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Abstract 

Protein-coding genes evolve at different rates, and the influence of different parameters, from 

gene size to expression level, has been extensively studied. While in yeast gene expression 

level is the major causal factor of gene evolutionary rate, the situation is more complex in 

animals. Here we investigate these relations further, especially taking in account gene 

expression in different organs as well as indirect correlations between parameters. We used 

RNA-seq data from two large datasets, covering 22 mouse tissues and 27 human tissues. Over 

all tissues, evolutionary rate only correlates weakly with levels and breadth of expression. The 

strongest explanatory factors of purifying selection are GC content, expression in many 

developmental stages, and expression in brain tissues. While the main component of 

evolutionary rate is purifying selection, we also find tissue-specific patterns for sites under 

neutral evolution and for positive selection. We observe fast evolution of genes expressed in 

testis, but also in other tissues, notably liver, which are explained by weak purifying selection 

rather than by positive selection.  

 

Key words: gene expression, protein evolution, human, mouse, evolutionary rate, natural 

selection. 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 23, 2015. ; https://doi.org/10.1101/011692doi: bioRxiv preprint 

https://doi.org/10.1101/011692
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
   3	
  

Introduction 

Understanding the causes of variation in protein sequence evolutionary rates is one of the 

major aims of molecular evolution, and has even been called a "quest for the universals of 

protein evolution" (Rocha 2006). Studies in a variety of organisms have reported that protein 

evolutionary rates correlated with many parameters, structural and functional (Pál et al. 2006; 

Rocha & Danchin 2004). Most notably, expression level has been shown to be the best 

predictor of evolutionary rate in yeasts and bacteria: highly expressed proteins are generally 

more conserved (Drummond et al. 2005; Pál et al. 2001; Wall et al. 2005).  In animals and 

plants, our understanding has been complicated by the fact that genes can have different 

expression levels depending on tissue or life history stage, and by correlations with multiple 

other factors such as recombination rate, gene length or compactness, and gene duplications 

(Larracuente et al. 2008; Makino et al. 2009; Yang & Gaut 2011; Liao et al. 2006; Li et al. 

2007). In mammals, expression breadth has been suggested to be more important than 

expression level (Duret & Mouchiroud 2000; Park & Choi 2010). It has also been suggested 

that selection against protein misfolding is sufficient to explain covariation of gene expression 

and evolutionary rate across taxa, including mouse and human (Drummond & Wilke 2008). 

This notably explains the slower evolution of brain-expressed genes; the relation with the 

influence of breadth of expression is unclear. Moreover, it was shown that conserved sites and 

optimal codons are significantly correlated in many organisms, including mouse and human 

(Drummond & Wilke 2008). 

These correlations of evolutionary rate to many other parameters, which are themselves 

correlated (e.g., gene length and GC content), poses problems to determining what is true and 

what is spurious correlation. To disentangle which factors could be determining evolutionary 

rates a solution is to use partial correlation, taking into account the relationship between gene 
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structure and other parameters when considering the correlations with evolutionary rate 

(Larracuente et al. 2008; Warnefors & Kaessmann 2013).  

Here we aim to disentangle aspects of protein evolutionary rate and its explanatory factors in 

human and mouse. We use partial correlations, taking into account not only different 

structural parameters, but also different aspects of gene expression (level, tissue specificity), 

using expression in more than 20 tissues. We also used three measures of protein evolutionary 

rate estimated from the branch-site model (Zhang et al. 2005): strength of negative selection 

(value of dN/dS on sites under negative selection); proportion of neutrally evolving sites; and 

evidence for positive selection. This allows us to distinguish fast evolution due to weak 

purifying selection from that due to positive selection. 

 

Materials and Methods 

We used RNA-seq data for mouse from the ENCODE project (The ENCODE Project 

Consortium 2011) and for human from Fagerberg et al. (Fagerberg et al. 2013). For mouse, 

the raw reads in FASTQ format obtained from the ENCODE FTP server 

(ftp://hgdownload.cse.ucsc.edu/goldenPath/mm9/encodeDCC/wgEncodeCshlLongRnaSeq/) 

were processed with TopHat and Cufflinks (Trapnell et al. 2012), using the gene models from 

Ensembl version 69 (Flicek et al. 2013). For human, processed data from Fagerberg et al. 

(Fagerberg et al. 2013) were retrieved from the ArrayExpress database (E-MTAB-1733) 

(Rustici et al. 2013). 22 tissues for mouse and 27 tissues for human were analyzed, of which 

16 are homologous between the two species. Processed RNA-seq expression was further 

treated as follows (R script in Supplementary Material): multiplied by 106 (to avoid values 

under 1, which are negative after log transformation); log2 transformation; and quantile 

normalization, replacing zero values by log2(1.0001). 
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We used either global parameters of expression: median expression, maximal expression, and 

specificity among all tissues; or expression in each tissue separately. Expression specificity τ 

was calculated as follows (Yanai et al. 2005), where x is the vector of expression levels over 

all n tissues for a gene:  

𝜏 =   
1− 𝑥!!

