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Abstract 

 

Genomic instability is a hallmark of cancer and, as such, structural alterations 

and fusion genes are common events in the cancer landscape.  RNA sequencing 

(RNA-Seq) is a powerful method for profiling cancers, but current methods for 

identifying fusion genes are optimized for short reads.  JAFFA 

(https://code.google.com/p/jaffa-project/) is a sensitive fusion detection 

method that clearly out-performs other methods with reads of 100bp or greater. 

JAFFA compares a cancer transcriptome to the reference transcriptome, rather 

than the genome, where the cancer transcriptome is inferred using long reads 

directly or by de novo assembling short reads.  
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Background 

 

Chromosomal rearrangements have the potential to alter gene function in many 

different ways; for example, they may produce chimeric fusion proteins that gain 

new functionality, or place a gene under the control of alternative regulatory 

elements [1, 2]. Fusion genes including BCR-ABL, PML-RAR and EML4-ALK have 

become targets for therapy in cancer, and as a result there is great interest in 

defining the full complement of oncogenic fusion genes. 

 

Next generation sequencing of RNA (RNA-Seq) has greatly accelerated the 

discovery of novel fusion genes in cancer [3–5]. However, while a large number 

of tools have been presented to identify fusion event using RNA-Seq [5–9], 

practical use of fusion finding tools is often hampered by either a high false 

detection rate or low sensitivity [10, 11]. Many fusion detection methods identify 

transcriptional breakpoints by splitting short reads into even shorter segments 

and then aligning these segments to the genome [5, 12]. Short read sequences 

have lower alignment specificity particularly in the presence of SNPs, sequencing 

errors and repeat regions. Incorrect mapping of these short read fragments has 

the potential to lead to false predictions. To overcome this, algorithms look for 

supporting information, such as neighbouring reads, or read pairs, that cover the 

same breakpoint. This strategy can be effective at controlling the false discovery 

rate, but often requires restrictive filtering that may limit sensitivity.  

 

Another limitation of many fusion finding algorithms is that they have been built 

and tested using reads shorter than 100bp. Sequencing reads are becoming 

longer, with 100bp paired-end reads now standard for many applications, and 

read lengths promise to grow in the coming years. The Mi-Seq and PacBio 

platforms already produce reads of several hundred and several thousand bases 

respectively. It is not clear how current fusion finding algorithms will perform on 
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long read data. For example, many will not work on long single-end data, because 

they require paired-end reads.  

 

In this study we outline a new method for detecting fusion genes that can be 

applied to any read length, single or paired-end. A critical and unique feature of 

our method is that rather than comparing a tumour transcriptome to the 

reference genome we compare it to the reference transcriptome. There are 

several advantages in alignment to the transcriptome rather than genome; the 

complexity of splice site alignment, which can be error prone [13, 14], is avoided 

as the transcriptome only includes exonic sequence; identifying fusion 

transcripts from those alignments is simplified because we do not need to check 

if the break can be explained by splicing; and finally, the reference transcriptome 

consists of less sequence than the reference genome, allowing for slower, but 

more accurate alignment algorithms to be used, such as BLAT [15]. Critically, 

BLAT works well over a range of reads lengths, whereas mapping algorithms 

used by other fusion finders are optimized for short reads. For example, bowtie 

[16], the recommended aligner for TopHat-Fusion [6], will not map reads longer 

than 1024 bases.  

 

Our new method, called JAFFA, is designed for detecting fusion in RNA-seq data 

with contemporary read lengths. Fusions may be identified using reads from 

100bp up to full-length transcripts. Reads shorted than 100bp can be analysed 

effectively by assembling them de novo into contigs of 100bp or longer – a step 

which is performed by JAFFA. Hence, JAFFA is a complete pipeline; it uses de 

novo assembly or raw reads directly to align to a reference transcriptome and 

outputs candidate fusions along with associated information such as the position 

of the break in the genome, a prediction of reading frame, read support metrics 

and whether the fusion is present in the Mitelman database [17]. JAFFA also 

reports the sequence of the fusion read or assembled contig. JAFFA is built using 

the Bpipe platform [18] and takes advantages of features such as modularity of 

the pipeline stages, running numerous samples in parallel, and integration with 

computing clusters. JAFFA is therefore a highly effective tool for large RNA-Seq 
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studies involving multiple datasets and samples. The idea behind JAFFA has 

already been used to successfully identify fusions in lung cancer [19].  

