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Abstract

Gaseous neurotransmitters such as nitric oxide (NO) provide a unique and often
overlooked mechanism for neurons to communicate through diffusion within a network,
independent of synaptic connectivity. NO provides homeostatic control of intrinsic
excitability. Here we conduct a theoretical investigation of the distinguishing roles of
NO-mediated diffusive homeostasis in comparison with canonical non-diffusive
homeostasis in cortical networks. We find that both forms of homeostasis provide a
robust mechanism for maintaining stable activity following perturbations. However, the
resulting networks differ, with diffusive homeostasis maintaining substantial
heterogeneity in activity levels of individual neurons, a feature disrupted in networks
with non-diffusive homeostasis. This results in networks capable of representing input
heterogeneity, and linearly responding over a broader range of inputs than those
undergoing non-diffusive homeostasis. We further show that these properties are
preserved when homeostatic and Hebbian plasticity are combined. These results suggest
a mechanism for dynamically maintaining neural heterogeneity, and expose
computational advantages of non-local homeostatic processes.

Author Summary

Neural firing rates must be maintained within a stable range in the face of ongoing
fluctuations in synaptic connectivity. Existing cortical network models achieve this
through various homeostatic mechanisms which constrain the excitability of individual
neurons according to their recent activity. Here, we propose a new mechanism, diffusive
homeostasis, in which neural excitability is modulated by nitric oxide, a gas which can
flow freely across cell membranes. Information about a neurons’ firing rate can be
carried by nitric oxide, meaning that an individual neurons’ excitability is affected by
neighboring neurons’ firing rates as well as its own. We find that this allows a neuron to
deviate from the target population activity, as its neighbors will counteract this
deviation, thus maintaining stable average activity. This form of neural heterogeneity is
more flexible than assigning different target firing rates to individual neurons.
Consequently, networks endowed with this diffusive mechanism have an improved
representational capability compared to canonical, local homeostatic mechanisms, and
allow for more efficient use of neural resources.
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Introduction 1

Nitric oxide (NO) is a diffusive neurotransmitter which is widely synthesized in the 2

central nervous system, from the retina to the hippocampus [1, 2]. Its properties as a 3

small nonpolar gas molecule allows rapid and unconstrained diffusion across cell 4

membranes, a phenomenon often called volume transmission [3]. An important role of 5

NO signaling is to regulate neural excitability through the modulation of potassium 6

conductances in an activity-dependent manner, effectively mediating a form of 7

homeostatic intrinsic plasticity (HIP). Experiments characterizing this effect also 8

demonstrated that NO-synthesizing neurons can induce changes in the excitability of 9

neurons located up to 100 µm away [4,5]. These findings are corroborated by a recent 10

study demonstrating neurovascular coupling mediated through activity-dependent NO 11

diffusion [6]. We build upon these observations, postulating a general form of HIP 12

mediated by a diffusive neurotransmitter such as NO which we will refer to as diffusive 13

homeostasis. This contrasts with canonical models of HIP, here referred to as 14

non-diffusive homeostasis, which assume that each neuron has access to only its own 15

activity [7]. 16

Theoretical studies of HIP have generally focused on its role in maintaining stable 17

network dynamics [8, 9]. It has also been recently demonstrated that HIP can improve 18

the computational performance of recurrent networks by increasing the complexity of 19

network dynamics [10]. However, little is known about the effects of HIP on the 20

heterogeneity typically observed in cortical networks; in particular, a growing body of 21

evidence supports the finding that even neurons of the same type have a broad and 22

heavy-tailed distribution of firing rates [11]. Rather than an epiphenomenon of 23

biological noise, neural heterogeneity has been proposed to improve stimulus encoding 24

by broadening the range of population responses [12,13]. However, this form of 25

heterogeneity is difficult to reconcile with canonical models of HIP, which generally 26

suppress cell-to-cell variability [14]. While some degree of heterogeneity in populations 27

of the same type of neuron may emerge naturally [15], we found that such independent 28

sources of variability will generally limit the responsiveness of a network through 29

neuronal saturation. 30

Using network models and dynamic mean field analysis, here we show that networks 31

with HIP mediated by diffusive neurotransmission exhibit a very different and 32

unexpected behavior. Firstly, we report that diffusive homeostasis provides a natural 33

substrate for flexibly maintaining substantial heterogeneity across a network. Secondly, 34

the resulting population heterogeneity enables linear network responses over a wide 35

range of inputs. This not only improves population coding, but enables a good use of 36

available resources by ensuring that all neurons remain functionally responsive to 37

changes in network dynamics. Finally, we demonstrate that these effects are preserved 38

in networks whose recurrent synaptic inputs undergo Hebbian plasticity. 39

Results 40

We investigated the effects of diffusive homeostasis in a recurrent neural network (Fig. 41

1A, see Methods) with sparse and random connectivity, based on conventional models of 42

cortical networks giving rise to asynchronous irregular spiking activity [16]. Each 43

neuron received external input with a rate randomly drawn from a normal distribution. 44

Ca2+ influx during a spike triggered NO synthesis through nNOS activation (Fig. 1B, 45

see Methods). To simulate spatial NO signaling, neurons were randomly distributed on 46

the surface of a torus and linear diffusion was simulated on this surface. Each neuron’s 47

firing threshold θi underwent modulation through negative feedback mediated by the 48

concentration of NO (Equation 6 in Methods). 49
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The effect of a diffusive neurotransmitter mediating HIP within the network was 50

investigated by comparing two cases: first where NO was allowed to diffuse freely across 51

cell membranes as observed experimentally [4], and second without diffusion such that 52

intracellular NO concentration was affected only by a neuron’s own recent activity (Fig. 53

2). The latter corresponds to a canonical model of HIP as investigated before [8, 9]. 54