!!!

𝑛 − 1 ;   𝑥! =   
𝑥!

max
!!!!!

𝑥!
 

Values of expression specificity close to zero indicate that a gene is broadly expressed, and 

close to one that it is specific of one tissue. 

Additional analysis was performed on microarray expression data from 22 human and 22 

mouse tissues selected from the Bgee database (Bastian et al. 2008), as well as 8 human and 6 

mouse tissues from Brawand et al. RNA-seq (Brawand et al. 2011). The corresponding results 

are presented in Supplementary Materials. 

As measures of evolutionary rate of protein-coding genes, we used the estimates from the 

branch-site model (Zhang et al. 2005)  as precomputed in Selectome (Moretti et al. 2014): 

purifying selection estimated by the dN/dS ratio ω0 on the proportion of codons under 

purifying selection (noted "Omega" in the figures), evidence for positive selection estimated 

by the log-likelihood ratio ΔlnL of H1 to H0 (models with or without positive selection), and 

the proportion of neutrally evolving sites p1. The evolutionary rate parameters were estimated 

from the Euteleostomi gene trees on the Murinae branch for mouse and the Homininae branch 

for human. We also present in Supplementary Materials another estimation of evolutionary 

rate, using the exon based MI score (Rodriguez et al. 2013; Ezkurdia et al. 2014). 

For all parameters the longest coding transcript was chosen as a representative of the gene, as 

the evolutionary rate data were available only for this transcript. Analysis was also redone for 

mouse using the most expressed transcript; results are presented in Supplementary Materials. 

Intron number, intron length, CDS length (coding sequence length) and GC content were 

taken from Ensembl 69 (Flicek et al. 2013). Essentiality data were manually mapped and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 23, 2015. ; https://doi.org/10.1101/011692doi: bioRxiv preprint 

https://doi.org/10.1101/011692
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
   6	
  

curated (Walid Gharib, personal communication) for human from the OMIM database 

(McKusick-Nathans Institute of Genetic Medicine 2014) and for mouse from the MGI 

database (Blake et al. 2014). 

Data of expression at different developmental stages were obtained from Bgee (Bastian et al. 

2008). The parameter stage number indicates the number of stages in which the gene was 

reported as expressed. Mouse development was divided in 10 stages: 1. Zygote 2. Cleavage 3. 

Blastula 4. Gastrula 5. Neurula 6. Organogenesis 7. Fetus 8. Infant 9. Adolescent 10. Adult; 

and human in 8 stages: 1. Cleavage 2. Blastula 3. Organogenesis 4. Fetus 5. Infant 6. 

Adolescent 7. Early adult 8. Late Adult. 

Phyletic age and connectivity (protein-protein interactions) data were downloaded from the 

OGEE database (Chen et al. 2012), as ordinal data. Phyletic age stages used are: 1. Mammalia 

2. Chordata 3. Metazoa 4. Fungi/Metazoa 5. Eukaryota 6. Cellular organism. 

Recombination rate was calculated from Cox et al. 2009 data (Cox et al. 2009). 

Correlation between the different parameters was performed in two ways: simple pairwise 

Spearman correlation and partial Spearman correlation (results for Pearson correlation are 

also presented in Supplementary Materials). For partial correlation each pair of parameters 

were compared taking into account all other parameters: first a linear model according to all 

other parameters for each of the two analyzed parameters was calculated; then the Spearman 

correlation was calculated on the corresponding residuals. All R code is available as 

Supplementary Materials. 

Partial correlation was used to determine the correlation between two parameters excluding 

dependencies from other parameters. The principle of the partial correlation can be shown on 

a toy example (Supplementary table S1). As example data for human height and leg length 

were simulated, so that either a) the length of both legs is calculated depending on height, or 

b) the length of the left leg is calculated from height, and the length of the right leg is 
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calculated from the length of left leg. With simple correlation the two cases cannot be 

distinguished, as all three parameters correlate strongly with each other. With partial 

correlation we can distinguish the two cases: in case a) left leg and right leg length don’t 

correlate with each other if we exclude influence of the height, but in case b) we see a strong 

correlation between them, as expected, while right leg length no longer correlates with height. 

