mean 
*

jN .  113 

The relative fitness of individuals is determined by n  independently segregating biallelic loci. 114 

The alleles at locus i  are denoted 
ia  (wildtype) and 

iA  (derived). Mutations occur in both directions 115 

and the genome wide mutation rate is u ; in each new gamete k  randomly chosen sites change their 116 
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allelic state, where k  is drawn from a Poisson-distribution with mean u . The fitness contributions of 117 

the genotypes 
i ia a , 

i ia A  and 
i iA A  at locus i  are 1, 1 ihs , and 1 is , respectively. Here 

is  118 

denotes the strength of selection at locus i  and h  is the dominance coefficient. Fitness effects are 119 

multiplicative across loci, such that the fitness of an individual is given by 𝑤 = ∏ 𝑤𝑖𝑖 , where 𝑤𝑖 is the 120 

fitness effect of the ith locus of the focus individual, i.e., there is no epistasis. In the following we will 121 

focus on co-dominant ( 0.5h  ) or recessive ( 0h  ) mutations. We assume that mutation effects 122 

are drawn from the same distribution of fitness effects for all individuals (independently from their 123 

current fitness). 124 

We perform individual-based simulations of the above described model in 1D or 2D habitats. 125 

Our simulations start from ancestral populations located in 10 leftmost (rows of) demes of the range. 126 

After a burn-in phase that ensures that the ancestral populations are at mutation-selection-drift 127 

balance, the population expands from left to right until the habitat is filled. Because we are mainly 128 

interested in the role of standing genetic variation, we focus on relatively short expansions, i.e., 129 

colonization of a 1x50 (1D) or a 20x50 (2D) deme habitat. The long-term dynamics of expansion load 130 

have been studied elsewhere (Peischl et al. 2013; Peischl et al. 2014). 131 

Impact of standing genetic variation on expansion load 132 

For simplicity, we first consider expansions along a one-dimensional habitat and assume that 133 

all mutations have the same effect, i.e., we set 
is s . If mutations are co-dominant ( 0.5h  ), 134 

expansion load is caused exclusively by the establishment of new mutations occurring during the 135 

expansion, and standing genetic variation has a negligible effect on the dynamics of mean fitness 136 

(Peischl et al. 2013). Mean fitness at the wave front decreases at a constant rate over time (Figure 1), 137 

and the rate at which mean fitness decreases per generation is proportional to the number of new 138 

mutations entering the population per generation (Peischl et al. 2013).  139 

The dynamics of expansion load changes dramatically if mutations are recessive (Figure 1). 140 

The analytical approximation obtained in Peischl et al. (2013), which ignores standing genetic 141 
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variation, is a poor fit to the observed dynamics of mean fitness (Figure 1). In the first few 142 

generations mean fitness decreases much faster than predicted by analytical theory for the 143 

accumulation of new mutations (cf. solid and dashed black lines in Figure 1). The rate at which 144 

expansion load is created then slows down and gradually approaches the analytical prediction.Then, 145 

changes in expected mean fitness arise exclusively from new mutations (cf. solid and dashed black 146 

lines for 50t   in Figure 1). This shows that standing genetic variation plays an important role in the 147 

establishment of expansion load if mutations are recessive, especially during early phases of 148 

expansions.  149 

 150 

Figure 1: Evolution of mean fitness at the wave front. Dashed lines show analytical prediction for the 151 

evolution of the mean fitness due to de-novo mutations (see Peischl et al. 2013). Simulations show 152 

results for the combination of standing and new genetic variation. Gray shaded areas and black lines 153 

show results for recessive mutations ( 0h  ), and blue shaded areas and lines show results for additive 154 

co-dominant mutations ( 0.5h  ). Solid lines indicate the average mean fitness from 50 simulations, 155 

and dark and light shaded areas indicate   one standard deviation and the minimum and maximum 156 

of mean fitness, respectively.  Other parameter values are 1000n  , 100K  , 0.1u  , 0.1m  , 157 

0.01s  , 2R   . 158 

 159 
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We next investigate the evolution of the genotypic composition of standing genetic variation 160 

on the expansion front. In general, we find that the average number of heterozygous loci per 161 

individual decreases during the expansion, whereas the number of loci that are homozygous for the 162 

derived allele increases (Figure 2). Because we simulated a fixed number of loci, the derived allele 163 

frequency shown in Figure 2 is proportional to the average number of mutations carried by an 164 

individual. Thus, Figure 2 shows that the total number of mutations per individual remains nearly 165 

constant during the expansion (Figure 2). Strong genetic drift is therefore the major force driving the 166 

evolution of genotype frequencies at the wave front. At any given locus, mutations are either lost or 167 

fixed over the course of the expansion, and the probability of fixation of a given mutation is close to 168 

its initial frequency (Peischl et al. 2013), suggesting that deleterious mutations are behaving like 169 

neutral mutations on the wave front. In 2D expansions, the dynamics of genotype frequencies are 170 

qualitatively very similar to 1D expansions (Figure S1).  171 

  