Diffusive homeostasis enables a broad firing rate distribution 55

Fig. 1C illustrates that both forms of homeostasis stabilized network activity following 56

an increase in input. There was however a crucial difference in how the neurons reacted 57

to this change. While for non-diffusive homeostasis each neuron simply returned to its 58

target firing rate, diffusive homeostasis caused each neuron to sense a mixture of its own 59

activity level and that of the rest of the network. This can be seen in the spatial 60

concentration profiles in Fig. 1C. It is important to note that the spatial position of 61

each neuron was random and independent of its connections, meaning that there was no 62

explicitly defined structure in the NO concentrations. 63

As a result, these networks exhibited a very different steady state behavior. The 64

firing rate distribution was narrow as expected for non-diffusive homeostasis, but broad 65

and heavy-tailed for diffusive homeostasis (Fig. 1D). The latter is consistent with recent 66

experimental results indicating that firing rate distributions in cortex are generally 67

heavy-tailed, approximating log-normal distributions [11]. There were no noticeable 68

differences in inter-spike interval statistics between networks with diffusive and 69

non-diffusive homeostasis (not illustrated). 70

We investigated the difference in firing rate distributions by modeling the relation 71

between activity read-out and homeostatic compensation in these two cases using a 72

dynamic mean-field model (see Methods). This approach considered an unconnected 73

population of neurons with random inputs, where each of the two scenarios was 74

simulated by using an appropriate activity read-out. HIP was implemented as in the full 75

spiking model, but the degree of diffusive signaling was now controlled by a single 76

parameter, α (Equation 11 in Methods), which determined the balance between local 77

and global activity read-out. If small, neurons used primarily their own activity to 78

modulate their firing threshold, while increasing α caused the firing threshold to depend 79

more strongly on the average population activity. Setting, for instance, α = 0.8 led to a 80

broad and heavy-tailed rate distribution similar to the full model, while α = 0 yielded a 81

narrow distribution as in the non-diffusive case (Fig. 1E). 82

This model provides a simple and intuitive explanation for this effect. For a 83

non-interacting population, non-diffusive homeostasis can be thought of as precisely 84

matching a neuron’s input µi and its threshold θi to maintain the target firing rate. We 85

can imitate this by introducing a covariance σ(µ, θ) between µi and θi, such that a high 86

input rate implies a high firing threshold and a low input rate a low firing threshold. 87

Since setting α > 0 (analogous to diffusive homeostasis) introduces a correlation 88

between a neuron’s threshold θi and the average population threshold θ, this effectively 89

results in a decorrelation of µi and θi in comparison with setting α = 0 (analogous to 90

non-diffusive homeostasis). In line with the previous results, populations with for 91

instance σ(µ, θ) = 0.6 yielded a broader and more heavy-tailed distribution of firing 92

rates than populations with σ(µ, θ) = 0.99 (Fig. 1F). 93

Since non-diffusive homeostasis directly relates the firing threshold of a neuron to its 94

input, we observed a wider distribution of firing thresholds, which in turn ensured that 95

all neurons assumed similar firing rates. Diffusive homeostasis, on the other hand, 96

yielded similar firing thresholds across the population (Figs. 3A-B). When combined 97

with the nonlinear input-output relation of neurons [17], this gave rise to the broad 98

firing rate distributions we observed (see also Discussion). This result was robust to 99

changes in the rate of NO diffusion. While decreasing the rate of diffusion, D, did result 100
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Figure 1. Steady-state behavior of diffusive and non-diffusive homeostasis.
(A) Schematic of the sparsely connected recurrent network model. Neurons received
homogeneous random spiking input (gext). (B) Intracellular homeostatic signals in a
model neuron. Each spike triggers calcium influx, which leads to nNOS activation and
NO synthesis. (C) Mean population firing rates for networks with diffusive or
non-diffusive homeostasis after an increase in external input (red triangle). Spatial
distribution of NO concentrations at different times across the network with diffusion
are shown below. (D-E) Distributions of firing rates and log firing rates (insets) after
homeostasis from network simulations (D) and mean-field analysis (E), both receiving
independent Poisson inputs drawn from a Gaussian distribution. (F) Distributions of
firing rates in the mean-field analysis for low and high covariance σ of threshold and
input rate.

in slightly narrower firing rate distributions, they were broader than in networks with 101

non-diffusive homeostasis across a wide range of values (Fig. 3C). A similar trend was 102

observed when varying the width of the external input rate distribution. While 103

decreasing this width led to a decrease in the width of the firing rate distribution, they 104

were consistently broader in networks with diffusive homeostasis (Fig. 3D). 105

Since one may argue that diffusive homeostasis is merely adding variability to each 106

neuron’s homeostatic signal due to the influence of neighboring neurons’ activity, we 107

now ask whether it is possible to achieve broad firing rate distributions with 108

non-diffusive homeostasis. Indeed, by introducing variability of homeostatic targets (see 109

Methods), we could produce a distribution of firing rates similar to that observed with 110

diffusive homeostasis (Fig. 1D, red histogram). However, as we will show next, the 111

effect of diffusive homeostasis is quite distinct from that of activity-independent, 112

‘quenched’ heterogeneity arising from randomly distributed homeostatic targets. 113
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Figure 2. Illustration of the effects of non-diffusive (i) and diffusive (ii)
homeostasis. Non-diffusive homeostasis adjusts each neuron’s threshold (red color
bar) according to its input to give identical firing rates, while diffusive homeostasis
induces correlations (blue cloud) in the thresholds of neighboring neurons, thereby
maintaining diverse firing rates.

Diffusive homeostasis retains input heterogeneity 114

To investigate the functional consequences of heterogeneity caused by a diffusive 115

homeostatic process, we next simulated specific changes in external input. First, we 116

stimulated small random groups of neurons at higher input rates of 5Hz and 10Hz 117

(versus a baseline of 2Hz), as illustrated in Fig. 4. Such inputs may, for instance, reflect 118

developmental or other plastic changes that lead to a long-lasting change in network 119

input. In these simulations, the average network firing rate was reliably brought back to 120

the target firing rate of 2 Hz by both forms of homeostasis (Figs. 4A-C, black traces). 121

As above, in networks with non-diffusive homeostasis this was achieved by returning the 122

rate of each neuron to the target firing rate regardless of their external input (Fig. 4A, 123

colored traces). In contrast, for networks with diffusive homeostasis, we found that the 124

separability of firing rates of individual groups are maintained according to their input, 125

while the firing rates of all groups were simultaneously reduced so that the average 126

network firing rate again reached the target (Fig. 4B, colored traces). Introducing 127

variability in homeostatic targets for the non-diffusive case, as described previously, did 128

not maintain separability of individual groups as in the diffusive case. Instead, the 129

different groups returned to their mean firing rates that existed before inputs were 130

elevated (Fig. 4C). 131

The distribution of final firing thresholds explains these differences (Figs. 4D-F). For 132

non-diffusive homeostasis, neurons in the group receiving 10 Hz input had the highest 133

thresholds since they needed to reduce their firing rate the most, followed by the 5 Hz 134

and 2 Hz groups respectively. This led to the final threshold of each neuron reflecting 135
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Figure 3. Steady-state firing thresholds of diffusive and non-diffusive
homeostasis. (A) Distributions of firing thresholds after homeostasis from network
simulations, receiving independent Poisson input drawn from a Gaussian distribution.
(B) Steady-state firing thresholds plotted against external inputs received during
homeostasis. (C) Width of the steady-state firing rate distribution as the diffusion
coefficient D is varied (D = 1000µm2s−1 in panels A-B). (D) Width of the steady-state
firing rate distribution as the input rate width is varied, for networks with diffusive
(D = 1000µm2s−1) and non-diffusive homeostasis (input rate width = 10 Hz in panels
A-B).