Expression, intron length, intron number, CDS length, τ, ω0, paralog number were log2 

transformed before calculations. p1 and ΔlnL were normalized by taking the fourth root 

(Canal 2005; Roux et al. 2014). For parameters containing zeros a small value was added 

before log transformation, chosen as the minimal non zero value of the parameter (except for 

RNA-seq, see detailed treatment above). Altogether 9553 protein-coding genes for human and 

9485 protein-coding genes for mouse were analyzed. 

All the analysis was performed in R (R Core Team 2012) using Lattice (Sarcar 2008), plyr 

(Wickham 2011). For the representation of the data Cytoscape version 2.8.2 (Shannon et al. 

2003) with library RCytoscape (Shannon et al. 2013) and Circos version 0.62-1 (Krzywinski 

et al. 2009) were used. 

 

Results 

We detail here the results of Spearman partial correlation analyses (table 1); standard 

Spearman and Pearson, as well as partial Pearson, correlations are provided in Supplementary 

Materials. Spearman correlation was preferred as most of the data analyzed are not normally 

distributed (supplementary fig. S1), even after transformation, and to avoid a large influence 

of outliers. It should be noted that parameters that are expected to have strong direct relations 

remain strongly correlated in the Spearman partial correlation. For example the correlation 

between coding sequence (CDS) length and intron number, in mouse, is ρ=0.683 for partial 

vs. ρ=0.760 for simple correlation, showing that longer genes have more introns. Similarly, 
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partial correlations still show that higher expressed genes are broadly expressed, and that 

specific genes have lower expression in general. Thus little relevant information is lost, while 

spurious correlations can be hopefully avoided. 

 

Evolutionary rate: global influences on selection 

Evolutionary rate is represented by three parameters in this study, taken from the branch-site 

model (see Methods): ω0 = dN/dS, measures the intensity of purifying selection on the subset 

of sites determined to be under purifying selection; p1 is the proportion of neutrally evolving 

sites; and ΔlnL measures the strength of evidence for positive selection. 

In both mouse and human, none of the aspects of gene expression yields a strong partial 

correlation to any feature of evolutionary rate (table 1; fig. 1). There is a weak correlation of 

ω0 to expression specificity τ in both human and mouse (ρ = 0.085 and 0.067 respectively), 

confirming that more broadly expressed genes evolve under stronger purifying selection. 

Purifying selection ω0 is also negatively correlated to maximum expression, although this is 

weaker in human, indicating that genes with high expression in at least one tissue have a 

tendency to evolve under strong purifying selection. More surprisingly, purifying selection ω0 

is positively correlated to median expression. Note that these are partial correlations; without 

correcting for other parameters, as expected, ω0 correlates negatively with median expression, 

i.e., highly expressed genes are under strong purifying selection. It appears that this negative 

correlation is driven by the effect of breadth of expression and of maximum expression, with 

the residual effect actually in the opposite direction. 

Evolutionary features of the genes, paralog number and phyletic age, have a stronger partial 

correlation with ω0 than expression: older genes, and genes with more paralogs, evolve under 

stronger purifying selection; again, this is after removing the effect of high levels of 
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expression, as well as the correlation between gene age and number of paralogs. In human, 

GC content also appears to have a strong influence on ω0, but much less so in mouse. 

It remains that none of these parameters can explain much of the differences in purifying 

selection. The total variance of ω0 that they explain (using partial Pearson correlation, as 

Spearman ρ does not relate directly to variance) is 10.2% for human and 13.8% for mouse, 

thus leaving more than 85% of the variance unexplained. 

The strongest correlation with ω0 is for p1, the proportion of sides evolving neutrally (fig. 1). 

This partial correlation is ρ = 0.748 in mouse and ρ = 0.598 in human; genes under strong 

purifying selection have a smaller proportion of sides evolving neutrally. This is not directly 

due to the way how these parameters are estimated in the branch-site test, since ω0 is 

computed on a distinct set of codons from p1. This proportion p1 of neutrally evolving sites is 

otherwise mostly correlated with evolutionary features (phyletic age, paralog number) in 

human, and with structural features (intron length, GC content) in mouse, but correlations are 

weak (all ρ < 0.09). 

Evidence for positive selection correlates negatively with median expression in both human 

and mouse (fig. 1), i.e. highly expressed genes are under weaker positive selection (ρ = -0.105 

and -0.187 respectively). It should be noted that this correlation concerns relatively weak 

evidence for selection, since only 4 human and 23 mouse genes in the dataset have significant 

support for branch-site positive selection (using the false discovery rate of 10% cut-off of 

Selectome, see Methods). 