 

We validated JAFFA on a range of data with different read-lengths, including 

50bp, 75bp, 100bp paired-end reads and ultra-long PacBio reads [20, 21]. We 

used RNA-Seq from breast cancer cell lines [22], glioma tumours [23], as well as 

simulation and found JAFFA has a low false discovery rate without 

compromising on sensitivity.  JAFFA may be run in three defined modes: 

assembling short reads (shorter than 60bp), using long reads directly (100bp or 

greater), or a hybrid approach that both assembles and processes unmapped 

reads (between 60bp and 100bp). We performed a detailed comparison to 

established methods and found that JAFFA consistently gave the best 

performance on contemporary data with reads longer than 50bp. On 100bp 

datasets, JAFFA’s computational requirements were comparable to those of 

other fusion finding tools.  

 

 

Results and discussion 

 

The JAFFA method 

 

JAFFA is a multi-step pipeline that takes raw RNA-Seq reads and outputs a set of 

candidate fusion genes along with their cDNA breakpoint sequences. JAFFA runs 

in three modes: (i) “Assembly” mode assembles short reads into transcripts prior 

to fusion detection (ii) “Direct” mode uses RNA-Seq reads directly, rather than 

assembled contigs, by first selecting reads that do not map to known transcripts, 

or (iii) “Hybrid” mode both assembles transcripts and supplements the list of 

assembled contigs with reads that do not map to either the reference 

transcriptome or the assembly. The appropriate mode to use depends on the 

read length (Additional File 1: Supplementary Figure 1). By default, JAFFA 

requires 30 bases of flanking sequence either side of the breakpoint. For reads 

shorter than 60bp, the flanking sequence would be too short to accurately and 

efficiently align using BLAT, so the Assembly mode must be used. For reads 60-
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99bp long, Hybrid mode is used, while for reads 100bp and over there is no 

advantage in performing a de novo assembly so the Direct mode is used. When de 

novo assembly is performed, Oases [24] is used. We found Oases gave superior 

sensitivity compared with other assemblers (Additional File 1: Supplementary 

Material 1, Additional File 2). De novo assembly is well known to producing a 

high fraction of false chimeras [25, 26] and we found an effective method to 

control for these by checking the amount of sequence shared by fusion partner 

genes at the breakpoint (Additional File 1: Supplementary Material 1,  Additional 

File 1: Supplementary figure 2). 

 

JAFFA is based on the idea of comparing a sequenced transcriptome against a 

reference transcriptome. As a default, JAFFA uses transcripts from GENCODE 

[27] as a reference. For all JAFFA modes, reads aligning to intronic or intergenic 

regions are first removed to improve computational performance (step 1 in 

Figure 1, see Materials and methods). Sequences are then converted into a 

common form – tumour sequences – consisting of either assembled contigs or 

the reads themselves. These sequences are processed by a core set of fusion-

finding steps (steps 2-6 in Figure 1). First, sequences are aligned to a reference 

transcriptome and those that align to multiple genes are selected. Second, read 

support is determined. Third, putative candidates are aligned to the genome to 

check the genomic position of breakpoints. Finally, JAFFA calculates 

characteristics of each fusion and uses this to prioritize candidates for validation. 

Each of these pipeline steps is described in detail in Materials and Methods. 

 

Most fusion genes originate from a genomic rearrangement with breakpoints in 

intronic DNA. We found empirically that transcriptional breakpoints aligning to 

exon-exon boundaries were more indicative of a true fusion than the number of 

reads supporting the breakpoint, and have incorporated this into our ranking 

system. Genes with breakpoints aligning to exon-exon boundaries are classified 

as either “High Confidence” or “Medium Confidence”. These two categories are 

distinguished by either the presence (“High Confidence”) or absence (“Medium 

Confidence”) of both spanning reads and spanning pairs. Spanning reads have 

the fusion breakpoint sequenced within the read. Spanning pairs lie on opposite 
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sides of the breakpoint (Step 3 in Figure 1). For single-end data, only “Medium 