its input. Note that the distribution of firing thresholds is broader in this setup than in 136

(Figs. 3A-B), as a broader range of inputs is given to the network. For a diffusive signal, 137

a neuron’s firing threshold is modulated by the activity of nearby neurons. Since group 138

membership of a neuron is independent of its position, this effect again introduced a 139

correlation between each neuron’s threshold and the mean threshold of the entire 140

network, resulting in a distribution of final thresholds which are less segregated 141

according to their input compared to a network with non-diffusive homeostasis. Thus, 142

firing thresholds in neurons undergoing diffusive homeostasis were more weakly related 143

to their external input. This in turn preserves local firing rate differences in input 144

groups while maintaining constant average network activity. Introducing variable 145

targets for non-diffusive homeostasis caused the thresholds to depend more strongly on 146

their external input, similar to the non-diffusive case. 147

We could broadly reproduce the distinctions between diffusive and non-diffusive 148

homeostasis in the dynamic mean-field approach by varying α. For α = 0, modeling 149

non-diffusive homeostasis, we obtained identical firing rates in input groups, as in the 150

recurrent network (Fig. 4G). Note that changing the input of groups of neurons in the 151
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recurrent network also affects the activity of neurons with fixed input (Fig. 4B, red 152

traces) due to recurrent connections, an effect that is obviously absent in the dynamic 153

mean-field description. Increasing α led to local firing rate differences persisting for 154

longer periods of time. However, these differences eventually decay very slowly, only 155

remaining stable for the case where α = 1 (Figs. 4H-I). The reason this occurs is, even 156

after the population activity has quickly reached its homeostatic target, the deviations 157

of the input groups still exert a small homeostatic force when α < 1. For example, if 158

α = 0.95, there will be a relatively fast change in thresholds as the population activity 159

reaches its target, followed by much slower changes, at 1− α = 0.05 times the speed 160

(Fig. 4I). This does not happen to the same extent in the spiking network simulations 161

with diffusive homeostasis, as diffusion of NO ensure that deviations from the 162

population activity are directly compensated for by neighboring neurons. Differences 163

persist for 3245± 440 s, compared with 115± 6 s and 140± 40 s for non-diffusive 164

homeostasis with uniform and variable homeostatic targets, respectively (data not 165

shown. ± symbol denotes standard error of the mean of 6 independent network 166

realizations in each case, see Methods). Since we have increased the speed of 167

homeostasis in order to reduce simulation time (see Methods), a more realistic time 168

course of 15 minutes for NO modulation would cause input differences to persist in 169

networks with diffusive homeostasis for many hours to days [5]. Taken together, this 170

shows that diffusive homeostasis can retain input heterogeneity due to the influence of 171

neighboring neurons’ activity on an individual neuron’s firing threshold. 172

Population heterogeneity during diffusive homeostasis enables 173

linear network responses 174

In the simulations shown so far, each neuron received a static input throughout since we 175

were interested in the final network states. We now investigate how these networks 176

respond to fast changes in input; specifically how faithfully each neuron represents its 177

change in input. Since networks with diffusive homeostasis simultaneously maintain 178

constant average network activity and firing rate heterogeneity, we expected that this 179

should allow input modulations to be followed more precisely due to a greater 180

representational capability. 181

After the network reached steady state under an initial distribution of external 182

inputs, we froze homeostasis so as to simulate changes fast changes in activity, since we 183

assume that homeostasis is not active in these time scales. We then regenerated the 184

external inputs to each neuron from the same distribution presented during homeostasis. 185

This can be thought of as a re-configuration of inputs due to external fluctuations. To 186

best represent such changes in a simple population coding paradigm, each neuron 187

should respond linearly to a change in input; non-linear transformations may lead to an 188

information loss and hence affect neural computations, although this may indeed be 189

desirable in some brain regions. We interpreted the range of changes in input over 190

which this response is linear, or non-saturating, as the range over which homeostasis 191

does not interfere with the network response. 192

Figs. 5A-C show the change in input rate versus change in output rate of each 193

neuron. A highly nonlinear response was observed in networks with non-diffusive 194

homeostasis, with rectification for large decreases and superlinear responses for large 195

increases in input. This effect was quantified by an R2 value of 0.57 from a linear 196

regression. Conversely, networks with diffusive homeostasis exhibited a linear response 197

across the entire range of input changes, with an R2 value of 0.85. Population 198

heterogeneity can also be achieved, as discussed before, by introducing target variability 199

during non-diffusive homeostasis. This yielded a similar non-linear response as in the 200

non-diffusive network with homogeneous targets, with an R2 value of 0.38. 201
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Figure 4. Relative differences between inputs are preserved during
diffusive homeostasis. (A-C) Evolution of firing rates in a recurrent network for
each input group under diffusive and non-diffusive homeostatic control, and for variable
homeostatic targets. Black traces show population activity. Independent Poisson input
at the target rate was given to 2000 neurons (red), while two groups of 250 neurons each
received elevated Poisson input. The relative rate differences of the groups were only
preserved for diffusive homeostasis. (D-F) Final distributions of firing rates versus
firing thresholds. (G-I) Evolution of firing rates in a dynamic mean-field population for
each input group for purely local (α = 0), purely global (α = 1), and mixed local and
global activity read-out (α = 0.95). Black traces show population activity. Input at the
target rate is given to 2000 neurons (red), while two groups of 250 neurons each receive
elevated input.