 

Tissue-specific analysis 

When the correlation between expression level, selective pressure, and other parameters, is 

analyzed for each tissue separately, there are large differences, notably in the correlation 

between expression and purifying selection between tissues (fig. 2). 
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In both human and mouse, the strongest correlation with purifying selection ω0 is for level of 

expression in the brain, as expected from previous studies with less tissues (Kuma et al. 1995; 

Duret & Mouchiroud 2000; Khaitovich et al. 2006; Drummond & Wilke 2008; Tuller et al. 

2008). After correcting for all other effects, the residual correlation is rather weak (ρ between 

-0.065 and -0.107 depending on species and brain part), but always in the direction of 

stronger purifying selection on genes with higher expression in brain. In human, there are also 

significant partial correlations for esophagus, prostate, adrenal, colon, and endometrium (fig. 

2B). In mouse, there are correlations for all sampled tissues except liver, placenta and testis 

(fig. 2A); in human the homologous tissues to these three also have among the lowest partial 

correlations. Interestingly, the only positive partial correlation with ω0 is for human testis 

expression, i.e. higher expression in testis correlates with weaker purifying selection. 

The strongest correlations with the proportion of neutrally evolving sites are also for brain 

tissues, in human and in mouse. Again the correlation is negative, indicating less neutral 

evolution (i.e., more selection) for more highly expressed genes. There are almost no other 

tissues with significant partial correlation of expression and p1, although for mouse large 

intestine the correlation is significantly positive. 

Concerning evidence of positive selection, on the other hand, there are significant negative 

partial correlations for all tissues, meaning that for each tissue genes with higher expression 

have less evidence of positive selection. Brain tissues again have some of the strongest 

correlations, although they stand out less than for ω0 or p1. In both mouse and human the 

correlation is weakest for testis expression, and also quite weak for placenta. 

All these correlations include for each tissue both house-keeping and tissue-specific genes; 

the former might confuse tissue-specific patterns. Thus we repeated the analysis restricted to 

tissue-specific genes, defined as τ > 0.2 (supplementary fig. S2). The global picture is similar, 

with notably significant negative partial correlations to ω0 only for expression in human brain 
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and mouse cerebellum, significant negative correlation to p1 only for mouse brain parts, and 

conversely significant positive correlations to expression in human and mouse testis. 

 

Gene age and duplication 

As expected, older genes have more paralogs (positive correlation in fig. 1) (Roux & 

Robinson-Rechavi 2011). Tissue specificity has a rather strong positive partial correlation 

with paralog number, and a significant weak negative correlation with phyletic age was 

detected; both correlations are stronger in human than in mouse. That means that, correcting 

for the correlation between gene age and paralog number, new genes and genes with more 

paralogs tend to have more tissue-specific expression. While in simple correlation, phyletic 

age and expression level (median or maximum) have a strong positive correlation (older 

genes have higher expression), this effect is almost completely lost in the partial correlation, 

and so is probably spurious. 

The phyletic age of the genes correlates negatively with purifying selection but almost no 

correlation can be seen to neutral evolution or positive selection. This is consistent with 

previous observations that older genes evolve under stronger purifying selection ((Albà & 

Castresana 2005, 2007) but see (Elhaik et al. 2006)). 

Paralog number correlates negatively with purifying selection in both organisms (-0.064 for 

mouse and -0.136 for human). This indicates a stronger effect of the biased preservation of 

duplicates under stronger purifying selection (Brunet et al. 2006; Davis & Petrov 2004; 

Jordan et al. 2004), than of the effect of faster evolution of duplicated genes (Satake et al. 

2012). 
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Gene structure 

Genes with higher GC content have higher expression level, as shown previously (Urrutia & 

Hurst 2003), although the effect is not very strong in partial correlation. Previous findings that 

highly expressed genes are shorter were only partly confirmed: there is a strong negative 

partial correlation between CDS length and maximal expression, but the partial correlation 

between median expression and CDS length is weakly positive. Curiously, the partial 

correlation with intron number is opposite, indicating that genes with high maximum 

expression tend to have more introns than expected given their CDS length. 

 

Differences between human and mouse, and between datasets 

In general correlations in human are slightly weaker than in mouse, but very consistent 

(supplementary fig. S3). The strongest difference is between the correlations of GC content 

and stage number; and of GC content and maximal expression.  

There are also noticeable differences between mouse and human in the partial correlations 

among ω0, p1 and ΔlnL (evidence for positive selection). In human ΔlnL correlates negatively 

with p1 and positively with ω0, indicating that genes with high proportion of neutrally 

evolving sites and weak purifying selection show little evidence for positive selection. In 

mouse the correlations are not significant, and in the opposite directions, but the correlation 

between ω0 and p1 is much stronger. GC content and paralog number also have stronger 

correlations to purifying selection in human than in mouse.  