Figure 2: Evolution of standing genetic variation on the wave front. Panel A shows results for co-172 

dominant mutations and panel B for recessive mutations. Parameter values are as in Figure 1. 173 

 174 

The nearly neutral evolution of allele frequencies on the expansion front reveals a critical role 175 

of the degree of dominance on the build-up of the expansion load. If mutations are co-dominant, the 176 

fitness of an individual is determined by the total number of mutations it carries (Wright 1930). Thus, 177 

Figure 2 shows that standing genetic variation has a negligible impact on fitness (Figure 2A). In 178 

contrast, if mutations are recessive, the fitness of an individual is determined by its number of loci 179 
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homozygous for the derived allele. Because the number of derived homozygous loci per individual 180 

rapidly increases at the front of the expansions, standing genetic variation has a severe effect on 181 

fitness if mutations are recessive (Figures 1 and 2B). 182 

Gene flow on the wave front of 2D expansions restores diversity and fitness 183 

In the following section, we focus on completely recessive mutations ( 0h  ). Figure 3 shows 184 

an example of the evolution of the mean fitness during an expansion in a 2D habitat (20x50 demes). 185 

As in 1D expansions, the mean fitness drops to low levels on the expansion front within the first few (186 

30 ) generations and then continues to gradually decreases at a slower rate. There is however a 187 

considerable variation in fitness across the wave front of 2D expansions (fitness-differences of more 188 

than 40%, Figures 3 and 4). At the end of the expansion (Figure 3, 150T  ), we find a high-fitness 189 

ridge along the expansion axis in the central part of the newly settled species range, surrounded by 190 

sectors of low fitness on the lateral edges of the species range. This is partially caused by the lack of 191 

immigrants at the lateral edge of the species range (boundary effect). However, the location of the 192 

high-fitness ridge varies across simulation runs, suggesting that a boundary effect alone cannot 193 

explain the observed patterns (Figure S2).    194 
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 195 

Figure 3: Evolution of mean fitness during range expansion. The simulated grid is 20x50 demes.  196 

Mutations are recessive and parameter values are as in Figure 1. 197 

 198 

 199 

Figure 4. Genetic properties of the demes located on the wave. The figure shows the mean fitness, 200 

the heterozygosity, and the derived allele frequency at the front of the expansion when the habitat 201 

has just been fully colonized. The deme mean fitness on the wave front correlates with 202 
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heterozygosity, but not with derived allele frequency. Statistics were computed from the simulation 203 

shown in Figure 3 at generation 150.  204 

Figure 4 shows the variation in fitness, heterozygosity, and derived allele frequency across 205 

the wave front at the end of the expansion shown in Figure 3. We find that the average number of 206 

mutations per individual is uniform across the expansion front, which means that the variation in 207 

fitness across the expansion front is not driven by a differential accumulation of mutations. 208 

Heterozygosity, on the other hand, correlates strongly with mean fitness (cf. solid and dashed line in 209 

Figure 4). This observation suggests that different mutations establish in different parts of the wave 210 

front, and that gene flow between demes restores heterozygosity, which masks the effect of 211 

deleterious recessive mutations. These results show that heterozygosity-fitness correlations (HFC) 212 

are readily created during range expansions. We indeed find a strongly positive HFC at the front of 213 

the expansion (Figure 5A, 2 0.526R  ., slope = 0.32, 1610p  ), but not in the ancestral population 214 

(Figure 5B, 2 0.001R  , slope = 0.03 , 0.07p  ). Interestingly, weaker but similar correlations are 215 

found at the individual level within demes (mean slope 0.1 , 0.05p   in 81% of all simulated 216 

demes).  217 

 218 

 219 

Figure 5. Heterozygosity-Fitness correlations (HFC). (A) HFC on the expansion front at generation 220 

120T   ( 2 0.526R  , slope = 0.32, 1610p  ). (B) No significant HFC in core populations before the 221 
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onset of the expansion ( 2 0.001R  , slope = 0.03 , 0.07p  ). Each point represents a single deme. 222 

The results from 10 simulation replicates are shown. Parameter values are as in Figure 3.  223 

