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Abstract 
How cognition emerges from neural dynamics? The dominant hypothesis states that interactions among 
distributed brain regions through phase synchronization give basis for cognitive processing. Such phase-
synchronized networks are transient and dynamic, established on the timescale of milliseconds in order to 
perform specific cognitive operations. But unlike resting-state networks, the complex organization of 
transient cognitive networks is typically not characterized within the graph theory framework. Thus, it is not 
known whether cognitive processing merely changes strength of functional connections or, conversely, 
requires qualitatively new topological arrangements of functional networks. To address this question, we 
recorded high-density EEG when subjects performed a visual discrimination task and conducted and event-
related network analysis (ERNA) where source-space weighted functional networks were characterized with 
graph measures. We revealed rapid, transient, and frequency-specific reorganization of the network’s 
topology during cognition. Specifically, cognitive networks were characterized by strong clustering, low 
modularity, and strong interactions between hub-nodes. Our findings suggest that dense and clustered 
connectivity between the hub nodes belonging to different modules is the “network fingerprint” of 
cognition. Such reorganization patterns might facilitate global integration of information and provide a 
substrate for a “global workspace” necessary for cognition and consciousness to occur. Thus, characterizing 
topology of the event-related networks opens new vistas to interpret cognitive dynamics in the broader 
conceptual framework of graph theory. 
 
Keywords: Brain networks, graph theory, functional connectivity, “the connectome”, perception, cognition 

 

 

1. Introduction 
Studying the brain “connectome” is an interdisciplinary and rapidly developing field with the premise that 
understanding organization of brain networks will lead to a major leap forward in basic and clinical 
neuroscience. Brain connectivity networks exhibit complex structures and emergent topological properties 
which cannot be reduced to just the sum of pairwise interactions. Rather these topological features constitute 
a whole new level of brain analysis. Therefore, patterns of anatomical and functional connectivity have been 
extensively studied with graph theory measures (review: Sporns et al., 2004; Bassett and Bullmore, 2006; 
Stam, 2010; Park and Friston, 2013). 
 
In graph theory topological arrangements are thought to facilitate or hamper the network’s information 
processing capabilities (Newman, 2003; Sporns, 2013). Neuroscience provides support for this hypothesis 
as, indeed, topology of brain resting-state functional networks predicts individual cognitive performance 
(van den Heuvel et al., 2009; Langer et al., 2012). Furthermore, functional networks reorganize towards 
more advantageous arrangements during development (Boersma et al., 2011) but shift back towards a less 
optimal structure in aging (Wang et al., 2010). Disrupted network organization is also a hallmark of 
numerous pathological conditions including Alzheimer’s disease (Stam et al., 2009), traumatic brain injury 
(Caeyenberghs et al., 2012), unipolar depression (Lord et al., 2012), and vision loss (Bola et al., 2014). 
 
Dynamics of brain network reorganization can be studied on multiple time-scales (Kopell et al., 2014). By 
studying how steady, long-lasting changes in topology of anatomical and functional networks are related to 
changes in cognitive capabilities we have greatly advanced our understanding of neural development and 
neurodegeneration. But transient cognitive networks, established and dissolved on the timescale of 
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milliseconds, are typically not characterized in terms of their topological arrangements. It is not clear 
whether networks’ structure reorganizes during cognitive processing and, if it does, what is the specific 
reorganization pattern. Two scenarios might be considered: Firstly, cognitive operations might merely 
change the weights of connections with networks’ global topology remaining fixed, not modifiable on the 
fast time-scale. Several neurophysiological (Bassett et al., 2006; Nicol et al., 2012; Betti et al., 2012; Jin et 
al., 2012) and fMRI studies (Cole et al., 2014) lend support to this hypothesis. The second possibility is that 
cognition might involve qualitatively new topological arrangements of networks. Such reorganization was 
postulated by the global workspace theory (Baars, 2002; Baars et al., 2013; Dehaene and Changeux, 2011) 
and supported by a number of MEG/EEG (Valencia et al., 2008; Doron et al., 2012; Palva et al., 2010; 
Kitzbichler et al., 2011; de Vico Fallani et al., 2008) and fMRI studies (Bassett et al., 2011, 2013; Ekman et 
al., 2012; Mennes et al., 2013). 
 
Discovering the pattern of cognition-related reorganization would open new vistas to interpret cognitive 
operations within the conceptual framework of graph theory and network science. We therefore set out to 
study topological properties of brain functional networks during visual perception and cognition. In the 
present study we employed a classic visual oddball task to probe cognitive processing. In this task 
identification and processing of infrequent ‘oddball’ targets involves several cognitive operations and 
activates distributed parieto-frontal regions (Brázdil et al., 2007; Kim, 2014; review: Polich, 2007). Because 
the oddball task is commonly used as a model of cognitive processing, here it was employed to study 
network reorganization. We recorded high-density EEG during task performance and conducted an event-
related network analysis (ERNA) where topology of source-space phase-synchronized networks was 
characterized with graph measures on a millisecond timescale. We hypothesized that cognitive processing in 
the oddball task is related to rapid, transient, and frequency-specific topological reorganization of brain 
functional networks. 
 
 

2. Methods 

2.1 Subjects 
We tested 18 right-handed subjects without any neurological or neuropsychiatric disorders, with normal or 
corrected-to-normal visual acuity. All subjects gave informed consent before the experiment. Data of 2 
subjects were discarded due to poor EEG quality (i.e. excessive number of electrodes recording artefacts due 
to poor contact with the scalp); thus data of 16 subjects (8 female; 25±0.7 years old) were included in the 
analysis. 
 
2.2 Experimental setting 
Participants performed a classic visual oddball task. The experiment comprised two conditions: presentation 
of frequent distractors (DIST; 1180 trials; 90% probability) and rare targets (TARG; 120 trials; 10% 
probability). Subjects were instructed to ignore distractors and to only press a space key on a keyboard as 
fast as possible in response to targets. Gabor patches, created by multiplying a 2D Gaussian (SD=2deg. of 
visual angle) and 2D sinusoidal grating (contrast=70%, spatial frequency=1cycle/deg), were used as stimuli. 
They were presented in the center of the screen and orientation of a patch (vertical vs. horizontal) 
distinguished distractors from targets. The orientation of targets was counterbalanced across subjects. 
Subjects viewed stimuli binocularly from the distance of 57cm on a gamma corrected monitor (EIZO, 
CG241W). In total, 1200 stimuli presentations were given, grouped into 4 blocks of 300 stimuli, with short 
breaks in between. A red fixation point (size 0.25deg) was present on the screen all the time except for the 
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stimulus presentation and the subject was asked not to move the eyes away from it. The stimuli were 
presented for 200ms and the maximum allowable response time was 1200ms. After the response time a 
random inter-trial interval was started (range 200-800ms). Each subject performed a few practice trials 
before commencing the data collection. 
 
2.3 EEG acquisition 
Dense array EEG was recorded using a HydroCell GSN 128-channel net and Net Amps 300 amplifier (EGI 
Inc., Eugene, Oregon, USA). The signal was sampled with 500Hz frequency, referenced to Cz (ground 
electrode between Cz and Pz), and digitalized with 24 bit precision. Impedance was ascertained to be below 
100kΩ throughout the recording. 
 