We repeated our analyses with large microarray experiments (see Methods, and 

Supplementary Materials), to control for putative biases in RNA-seq data. There are a few 

differences, although they do not change our biological conclusions. First, with microarrays 

tissue-specificity τ appears overall lower, and the correlations between expression parameters 

(τ, maximal expression, median expression) are stronger. This might be due to the better 
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detection of lowly expressed genes by RNA-seq than by microarray, whereas there seems to 

be less difference for highly expressed genes (Wang et al. 2014). Conversely, correlations of 

expression parameters with all other parameters are much stronger for RNA-seq. The 

correlation between ω0 and expression in each tissue separately is stronger with microarrays 

then with RNA-seq, and significant for all tissues, but the same tissues have the strongest 

(resp. weakest) correlation between ω0 and expression with both techniques. Inversely, the 

evidence for positive selection has almost no significant correlations with expression in single 

tissues with microarray data. 

We also reproduced our analysis using the precomputed "MI" score for most conserved exon 

(Rodriguez et al. 2013; Ezkurdia et al. 2014) instead of the branch-site model ω0, and all 

results are similar despite the differences in multiple sequence alignment and in evolutionary 

model (supplementary fig. S4): e.g., phyletic age is the strongest correlation to MI and 

median expression has a weak positive partial correlation. 

Finally, we repeated our analysis with the RNA-seq data for human and mouse 6 tissues from 

Brawand et al. (Brawand et al. 2011); results are extremely similar to those with the large 

RNA-seq experiments used in our main results (Supplementary Material), with less detail of 

tissues, and less resolution for τ, due to the smaller sampling. 

Overall, our results appear quite robust across species and experimental techniques. 

 

Discussion 

Technical limitations and generality of observations 

We use partial correlations to hopefully detect non-spurious relations. Of note, the lack of 

partial correlation between two parameters does not mean that they are not correlated in 

practice, but that the correlation is not directly informative, or insufficiently to be detected. 
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Our analysis was performed on approximately half of the known protein coding genes (9509 

for human and 9471 for mouse), for which evolutionary rate could be computed reliably. 

While this may introduce some bias, it does not appear to have a large influence, since 

correlations other than to evolutionary rate are very similar on the other half of the coding 

genes (Supplementary Material). 

 

Global study of evolutionary rate 

Our aim is to understand the causes of variation in evolutionary rates among protein-coding 

genes in mammals. In yeast or bacteria, the major explanatory feature is the relation between 

the level of gene expression and purifying selection (Pál et al. 2006; Rocha & Danchin 2004; 

Rocha 2006). In mammals, firstly levels of expression are more complex to define, due to 

multicellularity and tissue-specificity, and secondly several other features have been reported 

to correlate as much or more with evolutionary rate, in studies which did not necessarily 

incorporate all alternative explanations. 

In this study, we have focused on the dN/dS ratio, or ω, and distinguished further the three 

forces which affect this ratio, under the classical assumption that dS is overwhelmingly 

neutral (although see (Rubinstein et al. 2011; Macossay-Castillo et al. 2014; Dimitrieva & 

Anisimova 2014)). The intensity of purifying selection is clearly the main component of the 

overall ω: on average more than 85% of codons are in the purifying selection class of the 

evolutionary model used. Analyzing separately neutral evolution and purifying and positive 

selection, we find that (i) these three forces do not affect protein coding genes independently, 

and (ii) they have different relations to gene expression and to other features. Notably, genes 

which are under stronger purifying selection have less codons predicted under neutral 

evolution. Importantly, we computed evolutionary rates on filtered alignments  (Moretti et al. 

2014), which probably eliminates mostly neutrally evolving sites, thus underestimating p1. 
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Still, it appears that to the best of our knowledge these two forces act in the same direction. 

The relation is less clear concerning the evidence for positive selection, with opposite 

correlations in human and mouse. But we are limited by the weak evidence for positive 

selection on the branches tested, at the human-chimpanzee and mouse-rat divergences. 

Overall, these relations between forces acting on ω0 deserve further investigation with more 

elaborate evolutionary models (e.g., Murrell et al. 2012; Zaheri et al. 2014). Despite the 

limitations of the estimation of positive selection, this is the component of evolutionary rate 

which has the strongest partial correlation with the level of gene expression, both with the 

median expression over all tissues, and with expression in brain tissues. This implies that 

when expression patterns constrain the protein sequence, they also strongly limit adaptation 

(strong purifying selection and very low positive selection). 