Confidence” is reported because spanning pairs are not calculated. Unlike other 

fusion finding algorithms, such as deFuse and TopHat-Fusion, which apply a 

threshold on the number of supporting reads to ensure the false discovery rate is 

controlled, JAFFA can detect fusions with a single read, without compromising 

the false discovery rate. Fusions with spanning pairs, but without transcriptional 

breakpoints aligning to exon boundaries are classified as “Low Confidence”. For 

“LowConfidence” fusions we require two spanning reads so that chimeric 

artifacts produced during library preparation are removed. Fusions without 

spanning pairs or breakpoints aligning to exon boundaries are discarded. Finally, 

JAFFA flags a fourth class of candidates “Potential Regular Transcript”, which 

appear to be novel transcripts between adjacent genes [28]. We identify these by 

a genomic gap between the breakpoints of less than 200kb and no evidence for 

genomic rearrangement. Because these candidates are likely to be caused by 

read-through transcription [29], they are excluded from the default reporting of 

our software. For candidates within a class, we rank by the sum of spanning 

reads and spanning pairs. When read support is equal, we rank on the genomic 

gap size, with smaller gaps ranked higher. We did this because we found 

empirically that true positives were often intrachromosomal and localized 

(Additional file 1: Supplementary figure 3). 

 

Because JAFFA is a pipeline rather than a standalone software tool, many of its 

stages rely on external software. The choice of these programs, the reference 

annotation and genome can be easily customized. In JAFFA, bash and R scripts 

are used to steer each step, and the pipeline is implemented using the Bpipe 

platform [18]. Bpipe handles parallelization, restarting from midway through the 

pipeline and error reporting, and is convenient for analyses involving a large 

number of samples. In Material and Methods, we describe each stage of JAFFA 

version 1.04 in more detail along with the software choices used during 

validation. JAFFA is open source and available for download from 

https://code.google.com/p/jaffa-project/ 

 

Datasets and competing tools used to assess JAFFA 
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JAFFA’s sensitivity and false discovery rate were evaluated on several datasets. 

Firstly, we used simulated data provided by FusionMap [8] to assess JAFFA’s 

power. The FusionMap dataset consisted of 57 thousand 75bp pair-end RNA-Seq 

reads. 50 fusion events were simulated, with a range of coverage levels. 

However, background reads from non-fusion genes were absent. Therefore we 

simulated a second dataset to validate JAFFA’s false discovery rate by generating 

20 million, 100bp paired-end RNA-Seq reads without fusion events – the BEERS 

dataset. The simulation was performed using BEERS [30] with default 

parameters. 

 

Next, we assessed JAFFA’s performance using RNA-Seq of several breast cancer 

cell lines, for which numerous fusions have previously been reported and 

validated. We did this for a range of read lengths: firstly, we ran the Assembly 

mode on 50bp paired-end reads from Edgren et al. [22]. The Edgren datasets 

contained between 14 and 42 million, 50bp paired-end reads of   each of the BT-

474, SK-BR-3, KPL-4 and MCF-7 cell lines. Next we used the ENCODE dataset 

containing 40 million 100bp paired-end reads of the MCF-7 cell line to assess 

JAFFA’s Direct mode [21].  We also assessed the Direct mode on an MCF-7 

transcriptional profiling dataset provided by PacBio [20]. The PacBio dataset 

consisted of 44,531 non-redundant consensus sequences. In the BT-474, SK-BR-

3, KPL-4 and MCF-7 cell lines, used in the Edgren dataset, a total of 99 fusions 

have previously been validated (Additional file 3) [22, 31–34]. We used these 

fusions as our set of true positives. It is worth noting that not all previously 

published fusions are identified in all datasets. This is likely not only because of 

limitations by fusion detection tools, but also because of differences in 

sequencing methodology, depth and because of variation in cell line preparations 

from different laboratories. The concordance between different datasets of the 

MCF-7 cell line is provided in Additional file 1: Supplementary figure 4. 