A consequence of the asymmetry in responses to input changes for networks with 202

non-diffusive homeostasis was that the population rate increases upon regenerating 203

inputs, despite the fact that mean input to the network remained unchanged (Fig. 5D). 204

This did not occur for networks with diffusive homeostasis, suggesting that these 205

networks are more adept at maintaining a target level of activity in conditions where 206

external inputs are dynamic and fast-changing. Crucially, the benefits of a diffusive 207

homeostatic signal can be achieved by a relatively broad range of values for the rate of 208

diffusion, D, indicating that the effects we describe are robust to precise parameter 209

choices (Fig. 5E). 210

This difference in responses to input changes could again be reproduced in the 211

dynamic mean-field approach. This allowed us to characterize population responses 212

across different effective diffusive ranges, using the R2 value from a linear regression as 213

a measure of response linearity. Fig. 5F shows R2 values across a range of different 214

input distribution widths, δ, as α is varied to model different diffusion coefficients (see 215

Methods). This revealed a dependency on δ: While values of α ∼ 1 exhibited the best 216
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response for smaller δ, hence cases where the inputs are rather narrow, the optimal α 217

decreased as δ increased, as well as the overall response linearity. This dependence on 218

input width can be explained by considering the manner in which a population of 219

neurons with a distribution of dynamic ranges span a range of inputs. If this range of 220

inputs is small, then all neurons will span it regardless of their dynamic range 221

(determined by their firing threshold), hence the high values of R2 for δ = 0.1. For an 222

intermediate range of inputs, neurons whose dynamics range is best adapted to the 223

average input are most responsive. This is achieved by increasing α. If the range of 224

inputs is very large (δ = 1.0), R2 values are low since the dynamic ranges of the 225

population cannot span the inputs. This effect is stronger at high α, as firing thresholds 226

are more correlated, and the dynamics range of most neurons cannot capture the full 227

input variance. 228

Since connection probability falls off with spatial distance in cortical networks [18], 229

we additionally simulated recurrent networks featuring such connectivity profiles. These 230

networks exhibited qualitatively similar behaviour under diffusive and non-diffusive 231

homeostasis compared to networks without any spatial dependence in connectivity 232

(Supporting Information, Fig. S1). 233
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Figure 5. Diffusive homeostasis enables linear network responses. (A-C)
Firing rate changes ∆ν of all neurons following input changes ∆µ. Black lines show
linear fits, with corresponding R2 values inset. (D) Population activity before and after
input change (black triangle). (E) Linearity of the population response to a change of
inputs as the diffusion coefficient D is varied (D = 1000µm2s−1 in panel B). (F)
Linearity of the population response to a change of inputs in the mean-field analysis as α
is varied, shown for different input distribution widths δ. Shaded regions correspond to
one standard deviation, averaged over 25 independent network trials for each value of δ.

Overall, these results suggest that networks undergoing diffusive homeostasis are 234

better suited to linearly represent a range of inputs. We investigated this by presenting 235

the networks with time-varying inputs after freezing homeostasis. Groups of excitatory 236

neurons received additional inputs which were randomly and independently generated 237

after fixed time intervals (see Methods). Fig. 6A shows the representation of such a 238

time-varying input pattern (dotted black line) for each network (colored lines). 239

Networks which have undergone diffusive homeostasis were capable of tracking this 240

input significantly better than their non-diffusive counterparts, as characterized by the 241

RMS error between the network response and input pattern (0.12 for diffusive 242

homeostasis; 0.23 and 0.19 for non-diffusive homeostasis with uniform and variable 243

9/24

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 19, 2015. ; https://doi.org/10.1101/011957doi: bioRxiv preprint 

https://doi.org/10.1101/011957
http://creativecommons.org/licenses/by/4.0/


targets, respectively; Fig. 6B). 244

We can explore these differences further by constructing a simplified task in which a 245

population of orientation-selective neurons respond to the orientation of a stimulus (see 246

Fig. 6C-F , Methods). This is not intended to represent circuits which perform this task 247

in the brain, but to serve purely as a demonstration of the relative merits of linear and 248

non-linear network responses. 249

Neurons in the network are randomly assigned a preferred stimulus orientation, 250

independent of their spatial position. A stimulus of a certain orientation can then be 251

presented to the network by varying the external input rates of each neuron, with 252

neurons whose preferred orientation is closest to the stimulus orientation receiving the 253

highest input rate. The stimulus orientation can be decoded from the network by taking 254

the vector average of the stimulus response across all neurons. The orientation of this 255

vector average, or population vector, is the decoded stimulus orientation. Networks with 256

linear responses perform better than those with non-linear responses in decoding 257

stimulus orientation, as measured by the standard deviation of errors in the orientation 258

of the population vector compared to the stimulus orientation (41◦, 63◦ and 72◦ for 259

diffusive homeostasis, non-diffusive, and non-diffusive with variable targets respectively, 260

Fig. 6G). 261

Properties of diffusive homeostasis are conserved in networks 262

with Hebbian plasticity 263

In the networks described so far, we have used static and uniform synaptic weights for 264

recurrent connections. We next considered whether the observed properties of diffusive 265

homeostasis are altered by the presence of plastic synaptic weights, in particular when 266

Hebbian spike-timing-dependent plasticity (STDP) is introduced (see Methods). Using 267

a standard model of STDP with additive depression and potentiation for all recurrent 268

excitatory synapses, we simulated networks with both STDP and homeostasis active 269

until synaptic weight and firing rate distributions reached a steady state [19]. As before, 270

firing rate distributions were broader in networks with diffusive homeostasis (Fig. 7A). 271

Broad distributions could also be achieved by introducing variability in homeostatic 272

targets. Spiking activity remained asynchronous after STDP, as shown by the 273

distribution of inter-spike intervals (Fig. 7A, inset) [20], and the additive STDP rule led 274

to a bimodal distribution of synaptic weights (Fig. 7B), as previously reported [19]. 275

STDP amplified the differences in response linearity that was observed between 276

homeostatic cases. Inputs to each neuron were regenerated from the same distribution 277

presented during plasticity, and the corresponding change in output rate was compared 278

to the change in input rate, as in Figs. 5A-C. While the response linearity, given by the 279

mean R2 value, for networks with diffusive homeostasis was 0.16, networks with 280

non-diffusive homeostasis exhibited much lower mean values of 0.01 and 0.02, for 281

uniform and variable homeostatic targets respectively (Fig. 7C). Networks without any 282

homeostasis had a mean value of 0.1. The lower R2 in all cases compared to networks 283

with static synapses is due to the smaller impact that changes in external input have on 284

these networks, as STDP increases the ratio of recurrent input to external input. 285

We observed qualitatively similar retention of broad firing rate distributions and 286

response linearity with diffusive homeostasis when a weight-dependent update rule was 287

used (not shown), which has been argued to lead to more realistic weight 288

distributions [21]. 289
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Figure 6. Performance advantages of networks with diffusive over
non-diffusive homeostasis (A) Response of each network to a time-varying input
pattern (dotted black line). Colored lines show normalized firing rate deviations from
the mean population rate of those neurons receiving inputs. (B) RMS errors between
the normalized input pattern and normalized response of each network (1000 s
stimulation and 11 networks in each case). ∗∗p < 0.01 from a two-sided
Kolmogorov-Smirnov test. (C) Diagram showing network inputs during an orientation
decoding trial. Each neuron is randomly assigned a preferred orientation, and receives
external input at a rate given by the stimulus. (D-F) Example response of a population
of orientation-selective neurons to a stimulus at an orientation of 90◦ (grey line), for
networks with each type of homeostasis. Individual neural responses and their preferred
orientation are given by the radii and direction of the coloured areas respectively.
Orientation decoded using the population vector is shown by the dashed line. (G)
Standard deviation of errors in the orientation of the population vector in response to a
stimulus (100 trials for 24 networks in each case). ∗p < 0.05 from a two-sided
Kolmogorov-Smirnov test. The box encompasses the inter-quartile range and the
whiskers extend to 1.5 times the inter-quartile range in all boxplots.