So what explains evolutionary rate? The strongest partial correlation of ω0 is with phyletic 

age: older genes evolve under stronger purifying selection. While the use of partial correlation 

allows us to correct for some obvious biases in detecting distant orthologs, such as gene 

length, we cannot exclude that results be partially caused by the easier detection of orthologs 

in distant species for proteins with more conserved sequences (Elhaik et al. 2006; Albà & 

Castresana 2007; Moyers & Zhang 2014). I.e., genes with weak purifying selection may be 

reported as younger than they are, because the orthologs were not detected by sequence 

similarity. We obtain similar results with an exon-based index of sequence conservation, MI 

(supplementary fig. S4). Whatever the contributions of methodological bias and biological 

effect, this correlation is not very informative about causality, since stronger selection will not 

be caused by the age of the gene. 

The next strongest partial correlation with ω0 is the GC content of the gene. In mammals, the 

variation in GC content of genes seems mostly due to GC-biased gene recombination 

(Montoya-Burgos et al. 2003), and this in turn has been show to impact estimation of dN/dS 
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(Galtier et al. 2009). But while GC-biased gene recombination is expected to lead to high GC 

and an overestimation of ω, we find a negative correlation between ω0 and GC content, 

consistent with previous observations in Primates (Bullaughey et al. 2008). Of note, 

estimating the actual biased recombination rate rather than GC content is limited by the rapid 

turn-over of recombination hotspots (Glémin et al. 2014), and recombination rate appears to 

have only a very weak effect on dN/dS in Primates once GC content is taken into account 

(Bullaughey et al. 2008). This could be seen in our study, as recombination rate did not show 

any significant correlation to any of the parameters, except GC content (Supplementary 

Material). The previously reported relation between dN/dS and intron length seems to be 

mostly an indirect effect of the strong correlation between GC content and intron length 

(Montoya-Burgos et al. 2003; Duret et al. 1995). 

The significant, although weaker, partial correlation of ω0 to paralog number is consistent 

with previous observations that genes under stronger purifying selection are more kept in 

duplicate (Davis & Petrov 2004; Yang & Gaut 2011; Jordan et al. 2004; Brunet et al. 2006). 

The level of gene expression has been reported repeatedly to be the main explanatory variable 

for dN/dS (Subramanian & Kumar 2004; Liao & Zhang 2006; Pál et al. 2001; Drummond et 

al. 2005; Wall et al. 2005), notably in S. cerevisiae. Our first observation is that no aspect of 

expression in human and mouse adult tissues is as strong an explanatory factor for any 

component of evolutionary rate as what was reported in yeast. Our second observation is that 

three aspects of expression influence evolutionary rate most strongly: breadth of expression τ; 

number of developmental stages (fig. 1; table 1); and expression in brain tissues (fig. 2). The 

third, surprising, observation is that median expression is positively correlated with ω0: taking 

into account other parameters, genes which have higher expression on average are under 

weaker purifying selection; whereas the correlation with maximal expression is negative, as 

expected. Thus in mammals the negative correlation between median expression and 
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evolutionary rate appears to be an indirect effect of stronger selection on broadly expressed 

genes and on genes with high maximal expression in at least one tissue (this is also true if we 

take the mean instead of median expression, see Supplementary Materials). 

We confirm previously reported observations that expression breadth is more important then 

expression level itself in mammals (Park & Choi 2010). dN was previously found to be 

threefold lower in ubiquitous than in tissue-specific genes, while dS did not vary with 

expression specificity (Duret & Mouchiroud 2000). Other studies indicate that genes 

expressed in few tissues evolve faster then genes expressed in a wide range of tissues (Liao & 

Zhang 2006; Gu & Su 2007; Park & Choi 2010), or that tissue-specific genes have more 

evidence for positive selection (Haygood et al. 2010). In mouse, but not human, τ is weakly 

negatively correlated to evidence for positive selection: broadly expressed genes seem to be 

more affected by positive selection, contra Haygood et al (Haygood et al. 2010). We also 

notice that tissue-specificity and maximal expression are correlated, i.e. more tissue-specific 

genes have higher maximum expression in one tissue. Thus these two forces appear to act on 

different genes: some genes are under strong purifying selection because they are broadly 

expressed, suggesting an important role of pleiotropy, while other genes are under strong 

purifying selection because they are highly expressed in few tissues, suggesting an important 

role of the tissue-specific optimization of protein sequences. Of note, analyzing separately 

only brain expression relative to maximal and breadth of expression in other tissues gave 

similar results, thus brain expression alone is not driving these patterns (not shown). 

Some studies have reported that expression level and tissue specificity are less important than 

gene compactness and essentiality in mammals (Liao et al. 2006). Liao et al. (Liao et al. 2006) 

reported that compact genes evolve faster, but this correlation is very weak in our study. We 

could not either confirm that highly expressed genes are shorter (Li et al. 2007; Chen et al. 