 

Finally, we ran JAFFA on 100bp paired-end RNA-Seq from a large glioma study 

[23]. From the full dataset of 272 samples, we selected a subset of 13 samples to 
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form our glioma validation dataset. Each of these samples contained 2 or more 

validated inframe fusions, with 31 true positives in total (Additional File 4). 

 

We compared JAFFA to four of the most widely used fusion detection methods; 

TopHat-Fusion [6], SOAPfuse [35], DeFuse [7] and FusionCatcher [36]. This 

choice was based on the results from several studies [6, 9, 10, 22], along with our 

own assessment of a broader selection of tools using the Edgren and FusionMap 

datasets (Summarized in Additional file 1: Supplementary table 1). TopHat-

Fusion and DeFuse are older fusion finding programs, but are used broadly. 

FusionCatcher and SOAPfuse have been released more recently and promise 

superior performance over existing tools. 

 

JAFFA shows good sensitivity and a low false discovery rate on simulated 

data 

 

The performance of JAFFA was first assessed using the 75bp paired-end reads of 

the FusionMap simulation. JAFFA was run using all three modes: Assembly, 

Direct, and Hybrid (Table 1). JAFFA’s Assembly mode reported 39 out of 50 true 

positives (78% sensitivity). For the Direct mode this value was lower, at 34 (68% 

sensitivity). Finally, the Hybrid approach reported more true positives than any 

other tool (44 out of 50, 88% sensitivity), indicating that even with reads as 

short as 75bp, searching for fusions amongst reads in addition to assembly, 

improves sensitivity. For all JAFFA modes, true positives were reported as either 

“High Confidence” or “Medium Confidence”. The majority of missed true 

positives had low read coverage. In contrast to the previous finding of a high 

false positive rate with the FusionMap dataset (Carrara et al. [10, 11],  Additional 

File 1: Supplementary Table 1A), we found that JAFFA, TopHat-Fusion, 

FusionCatcher, SOAPfuse and deFuse all had very high specificity, with only 

SOAPfuse reporting one false positive (Table 1). 

 

Because the FusionMap simulation contained no background reads, we assessed 

JAFFA’s false positive rate further with a simulation containing no fusions, but 

with transcriptional run-through events, the BEERS dataset. On this dataset 
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JAFFA reports no false positives with a rank of “High Confidence” or “Medium 

Confidence” in all modes. However, the Assembly and Hybrid modes did report 

23 “Low Confidence” false positives. These false positives were misassembled 

because of sequence homology along with sequencing errors, SNPs and indels. 

However, because exon-exon alignment was not preserved, they were ranked as 

“Low Confidence”. Across all datasets we tested, JAFFA almost always classified 

true positives as either “High Confidence” or “Medium Confidence”. Therefore, in 

practice, we advise that “Low Confidence” candidates be rejected, unless there is 

other independent information to support them. JAFFA’s Direct mode, which is 

the nominal mode for the BEERS 100bp reads, did not report false positives at 

any classification level. TopHat-Fusion also did not report any false positives on 

the BEERS dataset. SOAPfuse reported 111 candidate fusions and FusionCatcher 

79, however in both cases, the tools flagged these false positives as 

transcriptional run-through events. DeFuse reported 215 false positives, of 

which 156 where classified as run-through transcription.  

 

JAFFA has excellent performance across a range of read lengths on cancer 

RNA sequencing. 

 

Short reads (50bp) 

 

On the Edgren dataset, SOAPfuse reported the highest number of true positives, 

41, with other tools reporting between 27 and 35 (Table 2A). Of the 40 validated 

fusions previously published for the Edgren dataset [22, 34], 37 were 

rediscovered by at least one of the tools tested. In addition, 8 fusions that had 

been validated in other datasets [31–33] of the same cell lines were reported by 

at least one tool. Of the total 48 true positives, JAFFA missed 20, predominantly 

as a result of failing to be assembled (e.g. Additional File 2). 