2.4 EEG preprocessing 
Continuous EEG signal was re-referenced to the linked mastoids, filtered with high-pass (1Hz) finite 
impulse response (FIR) filter, low-pass (100Hz) FIR filter, notch (50Hz) FIR filter, and down-sampled to 
250Hz. The EEG signal was divided into epochs time locked to the stimuli [-0.8s to 1.7s] which were 
baseline [-0.2s to 0s] corrected. Epochs were screened for non-stereotypical artefacts e.g. excessive 
myographic activity (on average 50±9 epochs per subject discarded). Noisy channels were discarded (6±1.9 
channels per subject discarded) and interpolated based on the activity of surrounding channels. Independent 
component analysis (ICA) was performed (Bell and Sejnowski, 1995). Topographic maps, power spectra, 
and time-domain activity was evaluated visually for each component and based on these features each 
component was classified as representing either brain activity or artefacts e.g. eyeblinks or cardiac activity. 
Components representing artefacts were discarded. On average 15.8±1.3 components were retained and 
back-projected into sensor space. 
 
Target trials not followed by a response (omissions), and distractor trials followed by a response (false 
positives) were discarded. To exclude any bias from the unequal number of trials in both experimental 
conditions only a subset of distractor trials, for each subject equal to the number of target trials, was 
randomly chosen for further analysis. On average 117±1 trials per subject/condition were analyzed. 
 
The frequency bands were defined as follows: theta (4-7Hz), alpha (7-14Hz), beta (14-30Hz).  
 
2.5 Source-reconstruction procedure 
The forward model and the inverse model were calculated with an open access software Brainstorm (Tadel 
et al., 2011). The forward model, which describes the signal pattern generated by a unit dipole at each 
allowed location on the surface, was calculated using the symmetric boundary element method (BEM) 
(Gramfort et al., 2010, Kybic et al., 2005) and default MNI MRI template (Colin 27). Preprocessed, ICA 
pruned, stimulus-locked single-trial data were used to calculate the inverse model, which was estimated 
using the weighted Minimum Norm Estimate (wMNE) (Hämäläinen and Ilmoniemi, 1994). wMNE is well-
suited for estimation of large-scale functional connectivity networks as it addresses the volume conduction 
and thus reduces spurious signal correlations (Hassan et al., 2014; Palva and Palva, 2012). When computing 
the inverse operator (a) the source orientations were constrained to be normal to the cortical surface; (b) a 
depth weighting algorithm was used to compensate for any bias affecting the superficial sources calculation 

(Lin et al., 2006); and (c) a regularization parameter, λ2 = 0.1 was used to minimize numerical instability, 
reduce the sensitivity of the wMNE to noise, and to effectively obtain a spatially smoothed solution 

(Hämäläinen and Ilmoniemi, 1994). In this way, activation time-courses at 15002 vertices (an equilateral 
triangle in the tessellation of the cortical surface) were estimated. The cortical surface was divided into 68 
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anatomical regions of interest (ROI; 34 in each hemisphere) based on the Desikan–Killiany atlas (Desikan et 
al., 2006) and activity of a seed voxel of each area was used to calculate functional connectivity.  
 
2.6 Spectral decomposition 
The main steps of the conducted analysis are presented in Figure 1. Spectral decomposition of EEG from 
single trials (both, sensor-space and source-space) was conducted with Morlet wavelet (EEGlab newtimef 
function) and 200 linearly spaced (every 8ms) time points and 40 linearly spaced (every ≈0.7Hz) frequencies 
were estimated. The window size used for decomposition was 211 data points (844ms), thus the overlap 
between windows was ≈99%. The wavelet contained 3 cycles at the lowest frequency (3.9Hz) and the 
number of cycles was increasing up to 11.4 cycles at highest frequency (30Hz) and 40 frequency points 
linearly spaced between 3.9Hz and 30Hz were estimated. Therefore, for every subject, condition, and 
channel/ROI, we obtained a 3D matrix of 40 (frequency points) X 200 (time points) X ‘number of trials’ 
(which varied between participants). Absolute values of the decomposed sensor-space signals were analyzed 
to investigate event-related changes in oscillatory power. 
 
2.7 Functional connectivity estimation 
Two measures of coupling were calculated for each frequency- and time-point between all pairs of ROIs. 
Phase Locking Value (PLV; Lachaux et al., 1999), which measures variability of phase between two signals 
across trials, is classically defined as, 

𝑃𝐿𝑉(!,!) =
!
!

exp  (𝑖(𝜑!! 𝑓, 𝑡 − 𝜑!! 𝑓, 𝑡 ))!
!!! ,                       (1)  

where 𝜑!! 𝑓, 𝑡  and 𝜑!! 𝑓, 𝑡 denotes phase from ROI 1 and 2 respectively, from trial n and for frequency-
point f and time-point t. N denotes the number of trials, i is the imaginary unit, and 𝑥  indicates an absolute 
value of x.  
 
Imaginary part of coherence (iCoh; Nolte et al., 2004), which is a conservative measure of functional 
coupling insensitive to volume conduction, was calculated as, 

𝑖𝐶𝑜ℎ(!,!) =    𝐼𝑚(
!!! !,! !!!∗ !,!!

!!!

!!! !,!!
!!!

!
   !!! !,!!
!!!

!
) ,                          (2) 

where 𝑆!! 𝑓, 𝑡  and 𝑆!! 𝑓, 𝑡  are wavelet-decomposed EEG signals from ROIs 1 and 2 respectively, * 
indicates the complex conjugate, and 𝑥  indicates an absolute value of x. For every subject, condition, and 
all pairs of ROIs (2278 pairs) we obtained PLV and iCoh matrices 40 (frequency points) X 200 (time 
points). In other words, for every subject (n=16), condition (2), and time- (200), and frequency point (40) we 
obtained a full 68 X 68 adjacency matrix. 
 
2.8 Weighted graphs 
The main aim of the study was to analyze topology of the event-related functional networks. To this end we 
converted full PLV adjacency matrices into sparse, undirected, weighted graphs which can be analyzed with 
graph measures. Graphs comprise of nodes, being systems’ elements (here brain areas), and 
edges/connections, indicating interactions between elements (here phase synchronization). In order to obtain 
a sparse, weighted, undirected graph/network A(f,t), a full adjacency matrices were thresholded, so that all the 
values below the threshold were set to 0. The values above the threshold retained original values (weights). 
For each matrix the threshold was individually adjusted, so that the density, defined as the proportion of 
existing edges out of all possible edges, was equal for each graph. The main analysis was conducted with 
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networks of density=0.29. Yet, the control analyses indicated that the main effects found in the study are 
independent of networks’ density. 
 
The basic parameter which can be calculated for weighted networks is networks’ strength defined as an 
average over weights of all connections within a network. Further nodal strength can be calculated for each 
node defined as sum of weights of all edges coupled to a node. 
 
2.9 Graph measures 
2.9.1 Weighted networks 
Weighted graphs A(f,t) were characterized with several graph measures generalized for analysis of weighted 
networks as implemented in Brain Connectivity Toolbox. Formal definitions of all measures can be found in 

(Rubinov and Sporns, 2010). Clustering Coefficient (CC(f,t)) and Characteristic Path Length (CPL(f,t)) were 
calculated with functions clustering_coef_wu and charpath/distance_wei, respectively.  
 