2005; Urrutia & Hurst 2003). We have used the longest transcript for each protein coding 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 23, 2015. ; https://doi.org/10.1101/011692doi: bioRxiv preprint 

https://doi.org/10.1101/011692
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
   18	
  

gene, as evolutionary parameters (ΔlnL, ω0, p1) were calculated for the transcript. But this 

might not be the transcript most expressed and used in all tissues (Gonzalez-Porta et al. 2013). 

We repeated calculations with the most expressed transcript (Supplementary Material), but 

results were unchanged; we show these results only in supplementary materials, as the 

estimation of transcript-level expression does not yet appear to be very reliable (Lahens et al. 

2014; Cho et al. 2014). Finally, we tried to investigate the impact of essentiality, but we found 

no significant effect (supplementary fig. S5); we note that we have very low power to test this 

effect, especially in human. 

The analysis was also performed adding connectivity and recombination data, for mouse only. 

This reduced the number of analyzed genes to 4599 (Supplementary Material). Correlations 

were mostly unchanged, with the largest difference being for the correlation between stage 

number and phyletic age, from 0.11 to 0.093. No notable change of correlations with ω0 was 

detected, and connectivity and recombination rate do not show any significant correlation to 

evolutionary rate. 

The largest partial correlations that we observed for components of evolutionary rate are 

between brain expression level and evidence for positive selection, at -0.203 to -0.188 in 

mouse (for different brain parts), and -0.168 in human (whole brain). For purifying selection 

we find weaker but significant partial correlations with brain expression and with the number 

of stages, between 0.065 and 0.119. And brain tissues also have the strongest partial 

correlation over expression in tissues for neutral evolution (fig. 2). It has been previously 

reported that brain expression is a major component of evolutionary rate in mammals and 

other animals (Khaitovich et al. 2006; Duret & Mouchiroud 2000; Kuma et al. 1995; 

Drummond & Wilke 2008), and here we confirm the dominance of this component, even 

taking other effects into account. Importantly we show that this affects all forces acting on 

protein evolutionary rate: purifying selection, neutral evolution, and positive selection. Thus 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 23, 2015. ; https://doi.org/10.1101/011692doi: bioRxiv preprint 

https://doi.org/10.1101/011692
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
   19	
  

the median expression of genes over more than 20 tissues is a poor explanation of protein 

evolutionary rate, relative to brain expression. 

 

Tissue specific patterns 

There are striking differences between tissues in the extent of the correlations with structural 

and evolutionary parameters. As already mentioned, brain tissues present the strongest partial 

correlations with evolutionary rate; results are consistent when only tissue-specific genes are 

used. We observe this for the three evolutionary forces estimated. In most comparisons, the 

correlation is stronger for brain expression than for any global measure of expression. This is 

consistent with the translational robustness hypothesis, which proposes that highly expressed 

genes are under stronger pressure to avoid misfolding caused by translational errors, thus 

these genes are more conserved in evolution (Drummond et al. 2005), and that neural tissues 

are the most sensitive to protein misfolding (Drummond & Wilke 2008). This slow evolution 

of genes expressed in neural tissues has been repeatedly reported (Duret & Mouchiroud 2000; 

Kuma et al. 1995; Necsulea & Kaessmann 2014), especially for the brain (Park & Choi 2010); 

it has also been related to higher complexity of biochemical networks in the brain than in 

other tissues (Kuma et al. 1995). 

Fast evolution of genes expressed in testis is also well documented (Khaitovich et al. 2006; 

Brawand et al. 2011; Necsulea & Kaessmann 2014), and could be due to lower purifying 

selection, an excess of young genes and leaky expression, or to positive selection due to 

sexual conflict. We observe neither a stronger correlation between expression in sexual 

tissues and evidence for positive selection, nor a stronger correlation between expression in 

sexual tissues and the proportion of sites evolving neutrally. What we do observe is that the 

weakest partial correlation between expression in a tissue and purifying selection is for testis, 

and that it is also quite weak for placenta, with even a surprising positive correlation between 
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ω0 and expression in human testis, which remains when only tissue-specific genes are used. 

This is consistent with the "leaky expression" model: being expressed in the testis does not 

appear to be an indicator of function carried by the protein sequence. Interestingly, expression 

in testis is negatively correlated with the number of paralogs, significantly so in mouse: genes 

which are more expressed in testis have less paralogs, after correcting for other effects. 

While the strong correlation of ω0 with expression in the brain, and the weak correlation with 

expression in testis are expected, we also observe less expected patterns. Most notably, liver 

expression has the next weakest correlation with ω0 after testis (and placenta in mouse). 