 

In addition to the true positives, all tools reported a number of additional 

candidates. A subset of these are likely to be novel true positives, and we 

attempted to distinguish these from other reported candidates using either of 

the following criteria: i) candidates reported by three or more tools, after 
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excluding those marked as run-through transcription (Additional File 1: 

Supplementary figure 5) ; or ii) candidates where one of the partner genes is 

implicated in a true positive fusion in the same sample. For example, an 

unconfirmed candidate, SULF2-ZNF217 was identified by JAFFA in the MCF-7 

cell lines. Because MCF-7 harbours validated fusions involving SULF2 (SULF2 

partnered with ARFGEF2, NCOA3 and PRICKLE2), SULF2-ZNF217 was counted 

as a probable true positive (Table 2A). These so called “promiscuous fusion gene 

partners” were also observed to occur within the same sample (the MCF-7 and 

BT-474 cell lines) by Kangaspeska et al. [34]. Kangaspeska et al. noted that some 

promiscuous fusion gene partners were amplified and speculate the mechanism 

for multi-fusion formation may involve breakage-fusions-bridge cycles where 

the breakage repeatedly occurs within the same gene. 

 

The number of other reported positives that were neither true positives, nor 

probable true positives varied substantially between each tool, from 3 

(FusionCatcher) to 218 (TopHat-Fusion). The absolute number of other reported 

positives is often not as informative as assessing the ranking of positives, which 

we did using an ROC style plot (Figure 2A). DeFuse and TopHat-Fusion each 

provided a probability value to rank candidates on. For other tools, we ranked 

using the output information that maximized the area under the ROC curve. For 

both FusionCatcher and SOAPfuse this was the number of spanning reads. 

Probable true positives were excluded from the plot. SOAPfuse, FusionCatcher 

and JAFFA ranked most known fusions high, however SOAPfuse achieved far 

greater sensitivity that all other tools without compromising on false discovery 

rate. 

 

All tools had similar computational performance, with the exception of TopHat-

Fusions taking longer to run (27 hours on a single core of a modern computing 

cluster compared to under 11 hours for all others). Unlike the other tools, 

JAFFA’s RAM utilisation was not constant, but scaled with the input reads due to 

the de novo assembly (Additional File 1: Supplementary figure 6A and 6B). 

 

Long reads (100bp) 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 23, 2015. ; https://doi.org/10.1101/013698doi: bioRxiv preprint 

https://doi.org/10.1101/013698
http://creativecommons.org/licenses/by-nc-nd/4.0/


JAFFA’s Direct mode, which is suitable for reads of 100bp and longer was 

assessed on the ENCODE MCF-7 data (Table 2B, Figure 2B). JAFFA reported the 

highest number of true positives (27) of the fusion detection tools and a large 

number of probable true positives (9), however JAFFA also reported the highest 

number of other positives (111). These were largely classified as “Medium 

Confidence” (92% of candidates) and supported by only a single read (91%). 

32% of the other reported positives were intrachromosomal, and 19% had a 

genomic gap of less than 3Mb. The proportion of local rearrangements were 

consistent with fusions in the Mitelman database [17] (Additional file 1: 

Supplementary figure 3). We note that JAFFA’s predictions are inconsistent with 

the false positives reported for the BEERS simulation. Those false positives were 

reported only for the JAFFA modes involving assembly, were classified as “Low 

Confidence” and had a more random genomic distribution (Additional file 1: 

Supplementary figure 3). Another interesting possibility, is that the unknown 

positives are trans-splicing events, such as those found in normal tissue [37, 38]. 

These are often also localized [39, 40]. Despite the larger number of unknown 

positives, JAFFA out-performed all other tools in its ability to rank true positives 

before other positives (Figure 2B). Again, probable true positives were excluded 

from the ROC curve. Finally, we compared JAFFA’s Direct mode against the 

Hybrid and Assembly modes (Additional File 1: Supplementary Figure 7, 

Supplementary Table 2), which confirm that there is no advantage in performing 

an assembly for longer reads (>100bp). On the contrary, assembly requires 

substantially more computational resources (Additional File 1: Supplementary 

Figure 6C and 6D). 

 

As a validation of the superior performance of JAFFA with 100bp reads, we 

assessed a second dataset consisting of 13 glioma samples with 31 validated 

fusions. JAFFA reported the highest number of true positives (30 out of 31) and 

the highest number of probable true positives (95) (Table 2C). Many of the 

probable true positives can be explained as out-of-frame fusions that were not 

validated by Bao et al., as only inframe fusions were followed-up for validation. 