Further, we calculated the weighted Rich Club Coefficient (RCC). Many systems exhibit so called rich-club 
organization, meaning that nodes with high degree (i.e. network hubs) are more strongly interconnected 
among themselves than nodes of a low degree (Colizza et al., 2006). The anatomical networks of the human 
brain were shown to exhibit the rich-club topology (van den Heuvel and Sporns, 2011). RCC quantifies how 
strong the interactions among networks’ hubs are. To calculate RCC all edges of the analyzed graphs were 
ranked by weight, resulting in a vector Wranked. RCC is typically calculated for a range of rcK values and for 
each value of rcK, a group of nodes with degree>rcK belongs to a rich-club. The number of edges Erc 
between the rich-club nodes was counted, together with their collective weight Wrc calculated as the sum of 
weights of all rich-club edges. The weighted RCC was then calculated as the ratio between Wrc and the sum 
of weights of the strongest Erc edges of the whole graph, given by the top Erc number of edges of the 
collection of ranked edges in Wranked. RCC was formally was defined as follows (Opsahl et al., 2008): 

𝑅𝐶𝐶 𝑟𝑐𝐾 = !!"

!!
!"#$%&!!"

!!!
.                                            (3) 

The main analysis was conducted with rcK=25 but all the individual rich-club curves are also presented. 
RCC was calculated with the Brain Connectivity Toolbox function rich_club_wu. 
 
Finally, k-core decomposition of graphs was calculated with a kcore_bu function. For this analysis weighted 
graphs were binarized, as otherwise the network strength would affect results to a great extent. K-core 
decomposition defines maximal connected sub-graphs in which all nodes have degree>k. K-core 
decomposition is implemented in steps. In each step nodes (together with their edges) with degree<k are 
pruned. Then k is increased and again the nodes with degree<k are pruned, until all nodes are removed. For 
each step removed nodes have the value k assigned as the nodal k-core value. A high nodal k-core indicates 
a more central role of a node in a network. The subset of nodes pruned in the last step (i.e. set of nodes with 
highest nodal k-core) constitute the k-core of a network.  
 
2.9.2 Binary graphs 
The same procedures were followed to create binary graphs. Full adjacency matrices were thresholded to 
obtain graphs with the same density (0.29) as the weighted graphs, but now all the preserved entries (i.e. 
above the threshold) were set to 1. To analyze binary graphs the same graph measures (but implemented 
specifically for analysis of binary graphs) were used. Clustering coefficient and characteristic path length 
were calculated with functions clustering_coef_bu and charpath/distance_bin respectively. Binary RCC was 
calculated with the rich_club_bu function.  
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2.10 Modularity 
A module (community) is defined as a group of nodes which are more strongly connected among each other 
than with nodes in other modules. Typically a quality function Q is used to evaluate modularity of a network 
(Newman and Girvan, 2004). In binary networks Q quantifies the number of intra-modular connections 
relative to the inter-modular connections. In weighed networks Q quantifies the weights of intra-modular 
connections relative to the inter-modular connections. Therefore, maximization of Q allows partitioning a 
network into the most optimal community structure. 
 
2.10.1 Uni-layer and multi-layer networks 
We firstly studied modularity of uni-layer weighted networks. Each network A(f,t) represents one time- and 
frequency-point thus modularity at each time-point was evaluated independently from modularity at other 
time-points. A(f,t) is a 68 X 68 matrix whose elements Aij specific weights of edge between nodes i and j. 
Suppose that node i is assigned to community gi and node j is assigned to community gj. The quality 
function Quni evaluating modularity of a uni-layer network can be defined as: 

𝑄!"# = 𝐴!" −   𝛾𝑃!" 𝛿 𝑔!𝑔!!" ,                                     (4) 
where 𝛿 is the Kronecker delta, and thus 𝛿 𝑔!𝑔! = 1 if  𝑔! = 𝑔! and 0 otherwise, and 𝛾(gamma) is a 
resolution parameter. 𝑃!" is the expected weight of the edge connecting node i and node j under the 
Newman-Girvan null model, which was defined as, 

𝑃!" =
!!!!

! !!"!"
,                                                       (5) 

where ki is the strength of node i and kj is the strength of node j. The resolution parameter 𝛾 was set to 1 in 
the main analysis but we repeated the analysis with different values of gamma to demonstrate robustness of 
the results. 
 
Further, for each frequency we created multilayer networks B(f) where each layer (“slice”) of a network 
represented networks’ state at one time point. Each layer was linked to proceeding (t-1) and subsequent 
(t+1) layers. The temporal links allowed estimating evolution of the community structure in the time 
domain. Neuroimaging data have been already studied as multilayer networks (Basset et al., 2011, 2013; 
Doron et al., 2012). To ensure that mainly the evoked component is represented, and not the pre-stimulus 
activity, only the time-points from 0ms to 800ms after the stimulus onset were included in the multi-layer 
networks. Thus each multilayer network comprised 96 layers (time-points). The quality function Qml 
evaluating modularity of a multilayer network can be defined as, 

𝑄!" =
!
!!

𝐵!"# − 𝛾!𝑃!"# 𝛿!" + 𝛿!"𝜔!"# 𝛿 𝑔!"𝑔!" ,!"#$                   (6) 

where 𝛿 is the Kronecker delta, the adjacency matrix of layer l has components Bijl, the element Pijl gives the 
components of the corresponding null model matrix, and 𝛾! is the structural resolution parameter of layer l, 
gil gives the community assignment of node i in layer l, gjr, gives community assignment of node j in layer r, 
the parameter 𝜔!"# (omega) is the interlayer coupling strength between node j in layer r and node j in layer l, 

𝜇 = !
!

𝐾!"!" , the strength of node j in layer l is 𝐾!" = 𝑘!" + 𝑐!" , the intra-layer strength of node j in layer l is 
kjl, and the inter-layer strength of node j in layer l is 𝑐!" = 𝜔!"#! . The Newman-Girvan null model was 
employed within each layer and defined as, 

𝑃!" =
!!"!!"
!!!

,                                                            (7) 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 26, 2015. ; https://doi.org/10.1101/012922doi: bioRxiv preprint 

https://doi.org/10.1101/012922


 

8 
 

where 𝑚𝑙 = !
!

𝐵!"#!"  is the total edge weight in layer l. The resolution parameter 𝛾!   (gamma) was set to 1 
and all non-zero 𝜔!"#  were set to 1 in the main analysis. The multilayer analysis was repeated with different 
values of gamma and omega to demonstrate robustness of results. 
 
2.10.2 Analysis of networks partitions 
We used a Louvain greedy community detection algorithm (Mucha et al., 2010) to optimize Quni and Qml. 
Networks were partitioned into non-overlapping communities, i.e. each node belonged to one community 
only. Importantly, algorithms partitioning networks by optimization of modularity function tend to produce 
many near-optimal partitions which form the so called high-modularity plateau. Hence, two partitions 
optimizing the function Q to the same degree might indicate different community structure. To deal with this 
problem the high-modularity plateau is typically extensively sampled, i.e. that same network is partitioned a 
number of times. Having several degenerate partitions of the same network there are two possibilities: (i) a 
single “representative” partition might be chosen and analyzed (e.g. Doron et al., 2012); (ii) measures of 
interest (e.g. number of modules) might be calculated from every obtained partition and then averaged over 
all partitions to give a representative value for the underlying network (e.g. Bassett et al., 2011). Here we 
chose the latter approach. Thus, each uni-layer and multi-layer network was partitioned 25 times, features of 
interest were calculated from each partition and averaged over all 25 degenerate partitions to obtain the 
representative value for the network. The averaged features were then compared statistically. 
 