Discussion 290

Neural homeostasis is commonly thought of as a local process, where neurons 291

individually sense their activity levels and respond with a compensatory change if 292

activity changes. Here we investigated a complementary mechanism, where homeostasis 293

is mediated by a diffusive molecule such as NO that acts as a non-local signal. Using a 294

generic recurrent network model, we show that this form of homeostasis can have 295

unexpected consequences. First, we found that it enables and maintains substantial 296

population heterogeneity in firing rates, similar to that observed experimentally in 297

intact circuits [11], and that input heterogeneities can be preserved in the population 298

activity. Second, the specific form of neural heterogeneity brought about by diffusive 299

homeostasis is particularly suited to support linear network responses over a broad 300
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Figure 7. Diffusive homeostasis retains its properties in networks with
STDP. (A) Distributions of steady-state firing rates after homeostasis and STDP.
(Inset) Distribution of inter-spike intervals at the steady-state (log scale). (B)
Distributions of steady-state synaptic weights after homeostasis and STDP. (C) Mean
response linearity (measured by R2 values) for networks with STDP and each case of
homeostasis (n=9 networks, error bars represent one standard deviation). Surrounding
plots show firing rate changes ∆ν of all neurons following input changes ∆µ for an
example network in each case (black line shows linear fit).

range of inputs. It is important to note that this behavior differs from that of networks 301

where heterogeneity is simply introduced by randomly assigning a different target to 302

each neuron. These results predict that disrupting neural diffusive NO signaling can 303

affect perceptual and cognitive abilities through changes of neural population responses. 304

While other non-diffusive homeostatic mechanisms would continue to stabilize neural 305

activity, the lack of a signal related to the average population activity may disrupt the 306

flexible maintenance of firing rate heterogeneity, and as a result the ability to represent 307

network inputs. 308

Mean-field analysis revealed that these differences are essentially due to the diffusive 309

messenger providing each neuron with a combination of the average network activity 310

and its own activity as the homeostatic signal. Diffusion of the signal from highly active 311

neurons causes a reduction in the activity of their neighbors, such that firing rates of 312

highly active neurons do not have to be completely reduced in order for the population 313

to achieve a target rate. As a consequence, diffusive homeostasis furnishes a network 314

with an efficient way of flexibly maintaining heterogeneity of firing rates. These effects 315

can also be understood by considering the neural transfer functions, as illustrated in 316

Figs. 8A-B, which provides an intuitive explanation for the differences in firing rate 317

distributions observed under diffusive homeostasis [17,22]. For non-diffusive 318

homeostasis the transfer function of each neuron is brought to center around its input, 319

leading to a narrowing of the firing rate distribution. Diffusive homeostasis decorrelates 320

the input and threshold of individual neurons, resulting in a population of neurons 321

residing along the entire transfer function. This preserves the non-linear shape of the 322

transfer function, causing broad and heavy-tailed firing rate distributions. 323
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Figure 8. Comparison of the effects of diffusive and non-diffusive
homeostasis on neural transfer functions. (A) For non-diffusive HIP the transfer
function of each neuron is brought to center around its input in order to avoid response
saturation or runaway excitation. Arrows show the action of HIP on neurons (circles)
with a given input (adapted from [17]). (B) Diffusive homeostasis decorrelates the input
and threshold of individual neurons, resulting in a population of neurons residing along
the entire transfer function. The non-linear shape of the transfer function causes broad
and heavy-tailed rate distributions observed with diffusive homeostasis. (C-D) Transfer
functions following homeostasis of neurons receiving small (light grey) to large (dark
grey) input are shown by the dotted lines. Following an instantaneous input change, the
output ranges across the entire range of inputs are shown as vertical grey lines, with the
shade of grey corresponding to the neuron’s previous input. Networks with non-diffusive
homeostasis (C) exhibit response saturation (dark grey line) and superlinear responses
(light grey line), while diffusive homeostasis (D) causes transfer functions to shift
towards the center of the input distribution, leading to approximately linear responses.

Narrow firing rate distributions are an obvious consequence of local homeostatic 324

processes, as for instance shown recently with homeostasis implemented as local 325

synaptic metaplasticity [14]. This is in apparent conflict with the growing body of 326

experiments documenting broad and heavy-tailed distributions of firing rates in 327

cortex [11]. One could argue that a straightforward explanation is a process, for 328

example genetic or developmental, which randomly assigns neurons heterogeneous 329

homeostatic targets. While we show here that this can result in broader firing rate 330

distributions, we also found that this generally leads to networks with a mismatch 331

between the neural dynamic ranges and input statistics, which in turn limits the 332

responsiveness of the network. 333

A striking feature of diffusive homeostasis is the lack of requirement for any such 334

distribution of homeostatic targets, as the diffusive signal can be effectively exploited 335

through providing a context for heterogeneity - neurons which maintain a significantly 336

higher firing rate than the rest of the network also synthesize a higher level of the 337

diffusive signal, thus ensuring that their deviation from the average firing rate is 338

counterbalanced by lowering neighboring neurons’ firing rates. This mechanism 339

essentially allows neurons to differ in activity from the population as long as the 340

population as a whole provides some compensation for these deviations. Moreover, this 341

mechanism is compatible with the recent finding that a minority of cells were found to 342

consistently be the most highly active and informative across brain states [23]. While 343
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non-diffusive homeostasis would have a disruptive effect on such a ‘preserved minority’ 344

of neurons by reducing their activity towards those of the less active majority, diffusive 345

homeostasis provides a substrate for maintaining their differentiated activity. 346

A significant distinction between the effects of diffusive and non-diffusive 347

homeostasis appears when network responses to rapidly changing input are considered 348