TopHat-Fusion and DeFuse reported the equal second highest number of true 

positives (29), however, we note that the fusions validated by Bao et al. were 
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first identified as the intersection of candidates reported by these two tools. We 

have attempted to avoid the bias that favours TopHat-Fusion and DeFuse by 

downsampling the dataset to depths of 1,2,5 and 10 million read pairs per 

sample. Across the range of read depths, JAFFA had significantly higher 

sensitivity in all cases (Figure 2C), while consistently ranking those true 

positives highly (Additional File 1: Supplementary Figure 8). For example, we 

found that JAFFA analyzing just 2 million read pairs achieved the same 

sensitivity as all other tools on 10 million read pairs, without compromising the 

false discovery rate (Additional File 1: Supplementary Figure 9). The sensitivity 

of JAFFA comes from its ability to reliably call fusions with very low coverage. 

For example, three of the true positives detected exclusively by JAFFA on the 2 

million pair dataset, had just a single read supporting them. This high sensitivity 

may allow fusions to be identified in samples with low tumour purity or in 

samples in which a particular fusion is only present in a proportion of tumour 

cells. The other positives reported by JAFFA, of which there were approximately 

300 per sample, displayed similar characteristic to those in the ENCODE dataset, 

such as a high number of localized rearrangements (Additional File 1: 

Supplementary Figure 3).  

 

On 100bp reads, all tools were comparable in terms of computational 

performance (Additional File 1: Supplementary Figure 6E and 6F). On the 

ENCODE dataset, containing 20 million read-pairs, the fusion finding programs 

took from 7-20 hours on a single core and 6-13 GB of memory. JAFFA required 

16 hours and 8 GB of RAM. On the gliomas dataset, 13 samples ranging from 15-

35 million read-pairs were run in parallel. The fusion finding tools required 13-

50 hours and 6-13 GB of RAM. JAFFA took 23 hours and 11 GB of RAM. Across 

the Edgren, ENCODE and gliomas datasets, FusionCatcher was consistently the 

fastest and SOAPfuse consistently used the least memory. 

 

 

Ultra-long reads and pre-assembled transcriptomes 

Read lengths are increasing, and technologies such as Ion Torrent, MiSeq and 

PacBio can already produce reads from several hundred bases up to several 
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kilobases. JAFFA is intrinsically designed for the analysis of such data, because it 

is based on the idea of comparing transcriptomes. By contrast, it is unclear how 

well other short read tools work on these data. For example, SOAPfuse, 

FusionCatcher and deFuse require paired-end reads. TopHat-Fusion could not be 

run with its recommended aligner, bowtie, because bowtie only aligns reads 

1024bp and shorter, whereas the PacBio dataset has an average sequence length 

of 1,929 bp. Bowtie2, which aligns longer reads, may also be used with TopHat-

Fusion, but we were not able to run it successful. 

 

To assess the performance of JAFFA on long reads, we ran the Direct mode on 

the PacBio dataset. Compared to PacBio’s own fusion predictions, released with 

the data [20] (software unavailable), JAFFA reported a similar number of true or 

probable true positives (17 compared to 18), but fewer other positives (5 

compared to 64). The 5 unknown positives reported by JAFFA, were also 

predicted by PacBio. One of these was also predicted by JAFFA in the ENCODE 

dataset. These results indicate that JAFFA has excellent specificity on ultra-long 

reads, while still achieving sensitivity similar to tools purpose built for such 

reads. 

 

 

 

Optimal choice of read layout and length 

 

Using the ENCODE dataset, we next addressed the questions of whether paired-

end reads perform better than single-end reads, and whether there is any 

advantage in using 100bp reads over 50bp. This question aims to inform 

experimental design when the sequencing costs of 100bp, 50bp, single-end and 

paired-end are similar for a given number of total bases sequenced. The ENCODE 

dataset has 100bp paired-end reads, and was used to create pseudo single-end 

reads, by selecting one read from each pair, and pseudo 50bp reads, by trimming 

off the final 50 bases of each read. JAFFA’s Assembly mode was run on the 50bp 

reads and the Direct mode was run on the 100bp reads. Each dataset was created 

with 4 billion sequenced bases – i.e. 20 million 100bp pairs, 40 million 100bp 
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single-end reads, 40 million 50bp pairs and 80 million 50bp single-end reads. 

