Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Visualizing spatial population structure with estimated effective migration surfaces

Desislava Petkova, John Novembre, Matthew Stephens
doi: https://doi.org/10.1101/011809
Desislava Petkova
1Department of Statistics, University of Chicago
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John Novembre
2Department of Human Genetics, University of Chicago
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Matthew Stephens
1Department of Statistics, University of Chicago
2Department of Human Genetics, University of Chicago
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Genetic data often exhibit patterns that are broadly consistent with “isolation by distance” – a phenomenon where genetic similarity tends to decay with geographic distance. In a heterogeneous habitat, decay may occur more quickly in some regions than others: for example, barriers to gene flow can accelerate the genetic differentiation between groups located close in space. We use the concept of “effective migration” to model the relationship between genetics and geography: in this paradigm, effective migration is low in regions where genetic similarity decays quickly. We present a method to quantify and visualize variation in effective migration across the habitat, which can be used to identify potential barriers to gene flow, from geographically indexed large-scale genetic data. Our approach uses a population genetic model to relate underlying migration rates to expected pairwise genetic dissimilarities, and estimates migration rates by matching these expectations to the observed dissimilarities. We illustrate the potential and limitations of our method using simulations and data from elephant, human, and Arabidopsis thaliana populations. The resulting visualizations highlight important features of the spatial population structure that are difficult to discern using existing methods for summarizing genetic variation such as principal components analysis.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted November 26, 2014.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Visualizing spatial population structure with estimated effective migration surfaces
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Visualizing spatial population structure with estimated effective migration surfaces
Desislava Petkova, John Novembre, Matthew Stephens
bioRxiv 011809; doi: https://doi.org/10.1101/011809
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Visualizing spatial population structure with estimated effective migration surfaces
Desislava Petkova, John Novembre, Matthew Stephens
bioRxiv 011809; doi: https://doi.org/10.1101/011809

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genetics
Subject Areas
All Articles
  • Animal Behavior and Cognition (2548)
  • Biochemistry (4995)
  • Bioengineering (3503)
  • Bioinformatics (15291)
  • Biophysics (6934)
  • Cancer Biology (5432)
  • Cell Biology (7783)
  • Clinical Trials (138)
  • Developmental Biology (4564)
  • Ecology (7186)
  • Epidemiology (2059)
  • Evolutionary Biology (10264)
  • Genetics (7542)
  • Genomics (9835)
  • Immunology (4905)
  • Microbiology (13311)
  • Molecular Biology (5170)
  • Neuroscience (29607)
  • Paleontology (203)
  • Pathology (842)
  • Pharmacology and Toxicology (1471)
  • Physiology (2155)
  • Plant Biology (4788)
  • Scientific Communication and Education (1016)
  • Synthetic Biology (1343)
  • Systems Biology (4025)
  • Zoology (773)