The features of partitions analyzed in the uni-layer networks were: (i) Quni and (ii) number of modules. The 
number of modules was calculated separately for each time point. The features of partitions analyzed in 
multilayer networks were: (i) Qml, (ii) number of modules, and (iii) flexibility. Here the number of modules 
reflected the number of modules throughout the temporal network. Flexibility was defined as number of the 
times a node changes community assignment divided the number of all possible changes (Bassett et al., 
2011).  
 
2.10.3 Null network models 
Importantly, investigating qualities of the community structure is of relevance only if the analyzed network 
is indeed modular. Therefore, before comparing modularity between experimental conditions we tested 
whether event-related networks exhibit modular structure by comparing them to null (surrogate) networks. 
Null networks were created by destroying the possible modular structure of original networks by 
randomization.  
 
For each uni-layer network A(t,f) we created 25 null networks by randomizing edges of the original network 
but preserving weight, degree, and strength distributions (function: null_model_und_si). See Rubinov and 
Sporns (2011) for details of the algorithm 
 
When analyzing multilayer networks we used three different null models proposed by Bassett et al., (2011): 
(i) we randomized edges in each layer, but preserved weight, degree, and strength distributions (function: 
null_model_und_si; the same procedure as for static networks); (ii) we randomized nodes in each slice so 
that node A in slice t was not linked to node A in slice t+1 but to some other node; (iii) we randomized 
slices, so that slice t+1 did not follow slice t. For each multilayer network B(f) we created 25 instantiations of 
each null model. Each null network was partitioned into communities using the same procedure as for the 
original networks. From each partition network features were calculated and averaged over 25 null 
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networks. Difference between features of original networks and null networks was calculated and tested 
against 0. 
 
Due to high computational time needed to calculate numerous network partitions we limited the community 
structure analysis to three frequencies representing 3 frequency bands (3.9Hz – theta; 10.6Hz – alpha; and 
20.6Hz – beta).  
 
Analysis of community structure in binary graphs was conducted according to the same procedures. 
 
2.11 Control analyses 
When analyzing topology of sparse networks one has to define a number of parameters which might 
influence the result of the analysis. The most important parameter is density of analyzed graphs. When 
estimating modularity a resolution parameter gamma has to be defined and when estimating multi-layer 
modularity also a between-layer coupling also a parameter omega needs to be set. Thus, to demonstrate the 
main results were robust against varying these three parameters we conducted a number of control analyses. 
We focused on the main effects found between conditions which were: (i) reorganization of the theta-band 
network around 350-550ms shown by CPL and CC; (ii) decrease of modularity of the theta network around 
350-500ms and beta network around 600-700ms in uni-layer networks. Alpha network 300-500ms was also 
included in the control analysis although there was no effect in the alpha band; (iii) reorganization of theta 
and beta multi-layer networks (alpha network also included in the control analyses). For each value of the 
parameter the difference (Δ) between conditions (i.e. TARG-DIST) calculated for each subject and tested 
statistically against 0.  
 
2.12 Statistical analysis 
In the present study we sought to characterize event-related changes in network topology. Thus, the EEG 
measures (PLV/iCoh, graph measures) were compared: (i) against baseline which was defined as time 
window [-200ms – 0ms] with respect to the stimulus onset (measures of the “baseline state” were calculated 
for each frequency separately); and (ii) between conditions (DIST vs. TARG). The comparisons involving 
multiple time-points (ERP) or multiple time-frequency points (PLV/iCoh, graph measures) were conducted 
using repeated measures cluster mass permutation test to deal with the problem of multiple comparisons 
(Bullmore et al., 1999; Maris and Oostenveld, 2007).  
 
When studying networks modularity we additionally conducted comparisons between original networks and 
surrogate (random) networks. Here for each subject a difference (REAL-SURROGATE) was calculate and 
tested against zero with a two-tailed repeated-measures t-test. The difference between conditions was 
considered significant when p<0.05 
 
Cluster mass permutation test allows controlling for the false positive rate when multiple comparisons are 
conducted. It is especially useful when there is no a priori hypothesis as to when, where, and in which 
frequencies the effect might occur. When testing ERP time points from 0 ms to 1000 ms were included in 
the test (251 total comparisons). When testing time frequency maps, time points from 0ms to 1000ms and all 
frequency points were included (i.e. 4840 total comparisons). Repeated measures t-tests were performed for 
each comparison using the original data and 5000 random within-participant permutations of the data. For 
each permutation, all t-scores corresponding to uncorrected p-values below the threshold of 0.025 were 
formed into clusters. The sum of the t-scores in each cluster is the "mass" (tmass) of that cluster. The most 
extreme cluster mass in each of the 5001 sets of tests was recorded and used to estimate the distribution of 
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the null hypothesis. The family-wise alpha level was set to 0.05. The relatively conservative threshold of 
0.025 was chosen to further minimize the likelihood of false positive findings. It is important to note that in 
the cluster mass permutation test the most extreme tmass value, likely corresponding to the largest cluster, is 
used to create a null distribution. Therefore, cluster mass permutation test are useful to capture the broad 
changes which form large clusters (i.e. span many time- and frequency-points) as these likely have high 
tmass. But the cluster mass permutation test might miss focal effects forming clusters of small tmass, even if 
specific comparisons within a cluster are highly significant (see: Groppe et al., 2011). We found significant 
effects mainly in the theta band, but it is possible that significant effects occurred also in other frequencies, 
but they were not considered significant by the cluster mass permutation procedure because of the high tmass 

of the theta-band cluster. 
 
We did not correct for the multiple comparisons across measures, since due to different nature of 
comparisons (e.g. against baseline, between conditions, with null models) it would not be clear how to 
define a correction. Yet the reported p values were typically low (<0.001), thus additional correction is 
unlikely to change the study’s results. 
 
The following notation was used to indicate p values in all figures: *p<0.05 **p<0.01 ***p<0.001 
****p<1x10-7 
 
2.13 Software 
The experiment was written and conducted in Matlab Psychotoolbox (Brainard, 1997; Pelli, 1997) running 
under Matlab 2013. Data analysis was conducted using Matlab 2013 and the following open-access 
toolboxes: EEGlab (Delorme and Makeig, 2004), Brainstorm (Tadel et al., 2011), Brain Connectivity 
Toolbox (Rubinov and Sporns, 2010), and Mass Univariate ERP Toolbox (Groppe et al., 2011). 

 
 

3. Results 

In the present study we investigated how perception and cognition in the visual oddball task affect brain 
phase-synchronized networks. The oddball task was employed as a model to study network reorganization 
as processing of rare ‘oddball‘ targets involves several cognitive operations, including reorientation of 
attention and memory comparisons, and activates widespread brain networks, including fronto-parietal and 
subcortical areas (Brázdil et al., 2007; Kim, 2014; review: Polich, 2007). 
 