Note that the 20 million 100bp pairs were the same dataset used for the 100bp 

validation presented earlier in this manuscript. 

 

When considering each combination of read layout, length and fusion finding 

algorithm, we found that JAFFA with 100bp paired-end reads produced the 

highest number of true positives, with a total of 27 (Figure 3A). However, defuse, 

SOAPfuse and TopHat-Fusion reported a similar number of true positives on 

50bp paired-end reads with 26, 24 and 24 respectively. To determine if these 

tools were effective at separating the true positives from other preditions, we 

used an ROC-style curve (Figure 3B). For each tool we show the combination of 

read length and layout that maximized the ROC performance. For SOAPfuse, 

deFuse and TopHat-Fusion, this was 50bp paired-end reads and for JAFFA and 

FusionCatcher, 100bp paired-end reads. JAFFA on 100bp paired-end reads not 

only reported the highest number of true positives, but provided the best 

ranking of those true positives (Figure 3B). This trend held across a range of 

sequencing depths (250 million and 1 billion sequenced bases, Additional file 1: 

Supplementary figures 10 and 11).  

 

Taken together with the results from the simulation, Edgren and glioma datasets, 

we recommend that datasets with 50bp paired-end reads be analysed with 

SOAPfuse, whereas reads longer than 50bp or single-end reads should be 

analysed with JAFFA. When considering how to design an experiment to detect 

fusion genes, it appears that optimal performance is obtained with 100bp 

paired-end sequencing followed by analysis using JAFFA. 

 

 

 

Conclusions 

 

We have presented JAFFA, a method for the discovery of fusion genes in cancer 

transcriptomes by comparing them to a reference transcriptome. The cancer 

transcriptome is either a set of contigs created by de novo assembly of short 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 23, 2015. ; https://doi.org/10.1101/013698doi: bioRxiv preprint 

https://doi.org/10.1101/013698
http://creativecommons.org/licenses/by-nc-nd/4.0/


reads or the reads themselves for longer read sequencing. Therefore one major 

advantage of JAFFA over previous methods is that it detects fusions using RNA-

seq reads of any length, with either single or paired-end reads. JAFFA also 

provides a simple and effective method of ranking fusions based on read support 

and exon-exon boundary alignment. This approach means that we avoid 

restrictive filtering that may reduce sensitivity.  

 

A limitation of our approach is that JAFFA is not sensitive to fusion genes 

incorporating intronic or intragenic sequence, because the reference includes 

only exonic sequence. Moreover, JAFFA down ranks fusions when the breakpoint 

occurs within an exon, rather than at the boundary. In this case the fusion is 

ranked as “Low Confidence”. These two classes of fusions are rare [41, 42] and 

we argue that on balance, the overall improvement in sensitivity and ranking 

outweighs the potential for these fusion types to be missed. In addition, because 

JAFFA reports whether a fusion is found in the Mitelman database, fusions 

classified as “Low Confidence” that are recurrent in cancer remain identifiable to 

the user.  

 

The validation of JAFFA on simulation and RNA sequencing of cancer revealed 

that our approach has excellent power with a low false discovery rate. In nearly 

all scenarios we tested, JAFFA outperformed other methods for identifying 

fusions. The only exception was on 50bp paired-end reads, where SOAPfuse had 

the best performance. When we examined the optimal sequencing read layout 

and length for fusion detection, we found that JAFFA was the most sensitive on 

100bp pair-end reads compared with any other scenario or tool.  

 

The pipeline we have presented is customizable, such that component programs, 

for example the assembler or aligner, can be easily swapped to current state-of-

the-art software. Known fusions that were missed by JAFFA on 50bp reads were 

lost during the assembly stage. Transcriptome assembly is a relatively recent 

development and is still maturing. Hence there is potential for JAFFA to produce 

even better fusion detection sensitivity on short reads in the future.  
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Materials and methods 
 

Each stage of the JAFFA pipeline is shown in Figure 1, Additional File 1 : 

Supplementary figure 1, and described below. The pipeline commences by 

unzipping reads using Trimmomatic [43]. By default, JAFFA does not trim reads 

but this option is available. 