 224 

Expansion load is driven by a few mutations occurring at high frequency 225 

So far we assumed that all mutations had the same effect s . To investigate the composition 226 

of expansion load with respect to mutation fitness effects, we now consider the case where mutation 227 

fitness effects are drawn from an exponential distribution with mean s . Figure 6A and B show the 228 

site frequency spectrum (SFS) observed in core and front populations, respectively. In core 229 

populations, the SFS shows the pattern expected for sites under negative selection (Bustamante et 230 

al. 2001), with a large excess of low frequency variants. On the wave front, the total number of 231 

segregating sites is reduced in marginal populations (cf. Figures 6 A and B). More interestingly, we 232 

see a markedly different SFS, with, as compared to neutral expectation, a clear deficit of rare and 233 

intermediate frequency variants and an increase in high frequency variants (Figure 6B). Thus, even 234 

though fewer polymorphic sites with deleterious variants are found in more recently colonized areas 235 

than in the ancestral region, the alleles at polymorphic sites tend to be at higher frequency in more 236 

recently colonized populations. 237 

 Figure 6 C and D show the distribution of polymorphic loci stratified according to their 238 

mutation effect sizes. The eight mutation effect classes have been defined such that they represent 239 

the 8-quantiles of the DFE, i.e., the rate at which mutations of a given category enter the population 240 

are equal for all categories. As expected, we find that the number of polymorphic loci generally 241 

decreases with increasing mutation effect size, and that large effect mutations tend to be present at 242 

lower frequencies than low effect mutations (Figure 6 C and D). Compared to core populations, the 243 

allele frequencies at polymorphic sites on the wave front tend to be larger across all mutational 244 

effect categories. Furthermore, the increase in allele frequency is most pronounced for small effect 245 

mutations. Thus, expansion load is driven mainly by mildly and moderately standing deleterious 246 
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mutations (i.e., up to 2Ns   for the parameter values used in Figure 6) that rise to high frequency 247 

during the expansion. 248 

 249 

Figure 6: Distribution of average number of polymorphic loci per individual. The distribution is 250 

stratified for allele frequencies (top row) and mutation effects (bottom row). Results were recorded 251 

150 generations after the onset of the expansion, which is shortly after the habitat was colonized 252 

completely (mean time to colonization 130  generations, see also Figure 3).  Panels (A) and (C) 253 

show results for a core population (coordinates 10, 5), (B) and (D) front population (coordinates 254 

10,45). Mutations are recessive and their effects are drawn from an exponential distribution with 255 

mean s = 0.01. Other parameter values are as in Figure 1.  256 

Discussion 257 

We have investigated here the dynamics of an expansion load caused by recessive mutations. 258 

Using individual-based simulations we have shown that shifts in the genotypic composition of 259 
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standing genetic variation can lead to a rapid drop of mean fitness at the onset of an expansion (see 260 

Figures 1 and 2) without necessarily affecting the total number of deleterious alleles per individuals 261 

(see Figure 2). The total expansion load resulting from standing genetic variation is limited by the 262 

initial frequency of deleterious mutations (see Figure 2). Thus, if many loci are polymorphic for 263 

deleterious variants at the onset of the expansion, the (recessive) expansion load from standing 264 

genetic variation can be the dominating the total mutation load (see Figure 1). Even though these 265 

results have been inferred by assuming that all deleterious mutations were recessive, we would 266 

predict that a similar phenomenon, though of lesser amplitude, would occur if only some of the 267 

mutations would be fully or partially recessive.  268 

The effect of range expansions on deleterious genetic diversity is also reflected in the site 269 

frequency spectrum (SFS, see Figure 6). As compared to stationary populations in the core of the 270 

species range, populations from more recently colonized areas have fewer segregating sites, but 271 

proportionally more high and low frequency variants (cf. Figure 6A and B). These differences in the 272 

SFS of core and front populations should provide an opportunity to evidence expansion load from 273 

sequence data, and to infer important quantities such as the distribution of fitness effects (Keightley 274 

and Eyre-Walker 2007; Boyko et al. 2008 ; Racimo and Schraiber 2014). The development of 275 

statistical and computational methods able to infer parameters under spatially explicit models 276 

including range expansions and selection remains, however, a major challenge (Sousa et al. 2014). 277 

Interestingly, human genomic data are consistent with our predictions for genomic 278 

signatures of expansion load. In particular, the number of segregating sites is higher in African 279 

populations than in non-African populations (Lohmueller et al. 2008), non-African populations show 280 

an excess of low-frequency and high-frequency deleterious alleles (Lohmueller et al. 2008; Fu et al. 281 

2014), the average number of sites that are homozygous for predicted deleterious variants sites is 282 

larger in non-African individuals (Fu et al. 2014), and the average number of predicted deleterious 283 

mutations per individual is slightly, but significantly, larger in non-Africans (Fu et al. 2014) . 284 