3.1 Behavioral results, ERP, and event-related spectral power 
The mean detection rate of targets in the visual oddball task was 97±0.009 % and the mean reaction time 
was 579±16ms. In response to targets ERPs exhibited stronger N1 and N2 peaks (tmass=153.6, p=0.0016; 
Figure 2A) and higher amplitude of the P3 peak (tmass=376.8, p<0.001) than in response to distractors. 
Spectral power changes also exhibited the expected pattern (Mazaheri and Picton, 2005). Processing of both 
distractors and targets led to increase of theta power over baseline (DIST: tmass=1861, p<0.001; TARG: 
tmass=2373, p=0.004; Figure 2B). Similarly in both conditions alpha/beta desynchronization occurred (DIST: 
tmass=4867, p<0.001; TARG: t=4042, p<0.001) but only after presentation of a distractor there was a beta 
power increase with onset around 600ms after the stimulus (tmass=2162, p<0.001), which is the well-known 
“beta rebound” phenomenon (Pfurtscheller et al., 2005). Comparisons between conditions indicate that theta 
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synchronization (tmass=1658, p=0.006) and alpha desynchronization (t=3648, p<0.001) were stronger during 
targets processing. 
 
3.2 Event-related network analysis (ERNA): network strength 
The main aim of the present study was to characterize weighted networks during a cognitive task. Firstly, we 
analyzed strength of interactions within weighted ERNs. Strength was calculated as average over weights of 
all edges in a network. Both, distractors and targets resulted in a network-wide increase of theta band 
strength (DIST: tmass=1811, p<0.001 TARG: tmass=3245, p<0.001; Figure 3A, B) which was stronger during 
target processing than during distractor processing (tmass=2407, p<0.001). Analysis of the nodal strength 
(Figure 3C) revealed that initially (around 200ms) only occipital nodes increased strength, but during 
cognition also parietal and frontal areas are included in the strongly connected task-relevant network. 
Interestingly, after the manual response only the nodes of the left hemisphere motor areas exhibit higher 
strength, what would be expected after execution of a right-hand finger movement (e.g. Nolte et al., 2004). 
 
To further support our conclusions we created weighted networks using imaginary part of coherence (iCoh; 
Nolte et al., 2004) - a conservative measure of functional connectivity insensitive to volume conduction. 
Processing of both, targets and distractors, led to an increase of theta-band iCoh network strength (DIST: 
tmass=1049, p=0.004; TARG: tmass=2568, p<0.001). Again, the difference between conditions was apparent, 
with greater theta strength increase during target processing (tmass=1524, p<0.001). This provides strong 
evidence for a network-wide increase of functional coupling during cognitive operations. 
 
3.3 Event-related network analysis: clustering and path length 
Further, we analyzed topology of the weighted event-related PLV networks with a number of graph 
measures (Rubinov and Sporns, 2010; 2011). Characteristic path length (CPL; Figure 4A) and clustering 
coefficient (CC; Figure 4B) were used as the basic measures. We found that perceptual and cognitive 
processing was related to rapid and transient reorganization of the theta band network’s topology. 
Specifically, both distractors and targets increased path length (DIST: tmass=1461, p=0.0015; TARG: 
tmass=2817, p<0.001) and clustering of the network (DIST: tmass=968, p=0.006; TARG: tmass=2725, p=0.008). 
But the increase in both, path length (tmass=2290, p<0.001) and clustering (tmass=1941, p<0.001), was 
stronger during cognitive processing of targets. Inspecting the nodal CC (Figure 4C) we observed an 
increase of nodal CC in a great majority of nodes during cognition which shows that the effect was rather 
network-wide and not driven by an increase in CC in one specific location. 
 
3.4 Event-related network analysis: modularity 
Further, we analyzed dynamic modularity of the event-related networks. A module (community) can be 
understood as a set of highly inter-connected nodes which are relatively sparsely connected to nodes in other 
modules. In the present study modularity was studied in two ways (Figure 5A). Firstly, we investigated 
modularity of uni-layer networks where each network represented one time- and frequency-point. Secondly, 
we studied community structure in the multilayer (temporal) networks where each layer (“slice”) 
corresponded to one time-point and subsequent layers were linked to each other (Mucha et al., 2010; Bassett 
et al., 2011, 2013; Doron et al., 2012). In this way we were able to capture not only spatial but also temporal 
aspects (i.e. temporal evolution) of the community structure.  
 
Yet, analysis and interpretation of the community structure is non-pertinent if a network does not exhibit 
modular topology. Therefore, we firstly tested whether the analyzed event-related networks are modular by 
comparing original networks to random null-models. This initial analysis established that both, uni- and 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 26, 2015. ; https://doi.org/10.1101/012922doi: bioRxiv preprint 

https://doi.org/10.1101/012922


 

12 
 

multi-layer event-related networks indeed exhibit modular structure. The uni-layer event-related networks 
were characterized by higher Quni and smaller number of modules than random networks (Figure 5B). The 
multi-layer networks exhibited higher Qml, smaller number of modules, and lower flexibility when compared 
to the three null models (Figure 5D). 
 
Results of both analyses, uni- and multi-layer networks, indicates that cognitive processing of targets 
reduces modularity of functional brain networks. The uni-layer theta band network became transiently less 
modular around 400-500ms after the target presentation, as indicated by lower Quni (tmass=184, p<0.001; 
Figure 5C). Modularity of the beta band network decreased as well, but later, around 600-700ms after the 
stimulus onset (tmass=85, p=0.0016). Further, analysis of modular structure in the multi-layer networks 
confirmed that cognitive processing is related to lower modularity of the theta (t(1,15)=5.94, p<0.001) and 
beta networks (t(1,15)=3.27, p=0.005; Figure 5E). In the multi-layer networks we found that during 
cognitive processing the number of modules in the theta network (t(1,15)=2.18, p=0.045), and flexibility of 
the alpha (t(1,15)=2.61, p=0.019) and the beta network (t(1,15)=2.31, p=0.034) was higher than during 
distractor processing. Thus, both analyses demonstrate that cognitive processing is related to changes in the 
spatio-temporal patterns of networks’ community structure. Specifically, networks topology shifts towards 
less modular arrangements during cognitive processing which indicates extensive integration of information 
between local modules. 
 
3.5 Event-related network analysis: network hubs 
The initial findings - namely an increase of clustering and a decrease of modularity - seemed contradictory 
at first sight, as more modular networks are typically also more clustered. Yet, we hypothesized that dense 
connectivity among hub-nodes belonging to different modules might, at the same time, increase nodal 
clustering of hub-nodes (thus, drive the global clustering increase) and make borders between modules less 
clear-cut (thus decrease modularity). To test whether cognitive processing is related to greater inter-
connectivity between hubs we calculated the Rich Club Coefficient (RCC). RCC quantifies weights of inter-
connections between the rich-club nodes (i.e. nodes with highest degree) in relation to general strength of 
the network. During cognitive processing of targets RCC increased over baseline in the theta (tmass=1793, 
p=0.0064; Fig. 6A) and beta bands (tmass=762, p=0.034). In both bands RCC increase was in fact stronger 
after target presentation than after distractor presentation (theta: tmass=1601, p=0.0014; beta: tmass=404, 
p=0.045). RCC increase was found for a wide range of rcK cut-off values, i.e. in rich-clubs comprising more 
or less nodes (Fig. 6B).  
 