(Fig. 5). We show that networks with diffusive homeostasis represent input changes 349

more faithfully than those with non-diffusive homeostasis. Saturation of neurons’ 350

responses to large changes are observed in networks without diffusion - this effect is 351

further illustrated in Fig. 8C-D. 352

Across a spatially homogeneous network, diffusing signals act to effectively shift the 353

transfer function of each neuron towards the average network input, ensuring that 354

neurons are responsive across the entire range of inputs presented to a network. This is 355

in contrast to networks with non-diffusive homeostasis, in which individual neurons are 356

only responsive in a range around their current input. Moreover, the asymmetric 357

response of networks with non-diffusive homeostasis causes the average network activity 358

to increase after fast input changes, while it is constant for a network with diffusive 359

homeostasis (Fig. 5D). The latter case is consistent with observations that mean 360

population firing rates are preserved across novel and familiar environments and across 361

different episodes of slow-wave sleep [24,25] 362

Networks with diffusive homeostasis have an improved ability to accurately track 363

time varying inputs (Fig. 6A-B) as a direct consequence of their linear responses. 364

Beneficial effects of neural heterogeneity for population coding have been suggested 365

before [13,26], but here we find that the broad linear response regime maintained by 366

diffusive homeostasis further improves network performance. This improvement in 367

network performance is also observed in a simplified stimulus orientation decoding task 368

(Fig. 6C-G). Networks with diffusive homeostasis perform better than those with 369

non-diffusive homeostasis when a population vector is constructed from the neural 370

responses in order to decode stimulus orientation (Figure 6G-H). Although there exist 371

alternative methods for decoding stimuli, the population vector has been shown to 372

exhibit performance close to the optimal maximum likelihood procedure for broad 373

tuning, as was used in our example [27]. 374

These distinctions between diffusive and non-diffusive homeostasis are conserved in 375

networks with STDP (Fig. 7). This demonstrates that the limitations of non-diffusive 376

homeostasis in maintaining neural heterogeneity and responsiveness extend beyond the 377

case of static inputs, towards more realistic situations in which neurons receive ongoing 378

and diverse perturbations. Indeed, networks with non-diffusive homeostasis lost almost 379

all sensitivity to external inputs after STDP, while networks with diffusive homeostasis 380

retained this sensitivity (Fig. 7C). 381

The consequences of diffusive and non-diffusive homeostasis coexisting were also 382

explored, by implementing these mechanisms simultaneously in a single network (not 383

shown). Stable homeostatic activity could be robustly maintained, with the resulting 384

network behaviour depending on the relative timescales of the non-diffusive and diffusive 385

mechanisms. If non-diffusive homeostasis acted faster than diffusive homeostasis, the 386

network exhibited a narrow rate distribution and a low responsiveness to input changes. 387

Conversely, if diffusive homeostasis acted faster than non-diffusive homeostasis, the 388

network exhibited broad firing rate distributions and linear responses to input changes. 389

This is a plausible scenario, as NO modulation of ion channels through occurs in a 390

timescale of 15 minutes [5], while other homeostatic processes which require 391

transcriptional changes occur in a timescale of hours to days [28]. These results reflect 392

what is observed as α is varied in the dynamic mean-field analysis, as local and global 393

homeostatic mechanisms are simultaneously active for values in the range 0 < α < 1. 394

It is important to note that modelling HIP as a force acting on the threshold of an 395
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integrate-and-fire neuron in order to achieve a target firing rate is a significant 396

simplification. More physiologically realistic descriptions of homeostatic processes reveal 397

the complex relationship between ion channel concentrations and the regulation of a 398

wide range of neural activity [28]. Moreover, a number of previous studies have explored 399

the effects of volume transmission on network dynamics, including its potential in 400

implementing a winner-take-all function [29], the ability of a diffusive signal to reflect 401

the average activity of a group of neurons [30], and the role of another diffusive 402

neurotransmitter, TNFα, in epileptogenesis [31]. Here, we add a functional 403

interpretation by exploring its effects on neural heterogeneity and responsiveness within 404

a network. 405

While NO is involved in a wide variety of neural processes throughout development 406

and learning [32–34], these were ignored throughout for the sake of simplicity and 407

tractability. Nonetheless, the impaired performance of nNOS knock-out mice in 408

cognitive tasks [35] and the prevalence of epilepsy following nNOS inhibition [36] could 409

be linked to diminished homeostatic control of neural excitability. Finally, the outcome 410

of this study is not necessarily confined to NO, and could equally apply to other 411

diffusive neurotransmitters observed in the brain such as hydrogen sulfide and carbon 412

monoxide [37]. Indeed, we conclude that it demonstrates the potential role of diffusive 413

neurotransmitters as an economical and reliable signal of activity across a population of 414

neurons. 415

Methods 416

Network model 417

We simulated a spiking network of leaky integrate-and-fire (LIF) model neurons with 418

conductance-based synapses and injected Ornstein-Uhlenbeck noise, as described by 419

dv

dt
=

1

τm
(El−v)+geJe(Ee−v)+giJi(Ei−v)+σOUη(t)+Jext(Ee−v)

(
δ(t− text)

)
(1)

420

dge
dt

= −ge
τe

+
∑
k

δ(t− tk),
dgi
dt

= −gi
τi

+
∑
k

δ(t− tk) (2)

where v is the membrane potential, τm the membrane time constant, El the leak 421

conductance reversal potential, and σOU the variance of the injected noise. η(t) is an 422

Ornstein-Uhlenbeck process with zero mean, unit variance, and correlation time 423

τOU = 1 ms [38]. ge and gi are the excitatory and inhibitory synaptic currents 424

respectively, given by Equation (2), where tk denotes the time of all k incoming spikes. 425

The reversal potential of the synapses are denoted by Ee and Ei, the synaptic 426

conductances by Je and Ji, and the synaptic time constants by τe and τi. The external 427

input conductance is given by Jext, and text denotes the arrival time of external input, 428

modeled as an independent homogeneous Poisson process for each neuron i with rate µi. 429

A spike is emitted whenever the membrane potential v exceeds the firing threshold θ, 430

and the membrane potential is then reset to the resting potential value, vr, after a 431

refractory period, τref. 432

The network was made up of N neurons; 0.8N excitatory and 0.2N inhibitory, with 433

excitatory and inhibitory synaptic conductances scaled so that the network was in a 434

balanced state [16]. Recurrent connections were random and sparse, with connection 435

probability ε = C
N independent of neuron type, where C defines the mean number of 436

synapses per neuron. The balanced state was achieved in the network through scaling 437

the inhibitory synaptic conductances by a factor of g, such that Ji = gJe. 438
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NO synthesis and diffusion 439