Although it was reported before that liver expressed genes are evolving faster (Khaitovich et 

al. 2006; Duret & Mouchiroud 2000), it was reported with much fewer tissues, and not 

highlighted. Liver expression is also positively correlated with the proportion of neutral sites, 

unlike brain or testis expression, although this is not significant. Interestingly, liver has the 

strongest correlation of expression with phyletic age, implying that despite low purifying 

selection, old genes are more expressed in liver. In any case, this outlier position of liver has 

important practical implications, since liver is often used as a "typical" tissue in studies of 

gene expression for molecular evolution (e.g., (Gilad et al. 2006; Blekhman et al. 2010; Enard 

et al. 2002)). 

 

Conclusion 

The main result of our study is that average adult gene expression is quite lowly informative 

about protein evolutionary rate, while purifying selection on genes highly expressed in the 

brain and breadth of expression are our best bets for a causal factor explaining evolutionary 

rates. A practical consequence is that great care should be taken before using expression from 

other tissues, including widely used ones such as liver, as proxies for the functional 

importance of mammalian genes. 
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Finally, all calculations were performed with expression in adult tissues. It is possible that 

expression in embryonic development be more important for evolutionary constraints in 

mammals, and this should be explored further.  

 
Supplementary Material 

The most important Supplementary Materials are available at Genome Biology and Evolution 

online (http://gbe.oxfordjournals.org/). Data sets and other supplementary figures are 

available at: http://dx.doi.org/10.6084/m9.figshare.1221771. 
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Table 1. Values of partial Spearman correlations between parameters, over all tissues 
Top right of table: values for mouse (corresponding to Fig 1A); bottom left of table: values for human (corresponding to Fig 1B). 
Not significant (p-value>0.0005) are in italics. 
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Intron	
  

length	
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CDS	
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Paralogs	
  

number	
  

Phyletic	
  

age	
  

ω0	
   	
   -­‐0.031	
   0.748	
   0.067	
   0.051	
   -­‐0.074	
   -­‐0.012	
   -­‐0.055	
   -­‐0.030	
   0.052	
   -­‐0.062	
   -­‐0.064	
   -­‐0.163	
  

ΔlnL	
   0.133	
   	
   0.014	
   -­‐0.048	
   -­‐0.187	
   0.079	
   -­‐0.043	
   -­‐0.020	
   -­‐0.038	
   -­‐0.060	
   0.042	
   -­‐0.017	
   0.000	
  

p1	
   0.598	
   -­‐0.037	
   	
   0.024	
   -­‐0.005	
   0.029	
   -­‐0.047	
   -­‐0.066	
   -­‐0.080	
   -­‐0.034	
   0.042	
   -­‐0.069	
   -­‐0.017	
  

τ	
   0.085	
   -­‐0.006	
   0.018	
   	
   -­‐0.803	
   0.468	
   -­‐0.374	
   -­‐0.039	
   0.094	
   -­‐0.061	
   0.074	
   0.125	
   -­‐0.069	
  

Median	
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   0.049	
   0.105	
   0.015	
   -­‐0.790	
   	
   0.553	
   0.012	
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   0.135	
   0.002	
   0.061	
   0.070	
   -­‐0.025	
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   -­‐0.041	
   0.033	
   -­‐0.005	
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   0.530	
   	
   0.164	
   0.231	
   -­‐0.076	
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   -­‐0.283	
   0.075	
   0.010	
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  Number	
   -­‐0.041	
   -­‐0.055	
   -­‐0.043	
   -­‐0.381	
   0.063	
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   -­‐0.287	
   -­‐0.048	
   -­‐0.006	
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   0.108	
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   0.139	
   -­‐0.039	
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   0.029	
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   -­‐0.014	
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   -­‐0.011	
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   0.111	
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   -­‐0.136	
   -­‐0.019	
   -­‐0.069	
   0.155	
   0.104	
   0.092	
   -­‐0.052	
   0.070	
   0.103	
   0.065	
   0.173	
   	
   0.175	
  

Phyletic	
  age	
   -­‐0.213	
   -­‐0.034	
   -­‐0.084	
   -­‐0.136	
   -­‐0.081	
   0.048	
   0.091	
   -­‐0.065	
   -­‐0.078	
   0.151	
   0.122	
   0.188	
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Fig. 1. Spearman partial correlations in a) mouse and b) human. The width of the lines shows the strength of correlations. Red lines 
show positive correlations, blue lines show negative correlations. Only significant correlations (p<0.0005) are shown. 
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Fig. 2. Spearman partial correlation with expression values for each tissue separately for a) mouse and b) human. The width of the 
lines shows the strength of correlations. Red lines show positive correlations, blue shows negative correlations. Only significant 
correlations (p<0.0005) are shown. Color of the tissue bands represents different groups of tissues (gastrointestinal system, central 
nervous system, reproductive system and misc). 
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