Results of the k-core decomposition (Fig. 6C) provide further support for the role of extensively connected 
set of hub-nodes in cognitive processing. The k-core subgraphs found during targets processing were 
characterized by higher k-core values (i.e. included nodes had higher degree) and at the same time were 
sparser (i.e. less nodes were included) than k-core subgraphs found at baseline. Thus a sub-network 
comprising few interconnected high-degree nodes emerges during cognition. Altogether, our findings 
support the hypothesis that inter-connectivity among the hub-nodes becomes denser during cognitive 
processing.  
 
3.6 Control analyses 
Graph theory has only recently been introduced to neuroscience, thus no well-established preprocessing and 
analysis pipelines exist. In addition, there are still numerous caveats related to the application of graph 
measures to neuroscience data (recently reviewed in: Fornito et al., 2013; Papo et al., 2014). When 
analyzing topology of sparse networks one has to define a number of parameters which might influence the 
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final result. Thus, to demonstrate that the main effects of the study are robust we conducted several control 
analyses. Specifically, we showed that (i) event-related theta band network reorganization can be found in 
weighted networks across a wide range of densities (Figure 7A); (ii) varying network density, resolution 
parameter gamma, and coupling parameter omega does not change the main results of the community 
structure analysis (Figure 7B-F); and (iii) analysis of binary (un-weighted) networks leads to the same 
conclusions as analysis of weighted networks (Figure 8). Thus, the topological effects cannot be ascribed to 
the mere increase in network strength during stimulus processing. 
 
 

4. Discussion 

Cognition and consciousness are believed to emerge from activity of widespread brain areas coordinated by 
phase synchronization (Gaillard et al., 2009; Hipp et al., 2011; review: Varela et al., 2001; Siegel et al., 
2012). Such interactions are highly dynamic with functional networks established and dissolved on the time 
scale of tens of milliseconds. Yet, not much is known about the topological arrangements of transient 
cognitive networks, as graph theory has been employed predominantly to study time-invariant anatomical 
and functional-resting-state networks. Here we used a visual oddball task as a model of perceptual and 
cognitive processing (review: Polich, 2007). Subjects were asked to ignore frequent distractor stimuli and 
react with a button press to rare targets only. Target recognition involves several cognitive operations, e.g. 
reorienting of attention and memory comparisons, and activates fronto-parietal brain networks (Brázdil et 
al., 2007; Kim, 2014; review: Polich, 2007). Using the excellent temporal resolution of EEG we revealed 
that cognitive processing is related to rapid, transient, and frequency-specific reorganization of functional 
networks’ topology as demonstrated by our event-related network analysis (ERNA). Specifically, cognitive 
networks were characterized by three features: (i) strong clustering, (ii) low modularity, and (iii) strong 
interactions between the hub-nodes. Our findings suggest that dense and highly clustered connectivity 
among hub-nodes belonging to different modules is established during cognition. Such inter-modular 
connections might be a substrate of the “global workspace” necessary for the emergence of conscious 
perception (Baars, 2002; Baars et al., 2013; Dehaene and Changeux, 2011).  
 
4.1 Global topology of brain networks: fixed or flexible? 
The majority of hitherto conducted studies on brain functional connectivity aimed to map the spatial profile 
of spontaneous brain networks by assuming their temporal invariance. Yet, recently, it was demonstrated 
that the functional networks are highly dynamic and non-stationary (MEG/EEG: Betzel, et al. 2012; Baker et 
al. 2014; fMRI: Allen et al., 2014; Zalesky et al., 2014). Such dynamics is related to changes of 
psychophysiological states on a slow-time scale of minutes (Chang et al., 2013). Nevertheless, it is not clear 
whether topology of intrinsic brain networks reorganizes on a fast sub-second time-scale. It is conceivable 
that reorganizing into qualitatively new, more efficient topological patterns might support cognitive 
processing. Yet, the hitherto conducted studies on task-related network reorganization were sparse and 
inconclusive. A number of reports concluded that cognitive processes merely change weights or local 
(nodal) features of intrinsic functional networks but not the global topological structure (Bassett et al., 2006; 
Nicol et al., 2012; Betti et al., 2012; Jin et al., 2012; Crossley et al., 2013; Cole et al., 2014). Yet, others 
observed task-related topological reorganization of large-scale networks on a time-scale of seconds 
(Valencia et al., 2008; Doron et al., 2012; Palva et al., 2010; Kitzbichler et al., 2011; de Vico Fallani et al., 
2008; Ekman et al., 2012). On a longer time scale of minutes/hours, fMRI network’s rearrangements are 
related to plasticity, e.g. motor learning (Bassett et al., 2011; 2013).  
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Results of the present study reveal that reorganization of the network’s topology might contribute to 
cognitive processing, beyond the mere increase in strength of functional coupling. The key role of brain 
functional networks’ topology in cognition has already been postulated by the global workspace theory 
(GWT; Baars, 2002). The assumption of GWT is that after local processing within specific modules (e.g. 
visual, auditory, motor systems) the information needs to be integrated within a global workspace, which 
can be identified with a network comprising hub-nodes and inter-modular connections. Hence, according to 
GWT, it is not the strength of pairwise connections but rather the topological arrangement of a network 
which gives rise to perception, cognition, and consciousness. The reorganization pattern observed in the 
present study, namely a decrease of modularity and strong interactions between hubs, is in good agreement 
with the predictions of GWT. Interestingly, a decrease of modularity and shift towards global integration 
were also observed in the previous studies analyzing task-related network reorganization (Kitzbichler et al., 
2011; Kinnison et al., 2012; Ekman et al., 2012). Thus, the application of graph theory to neuroimaging data 
provides a growing body of evidence in favor of the GWT.  
 
When interpreting results of this and previous studies and pondering the aforementioned discrepancies and 
similarities it is important to keep in mind that functional connectivity is a broad concept including various 
types of interactions (Friston, 2011). Recently, it was proposed that two different functional 
coupling/connectivity modes exist: (i) slow envelope coupling captured by correlations between BOLD 
signals and (ii) dynamic phase coupling captured by phase locking (Engel et al., 2013; Mehrkanoon et al., 
2014). While the envelope coupling has a “modulatory” influence on cognition, the phase coupling is 
identified with cognitive processing itself. Therefore, the networks representing phase coupling are more 
likely to dynamically adjust topology during cognition, which is what we observed. Yet, it is important to 
note that also fMRI studies found task-related changes in global topology (Ekman et al., 2012; Bassett et al., 
2011) hence the relationship between the coupling modes and the task-related reorganization might be far 
from obvious.  
 
The modules studied in the event-related EEG networks (both uni- and multi-layer) might be interpreted as 
functionally coherent entities. Notably, the modules we observed were not spatially coherent, i.e. distant 
nodes often belong to the same module while adjacent nodes belong to different modules (see: Figure 9). 
This is in sharp contrast to previous studies of anatomical networks and fMRI functional networks where 
spatially coherent modules were found (review: Meunier et al., 2010). Yet, this discrepancy might in fact be 
explained by the two aforementioned modes of coupling. Actually, the postulated mechanism of cognition is 
transient phase-synchronization of “neural coalitions” comprising spatially distributed neural assemblies 
(Crick and Koch, 2003), and in the graph theory framework such “coalitions” might be identified with 
spatially widespread, incoherent modules. 
 