We assumed that neuronal NO synthase (nNOS) is activated by Ca2+ influx following a 440

spike (3) and describe the relationship through the Hill equation (4), which results in a 441

sigmoidal concentration dependence, where n and K are parameters of the Hill 442

equation [39] and τCa2+ and τnNOS are the timescales of Ca2+ decay and nNOS 443

activation respectively. 444

d[Ca2+]

dt
= − [Ca2+]

τCa2+
+ [Ca2+spike]δ(tspike) (3)

d[nNOS]

dt
=

1

τnNOS

[Ca2+]n

[Ca2+]n +Kn
(4)

Throughout this paper we considered the case where all neurons, inhibitory and 445

excitatory, express nNOS. The 2D diffusion equation (5) was solved numerically using a 446

spatial resolution ds, with periodic boundary conditions defined by the torus, diffusion 447

coefficient D and a decay term λ [40]. Neurons were represented by a point source 448

according to their activated nNOS concentration. Periodic boundary conditions were 449

used, as we assume we are simulating a subsection of a cortical network embedded in a 450

larger cortical network with similar network activity. 451

d[NO]

dt
−D∇2[NO] = [nNOS]− λ[NO] (5)

The homeostatic effect of NO was represented in neuron i by an increase in θi, the firing 452

threshold, according to the relative difference in intracellular NO concentration [NO] 453

and a target concentration [NO]0; 454

dθi
dt

=
1

τHIP

[NO]− [NO]0
[NO]

, (6)

where τHIP is the timescale of homeostasis. 455

Non-diffusive homeostasis 456

For simplicity, the implementation of non-diffusive homeostasis is almost identical to 457

that of diffusive homeostasis, in that the putative non-diffusive neuromodulator 458

[NOnon-diffusive] is synthesized through equations (3) and (4), and modulates firing 459

thresholds through equation (6). The only difference is that the diffusion term in 460

equation (5) is removed, so that [NOnon-diffusive] is entirely determined by the rate of 461

intracellular synthesis and decay; 462

d[NOnon-diffusive]

dt
= [nNOS]− λ[NOnon-diffusive] (7)

Dynamic mean-field analysis 463

For a detailed derivation of equations used in our dynamic mean-field analysis, see [16] 464

and [17]. Briefly, under the assumptions that the network is in an asynchronous regime 465

and that a single EPSP is sufficiently small compared to the voltage required to elicit a 466

spike from resting membrane potential, we can extract the mean firing rate of an LIF 467

neuron in a recurrent network by solving a pair of equations under the condition of 468

self-consistency. The synaptic current for a neuron i in a time interval τ can be 469

described by its mean µi and standard deviation σi as follows: 470

µi = JCντ, σi = J
√
Cντ, (8)
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where J is the synaptic efficacy, C the number of synapses per neuron and ν the 471

average population firing rate. The expected mean firing rate φi(µi, σi) of an LIF 472

neuron with this synaptic current is given by 473

φi(µi, σi) =

[
√
πτm

∫ θi−µi
σi

vr−µi
σi

dvev
2

erfc(−v)

]−1

, (9)

where erfc is the complementary error function. Since the firing rate described by (9) is 474

determined by the synaptic current parameters µi and σi, which are in turn determined 475

by the population firing rate ν, self-consistency requires that the rate which determines 476

the synaptic current parameters must also be equal to the rate which is produced by 477

these parameters, that is: 478

ν = φi(µi(ν), σi(ν)). (10)

We simulated a non-interacting population of neurons described by the mean-field 479

theory, in which all neurons are identical except for their threshold θi. Although there is 480

no recurrent excitation within the population, the synaptic current statistics are 481

comparable to that which a neuron within a recurrent network would receive. This 482

enabled us to consider the firing rate distributions arising from presenting single 483

neurons with distributions of synaptic currents, similar to the approach by [17]. 484

We assumed that a neuron embedded in a homogeneous network receiving a diffusive 485

homeostatic signal is analogous to a neuron using a combination of its own firing rate 486

and the average population firing rate as a signal. 487

The network can then be reduced to a population in which the firing threshold θi of 488

each neuron i is modulated according to 489

dθi
dt

=
1

τHIP

(
(1− α)

φi − φ0
φi

+ α
φ̄− φ0
φ̄

)
, (11)

where φ0 is the target firing rate and φi and φ̄ are the firing rate of the neuron i and 490

the population respectively. α was varied between 0 and 1 and can be thought of as the 491

proportion of NO which a neuron receives due to diffusion from other neurons, with 492

α = 0 indicating that each neuron senses only its own activity and α = 1 indicating that 493

all neurons share an identical population-wide signal. 494

In order to implement homeostasis in this setup, we iterated through (8)-(9) until 495

(10) is satisfied to a precision of 10−4 Hz, where (9) returns φi for each neuron in the 496

population, and φ =
∑
φi
N is used as ν in (8). At each timestep the thresholds θi of each 497

neuron were modulated according to (11), and rates φi were subsequently recalculated 498

from (9). 499

Procedure for Fig. 1. 500

External input rates µi for each neuron i were randomly drawn from a Gaussian 501

distribution such that µi ∼ N (25, 102) Hz. Since the mean NO concentration takes time 502

to reach a steady state in the recurrent network simulations, we ran the network for 503

100 s without homeostasis and with all neurons receiving 5 Hz input, defining the target 504

NO concentration [NO]0 to be the mean NO concentration across all neurons at 100 s. 505

For the dynamic mean field analysis, we chose parameters which roughly match the 506

rate statistics of the recurrent network simulations. Inputs to each neuron were drawn 507

from a Gaussian distribution such that µi ∼ N (5.7, δ2), σi =
√
µi. δ = 0.4 is the width 508

of the distribution of mean inputs to the population. Note that the parameter δ referred 509

to here differs from the δ in (1)-(3). 510
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Adding target variability. 511