Determining mutation load (or, alternatively, fitness) from genomic variation data is, however, an 285 
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intrinsically difficult problem because mutation load depends on many unknown parameters 286 

(selection coefficients that may vary over space and time, epistatic interactions, dominance 287 

relationships, etc.), and the relevance of comparing a population with deleterious mutations to a 288 

theoretical population free of such mutations is questionable (Lesecque et al. 2012). Testing 289 

theoretical predictions of the effect of a range expansion on functional diversity with human genomic 290 

data might nevertheless be extremely useful to substantially increase our understanding of the 291 

complex interactions of demography and selection.  292 

We assumed here that selection was soft, i.e., demographic parameters are independent of 293 

fitness (Wallace 1975), but it would be interesting to extend our results to models of hard selection, 294 

where mutation load on the front can stop an expansion and even drive parts of the species range to 295 

extinction (Peischl et al. 2014). Our results suggest that admixture during range expansions, or 296 

secondary contact between expanding lineages, could mitigate expansion load and prevent marginal 297 

populations from collapsing. A previous study of range expansions under an additive model with hard 298 

selection has shown that suppressing recombination at the wave front can have beneficial effects for 299 

the spread of high fitness lineages (Peischl et al. 2014). Recombination modifiers, such as inversions, 300 

could have a similar effect if mutations are recessive and facilitate the spread of admixed lineages. 301 

An interesting example for studying the potentially beneficial role of admixture and suppressed 302 

recombination during range expansions is from the clam genus Corbicula, which includes both sexual 303 

and asexual (androgenetic diploid) lineages. Sexual populations are restricted to their native Asian 304 

areas, but the androgenetic lineages are widely distributed and extend as far as in America and 305 

Europe where they are invasive (Pigneur et al. 2014). Intriguingly, the invasive lineages also show an 306 

excess of heterozygosity, which is preserved through clonal reproduction. No such excess of 307 

heterozygosity is found in the native range, suggesting that the combination of asexual reproduction 308 

and high heterozygosity may have been key drivers of the invasion. 309 

An interesting prediction of our model is that if a given proportion of deleterious mutations 310 

are recessive, then heterozygosity-fitness correlations (HFC) should naturally occur in populations 311 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 18, 2014. ; https://doi.org/10.1101/011593doi: bioRxiv preprint 

https://doi.org/10.1101/011593


16 
 

that have recently expanded their range (see Figures 4 and 5A). Importantly, the positive correlation 312 

between heterozygosity and fitness in recently colonized areas can be observed at both the 313 

individual and the population level (Fig. 5). Even though our simulations modeled a single expansion 314 

in a 2D habitat, we would expect similar HFCs if there was a secondary contact between expanding 315 

populations from different areas (e.g., from different LGM refuge areas). The HFC should be even 316 

stronger in the case of a secondary contact, because the isolation between expanding lineages 317 

should be larger and different recessive alleles could have fixed in different refugia or during the 318 

expansion from these refugia. HFC have been observed in many cases of natural range expansions 319 

and invasive species (Chapman et al. 2009) but their underlying mechanisms and their role during 320 

range expansions and invasions  are still unclear (Szulkin et al. 2010; Rius and Darling 2014)- A 321 

particularly interesting example of HFC is found in the invasive weed Silene vulgaris, where, as 322 

predicted by our model (see Figure 5), HFC correlations are observed in the recently invaded North 323 

American range, but not in their native European range. It remains however unclear whether 324 

admixture between divergent lineages has indeed a causal role in range expansions. A combination 325 

of transplantation experiments and genomic data analyses could certainly be used to test the 326 

predictions of our model.  327 

In summary, we have investigated here the evolution of standing genetic variation during 328 

range expansions, the dynamics of mean fitness on the expansion front if mutations are recessive, 329 

and the genomic signature of range expansions. Importantly, our results make predictions that can 330 

be tested in natural populations. Empirical validation of our results would increase our understanding 331 

of the interactions of demography and selection (Lohmueller 2014), and could help us identifying key 332 

drivers of range expansions and biological invasions (Rius and Darling 2014).  333 
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Supplementary Figures 334 

 335 

Figure S1. Evolution of genotype frequencies at the front of an expansion in a 2D habitat of 20x50 336 

demes. Parameter values are as in Figure 1B. 337 

 338 

 339 

Figure S2. Mean fitness at the front of the expansion. The figure shows the mean fitness at the front 340 

of the expansion (at generation 150). Colored lines are the results from 10 simulation runs, solid 341 

black line shows the average over all simulation runs. Parameter values are as in Figure 3. 342 
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