4.2 The architecture of cognitive networks 
We revealed reorganization of functional large-scale networks’ during cognition but two questions remain. 
Firstly, what is the exact pattern of network reorganization, and secondly, what is the functional role of the 
reorganization pattern in cognition (i.e. how can it support information processing). A wide range of graph 
measures used in our study provided a comprehensive picture of the cognition-related reorganization and 
thus allowed us to propose a specific “fingerprint” of event-related reorganization.  
 
Network clustering is typically strong in modular networks where modules comprise highly interconnected 
nodes. Thus, the two simultaneous occurring effects - increase of clustering and decrease of modularity - 
seem to be at odds with each other. Yet, it is the case only if one assumes that the increase of clustering must 
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take place within modules. Conversely, we hypothesized that an increase in clustering is driven by 
connections established between modules, i.e. between the hub-nodes. If this is the case, then such inter-
modular connections cause also decrease of modularity, as the initially clear-cut borders between modules 
become vague (Fig. 10). The analysis of RCC seems to confirm this hypothesis as inter-connectivity 
between rich-club nodes increased during cognition. Therefore, although increased clustering is typically 
interpreted as a shift towards local segregation of information within modules, here we view increasing 
clustering as indicative of dense, clustered connectivity between hub-nodes which allows extensive global 
integration of information (Sporns, 2013). Importantly, previous studies investigating cognitive networks 
across a range of tasks and using different analysis methods found a similar decrease of modularity and shift 
towards global integration of information (Kitzbichler et al., 2011; Kinnison et al., 2012; Ekman et al., 
2012). This raises the possibility that this particular reorganization pattern accompanies different cognitive 
processes and is a genuine network “fingerprint” of cognition. This hypothesis needs to be tested by future 
studies. 
 
The hypothesis that inter-modular connections are dynamically established between hub-nodes is in line 
with recent fMRI studies. The most dynamic connections in the resting-state are indeed the inter-modular 
connections (Zalesky et al. 2014) and flexibility of the inter-modular connectivity of hub-nodes is crucial for 
task execution (Cole et al. 2013, 2014) and for the self-generated thoughts (Schaefer et al. 2014). The inter-
modular connections are also most costly in terms of energy (Bullmore and Sporns, 2012), and thus might 
be established primarily during execution of a demanding task, but to a lesser extent at rest. Importantly, 
disruption of the hub-nodes is believed to be the common mechanism of neurological and neuropsychiatric 
disorders affecting cognition (Crossley et al., 2014).  
 
Changes in clustering of event-related networks might also inform us whether cognitive networks exhibit 
rather “hierarchical” or rather “parallel” architecture. In the hierarchical architecture one hub-area is 
essential for processing and all other brain areas involved are coupled to the hub but not to each other. 
Conversely, in a flexible and parallel architecture several regions might exchange information but none of 
them plays the central or “lead” role. Hierarchical and parallel architecture would be characterized by low or 
high clustering coefficient, respectively. Thus, the observed increase in clustering lends support to the model 
of parallel architecture of the task-related networks. The strong k-cores provide further evidence for strong, 
parallel sub-network linking nodes most important to the task. Interestingly, a parallel, small-world 
architecture with strong interactions between core and periphery present at the stimulus onset facilitates 
stimulus processing and task performance (Ekman et al. 2012; Weisz et al., 2014). Yet, it is also important 
to consider the transitivity of correlation measures (i.e. if A is correlated with B, and A is correlated with C, 
then B is likely correlated with C) which is one of the limitations of functional connectivity analysis (see: 
Zalesky et al., 2012; Fornito et al., 2013). Due to this property functional networks are by definition 
clustered, and that might lead to overestimation of the “parallel” network circuits.  
 
Graph theory has been extensively applied in clinical neuroscience (e.g. Bola et al., 2014; Lord et al., 2012), 
but the great majority of studies investigated the resting-state networks. The resting-state paradigm has 
several advantages (e.g. patients who are not able to perform a task might be enrolled in the study) and the 
spontaneous activity is intimately related to the task-evoked activation patterns (review: Sadaghiani et al., 
2010). Yet, it would be of importance to test whether the event-related networks studied here can provide 
deeper insight into mechanisms of various pathological conditions affecting perception and cognition. 
Possibly, cognitive dysfunctions at the early stage might not be manifested in the resting-state networks, but 
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only in the event-related networks, i.e. when subjects are performing a demanding task. This hypothesis can 
be tested by future studies.   
 
4.3 Methodological considerations and limitations 
In the present study we employed the visual oddball task to study networks reorganization. The oddball task 
is a well-known model to study perceptual and cognitive processing, often employed in the clinical setting. 
Another reason to choose this task was that processing and reaction to rare ‘oddball’ targets involve 
numerous basic cognitive operations (e.g. reorientation of attention, memory operations) and activates 
widespread brain networks (Brázdil et al., 2007; Kim, 2014; review: Polich, 2007). Involvement of several 
network’s nodes in the task performance makes it also a good model to characterize network’s topological 
reorganization. Yet, at the same time, using the oddball task might be considered a disadvantage, since 
“cognition” is then defined in a broad and unspecific manner. Thus, further studies are needed to reveal 
network correlates of more specific cognitive processes. 
 
Further, we did not find correlations between performance (i.e. reaction time, RT) and network measures. 
Yet, the oddball task was very easy for the subjects and the variability of RT, both within and between 
subjects, was low. We hypothesize that the event-related networks measures might be related to behavior 
when more demanding tasks are used. Such relation between network organization and behavioral measures 
was indeed observed in previous studies (Ekam et al., 2012; Weisz et al., 2014). 
 
When analyzing large-scale neurophysiological networks using MEG/EEG the common problem is non-
physiological spread of electrical activity through volume conduction causing spurious correlations between 
signals. Here, the wMNE algorithm was used to address this problem. wMNE is believed to be an optimal 
source reconstruction methods for large-scale functional connectivity analysis (Hassan et al., 2014; Palva 
and Palva, 2012). Yet, it is important to keep in mind that the source reconstruction algorithms can only 
reduce the volume conduction problem, not address it completely. 
 
Another issue to consider is that common feed-forward input and stimulus-locked transients might cause 
phase-reset in a number of areas, which will artificially increase phase-synchronization among them despite 
absence of genuine functional interactions. This problem actually occurs in all studies investigating event-
related connectivity, and even in the resting-state input from area A might simultaneously phase-reset areas 
B and C resulting in detection of functional connectivity between B and C without any true interaction. Yet, 
the key contrast in the present study was between conditions (i.e. DIST vs. TARG) and the stimulus-related 
transients were present in both conditions making it unlikely that they can account for the observed between-
conditions differences. Furthermore, our analysis was focused on the “cognitive” period (300-600ms after 
stimulus onset) and activity within this time-window is rather not caused by the initial feed-forward sweep 
of activity. One of the proposed methods to address the stimulus-transient problem is to subtract the average 
stimulus-locked response (i.e. ERP) from each single trial. But we did not use this method here as such 
ERP-subtracted signals exhibit unknown properties, particularly in the “cognitive” time-window where brain 
responses exhibit significant latency- and amplitude-variability (Truccolo et al., 2002). Therefore, 
developing new (possibly multivariate) analysis techniques more reliably detecting genuine interactions is 
required to ultimately address this problem. 
 