In order to match the distribution of effective targets observed during diffusive 512

homeostasis for networks with non-diffusive homeostasis, we assigned each neuron in the 513

non-diffusive network a different homeostatic target, [NO0]i. A network without any 514

homeostasis is presented with input statistics (µi ∼ N (2, 52) Hz), tuned such that the 515

firing rate distribution match that of the network with diffusive homeostasis. [NO0]i for 516

each neuron i can then be drawn from the distribution of steady-state intracellular 517

concentrations of NO for this network. This results in a broad and heavy-tailed 518

distribution of homeostatic targets, as opposed to the single homeostatic target which is 519

used in networks with diffusive homeostasis and the unmodified non-diffusive 520

homeostasis. 521

A similar approach was adopted in the dynamic mean-field analysis, with each 522

neuron assigned a target firing rate φ0,i from the steady-state firing rate distribution of 523

a network with α = 0.8. 524

Procedure for Fig. 4. 525

External input for each neuron i was µi = 2 Hz (N = 2500). NO0 was set as described 526

previously, although with an input rate of 2 Hz. 2 groups of 250 excitatory neurons each 527

were randomly chosen, independent of neuron position, and stimulated with 528

µgreen = 5 Hz and µblue = 10 Hz, keeping the inputs to the remaining neurons 529

unchanged. Firing rates plotted in Figs. 4A-C were smoothed with a uniform time 530

window of 20 s. Persistence of input differences were calculated by measuring the length 531

of time it took for the signal-to-noise ratio between the two groups receiving elevated 532

inputs to fall below 0. The signal-to-noise ratio is defined as (µ1 − µ2)/(σ1 + σ2), where 533

µi and σi correspond to the mean and standard deviation of the firing rates of group i. 534

Procedure for Fig. 5. 535

Figs. 5A-D were generated using the same simulation setup as described previously. 536

After the network has reached the homeostatic target firing rate, we froze homeostasis. 537

Input rates to each neuron were then regenerated from the same original input 538

distribution, such that µafter
i ∼ N (25, 10) Hz. ∆µi = µafter

i − µbefore
i is the difference in 539

input rate each neuron experiences upon this change, and ∆νi = νafteri − νbeforei is the 540

corresponding change in output rate for each neuron. The black lines in Figs. 5A-C are 541

from least-squares linear regression, and the R2 values given were derived from this fit. 542

A similar approach was used in the dynamic mean-field analysis, while varying δ, the 543

width of the input distribution. 544

Time-varying input. 545

In addition to the external input µi previously described, the network was randomly 546

separated into groups of 250 neurons. Each group j was stimulated with external 547

Poisson input with a rate given by µj,t ∼ N (0, 25) Hz. These inputs were regenerated 548

at each timestep t of length 1 s. The time-varying input µj,t was also presented during 549

homeostasis. The dotted black line in Fig. 6A shows the normalized µj,t, while coloured 550

lines show the normalized rate deviation of a randomly chosen group j from the mean 551

population firing rate. 552

Decoding stimulus orientation. 553

Each excitatory neuron was randomly assigned a preferred orientation. After the 554

network reached a steady state, homeostasis was frozen. For each trial, each neuron i 555
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with preferred orientation θi was stimulated with external Poisson input at a rate given 556

by µb +N (θs, σs, θi), where µb = 20 Hz is the base input rate and N (θs, σs, θi) is the 557

amplitude at θi of a Gaussian tuning curve centered around the stimulus orientation θs, 558

with a width given by σs = 90◦ and a peak amplitude of 2.5 Hz. The angle decoded 559

using the population vector method is the angle of the vector sum of all neural 560

responses. 561

Spike-timing-dependent plasticity. 562

A spike-timing dependent plasticity rule, as described in [19], was implemented in each 563

recurrent excitatory-excitatory synapse. Both potentiation and depression are additive 564

in this rule, with no weight dependence. For each pair of pre- and post-synaptic spikes 565

separated by a time ∆t, the synaptic weight is updated by a value ∆w given by 566

∆w =

{
A+exp(∆t/τ+)gmax, if ∆t < 0.

−A−exp(∆t/τ−)gmax, if ∆t ≥ 0.
(12)

Above, τ+ and τ− denote the timecourse over which potentiation and depression occur 567

respectively, while A+ and A− denote the relative strengths of potentiation and 568

depression. gmax is the maximum synaptic weight. A+ < A− such that irregular firing 569

is maintained within a reasonable range of rates. The external input in this case was 570

given by µi ∼ N (10, 102) Hz, and Jext = 40 nS, C = 250. 571

Model parameters. 572

Unless explicitly defined, the parameters used throughout the paper are given in Table 573

1. For synthesis, diffusion, and decay of NO we have attempted to match data when 574

available [40,41], although the dearth of experimental measurements does not permit for 575

great precision [42,43]. Additionally, parameters were chosen such that the timescale of 576

homeostasis is separated from that of firing rate fluctuations. This is a reasonable 577

assumption, given that activity-dependent NO modulation likely acts within 10 minutes 578

or slower [5], although NO diffusion occurs in the order of 10 seconds. τHIP was chosen 579

to be long enough so as to avoid oscillations but short enough so as to allow feasible 580

large scale simulations. This is a common assumption in computational studies [10]. 581

Larger simulations, up to N = 25000, were run with no discernible difference in results. 582

All numerical simulations were implemented using the Brian simulator, v1.4.1 [44], 583

and the mean-field analysis was implemented using IPython Notebook [45]. Code and 584

IPython Notebooks which perform the data analysis and plotting will be available on 585

ModelDB and a public github repository following peer review. In the meantime a 586

minimal example of diffusion of a neurotransmitter over a 2D surface is available at 587

http://tinyurl.com/sweeney-diffusion, which may easily be incorporated into existing 588

Brian models. 589

Supporting Information 590

Procedure for Fig. S1. 591

Spatial dependence in the connection probability between two neurons was introduced 592

as follows: 593

Pc(d) = ε e−
d2

2s2 , (13)

where d is the Euclidean distance between the neurons and s is a constant defining the 594

connectivity range of the network. 2D positions on the torus are bounded such that 595
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Table 1. Simulation Parameters.

Neuron NO synthesis and diffusion Network STDP

El -80 mV [Ca2+spike] 1 N 5000 τ+ 20 ms

vr -60 mV τCa2+ 10 ms Ne 0.8 N τ− 20 ms
cm 0.2 nF τnNOS 100 ms Je 4.0 nS A+ 0.025
τm 20 ms n 3 Ji 64.0 nS A− 0.0275
τref 5 ms K 3 C 100 gmax 10 nS
θ0 -50 mV D 1000 µm2s−1 Jext 80.0 nS
τe 3 ms λ 0.1 s−1 τOU 1 ms
τi 7 ms Grid size 1 mm2 σOU 1 mV
Ee 0 mV ds 2 µm Dynamic mean-field
Ei -70 mV dt (diffusion) 1 ms θ0 10
dt 0.1 ms τHIP 2500 ms vr 0

x, y ∈ (0, 1). Given a diffusive range of 0.1, values for s in Fig. 1 were therefore set as 596

0.05, 0.1, and 0.5. The ratio of s and the diffusive range was defined as ρ, which had 597

values of 0.5, 1.0 and 5.0. 598
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