Finally, although the majority of neuroscience studies employed binary (un-weighted) graphs, here we 
focused on the weighted graphs which contain more information and thus might ensure greater sensitivity 
(e.g. Rubinov et al., 2009). Indeed, weighted networks seem to be more sensitive as they indicate topological 
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changes also in response to distractors (Fig. 4), while binary networks did not capture this effect (Fig. 8). 
We also noticed that results of the analysis of weighted networks depend to a lesser extent on chosen 
parameters (e.g. density of the networks). But importantly, analyses of weighted and binary graph were in 
good agreement with respect to the main effects of the study (i.e. theta-band network reorganization). 
 
 
4.4 Conclusions 
The brain functional networks are highly dynamic and able to adjust topology on a very fine time-scale. 
Here we propose that dense and clustered connectivity between hub-nodes belonging to different modules is 
the network “fingerprint” of cognition. Such rearrangement might support global integration of information 
among specific subsystems and provide network substrate for the global workspace (Baars, 2002). It remains 
to be studied whether the same “network fingerprint” is common to all cognitive operations and whether its’ 
disruption can be observed in pathological states where cognitive processing is impaired. 
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Figures and legends 
 

 
Fig 1. Analysis pipeline. Data are preprocessed, divided into stimulus-locked epochs, and projected into the 
source-space using the weighted MNE algorithm. Signals of the seed voxels of 68 anatomical brain regions 
are decomposed with a Morlet wavelet. For each time- and frequency-point a full adjacency matrix 
containing PLV estimates is created (in the figure color represents coupling strength). Each PLV matrix is 
thresholded to create sparse, weighted, undirected graph. Topology of each graph is characterized with 
graph measures. Graph measures are then represented in the time-frequency space and tested statistically. 
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Fig 2. Event-related potentials (ERP) and spectral power in response to distractors (DIST) and targets 
(TARG) in the oddball task. (A) ERPs averaged over 5 parietal electrodes and presented as mean (solid 
lines) ± SEM (shaded regions). Black bars below ERPs represent time points with significant difference 
between conditions. Yellow vertical line represents mean reaction time (RT) to targets. (B) Spectral power 
changes averaged over all channels and plotted as 10log10 change over baseline. Two panels below and the 
panel on the right side show results of the statistical comparisons. Red color indicates time-frequency 
regions significantly different from baseline (panels below) or between conditions (right side). Blue color 
indicates no significant difference. 
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Fig 3. Strength of weighted event-related networks. Results obtained with two connectivity measures are 
presented: phase locking value (PLV; A, C) and imaginary part of coherence (iCoh; B). (A, B) Network 
strength defined as average over weights of all connections is plotted as change over baseline in time-
frequency plot (upper panel) and in time for the theta band (lower panel). The panels depict results of 
statistical comparisons organized as in Fig 2B with red indicating statistically significant difference. (C) 
Change over baseline of nodal strength in the theta-band PLV network defined as sum of weights of all 
connections coupled to a node.     
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Fig 4. Reorganization of the weighted event-related networks quantified with graph measures. Graph 
measures plotted in time-frequency plots (upper panels) and in time for the theta band (lower panels). Panels 
depicting results of statistical comparisons organized in the same manner as in Fig 2 and 3. (C) Change over 
baseline in theta-band nodal CC. 
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Fig. 5. Reorganization of modular structure in the weighted event-related networks. (A) Modularity was 
studied in two types of networks crated from the same data. In uni-layer networks parameters (Quni and 
number of modules) were calculated for each time point separately while in multi-layer networks Qml, 
number of modules, and flexibility were calculated for the whole multilayer network. (B, D) The difference 
(Δ) between features of real uni-layer (B) and multilayer (D) networks and null networks were calculated for 
each subject. Both uni-layer and multi-layer networks exhibited modular structure as indicated by higher 
Quni/ml and smaller number of modules than in null models. (C, E) Further, to test modularity during 
cognitive processing network features were compared between conditions. Absolute values are plotted for 
uni-layer networks and time-points where significant difference between conditions was found are marked 
with a black bar (C). For multi-layer networks the difference between targets and distractors is plotted for 
each subject (E). Result of statistical comparisons: *p<0.05 **p<0.01 ***p<0.001 ****p<1x10-7 
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Fig. 6. Reorganization of the network core in the event-related networks. (A) Rich-Club Coefficient (RCC; 
rcK=25) plotted in the time-frequency plots (upper panel) and in time for the theta band (lower panel). 
Panels depicting results of statistical comparisons organized in the same manner as in Fig 2 and 3. (B) The 
RCC difference between conditions in the theta band at 500ms plotted as a function of rcK. Each subject is 
plotted in one color and yellow vertical line indicated rcK for RCC plotted in A. Higher RCC during target 
processing can be found across wide range of rcK. (C) K-core of the theta band network at baseline and at 
500ms after target presentation plotted for each subject.  
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Fig. 7.  Control analyses of the weighted event-related networks. The yellow vertical line indicates the value 
of each parameter in the main analysis. In all plots the difference between conditions (TARG-DIST) for 
each subject (different colors) is depicted. (A) CC and CPL plotted against network density. (B, C) Uni-
layer modularity was calculated across range of densities and resolution parameter gamma values. (D-F) 
Multi-layer modularity was calculated across range of densities, resolution parameter gamma, and between-
layer coupling parameter omega. Results of statistical comparisons: *p<0.05 **p<0.01 ***p<0.001 
****p<1x10-7 
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Fig. 8. Reorganization of event-related binary networks quantified with graph measures. (A-B) Graph 
measures plotted in time-frequency plots. Panels organized as in Fig. 4. Modularity of uni-layer (C) and 
multi-layer binary networks (D) plotted as in Fig. 5. (E) Rich-Club Coefficient (RCC). Results of statistical 
comparisons: *p<0.05 **p<0.01 ***p<0.001 ****p<1x10-7 
 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 26, 2015. ; https://doi.org/10.1101/012922doi: bioRxiv preprint 

https://doi.org/10.1101/012922


 

30 
 

 
Fig. 9. Weighted event-related networks of cognitive processing: a single-subject analysis. (A) Network 
strength and (B) clustering coefficient plotted in time-frequency plots. (C) Snapshots of the theta-band 
weighted network (density=0.12) at two time-points. The difference plot depicts edges present at baseline 
but missing during cognitive processing (in red), and edges present during cognitive processing but missing 
at baseline (in green). (D) Spatio-temporal dynamics of community structure in the theta band network 
(multi-layer analysis). Each module is represented by one color. Below, snapshots of the community 
structure at two time-points. 
 
 
 

 
Fig. 10. The proposed network topological “fingerprint” of cognition. In this scheme baseline network is 
characterized by modular structure (with four modules here) and high clustering within modules, in 
agreement with the literature. Hub-nodes (in magenta) exhibit high degree and transfer information across 
modules. We propose that dense and clustered inter-modular connectivity (in green) among hub-nodes is 
established during cognition. Such reorganization pattern accounts for the three findings of the present 
study, namely: (i) increase in clustering; (ii) decrease in modularity; (iii) increase in Rich-Club Coefficient. 
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