 

Preliminary Read Filtering – To aid in computation efficiency, JAFFA begins by 

filtering out any reads that map to intronic, intergenic or mitochondrial 

sequence in the genome. This is achieved through a two-step process. Initially all 

read pairs that map concordantly to the reference transcriptome will be 

retained. Those that do not map, will move to the second step, where they will be 

mapped to a version of the human genome, hg19, with exonic sequence masked 

out. Any read pairs that fail to map concordantly will be retained and merged 

with those from the initial step. Approximately, 70-95% of reads pass this filter. 

 

Assemble Reads – Short reads were de novo assembled using Velvet version 

1.2.10 and Oases version 0.2.08 with k-mer lengths of 19, 23, 27, 31 and 35. We 

required Oases to output contigs with 100 bases or more. Other settings were 

default. 

 

Remove Duplicates BBMap version 33.41 (http://bbmap.sourceforge.net) was used 

to remove duplicate reads and convert the fastq reads to fasta format. 

 

Select reads that do not map to known transcripts – In the case of the Direct 

mode, reads were mapped as single-end to sequences from GENCODE version 

19. We used bowtie2 with the option “-k1 --un” for the alignment. For the Hybrid 

mode, we mapped reads to the GENCODE transcriptome, then took the reads that 

did not map and attempted to map these to the de novo assembled 

transcriptome. The same bowtie2 settings as above were used. 

 

Align contigs/reads to known transcripts – We used BLAT [15] to align  
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transcript sequences. When aligning to the transcriptome, we required 98% 

sequence identity over more than 30 bases, with no intronic gaps, “-

minIdentity=98 -minScore=30 -maxIntron=0”. A tile size of 18 was used to 

improve computational speed, “-tileSize=18”, for the assembly mode, or for reads 

longer than 100bp, otherwise a tile size of 15 was used to improve sensitivity. 

These BLAT options are the default in the JAFFA pipeline. 

 

Select contigs/reads that match multiple genes – We first did a loose selection 

step to identify which tumour sequences aligned to multiple reference 

transcripts. The two (or more) reference transcripts were required to be 

separated by 1kb in the genome by default. Following this we calculated the 

number of bases that the reference transcripts had in common at the breakpoint. 

If two genes contained the same sequence over a length that was more than the 

minimum assembly k-mer length (19 bases), a false chimera may be reported.  

We controlled for this by only selecting fusion candidates with 13 bases or less of 

sequence in common between the reference genes (Additional File 1: 

Supplementary figure 2). This step was implemented as an R script. 

 

Counting reads and pairs spanning breakpoints – We counted the number of 

spanning reads and spanning pairs across the breakpoint. Spanning reads were 

defined as reads that lay across the breakpoint. Spanning pairs were defined as 

pairs in which the reads of each pair, lay in their entirety, on opposite sides of 

the breakpoint. This calculation was performed differently depending on 

whether the reads were assembled or not. For assembled reads, the reads were 

mapped back to the candidate de novo transcript sequences using bowtie2 with 

the alignment flags of “-k1 --no-unal --no-mixed --no-discordant”. Spanning reads 

were required to have 15 base pairs of flanking sequence either side of the 

break. For the direct mode, spanning pairs were calculated by mapping reads to 

the reference transcriptome and searching for discordantly aligned pairs, 

consistent with the predicted fusion. Each fusion candidate in Direct mode was 

initially assigned one spanning read (i.e. since the sequence for which the 

candidate was identified was itself a read). Therefore in this mode, the minimum 

flanking sequence was 30bp, the minimum to identify a fusion. When multiple 
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reads or contigs predicted the same breakpoint the read support was 

aggregated. 

 

Aligning candidate contigs/reads to the genome – We aligned the candidate 

fusion sequences to the human reference genome (hg19) using BLAT with 

default options. 

 

Check genomic gap, frame and classify candidates - The genomic coordinates 

of each breakpoint were found and the genomic gap size calculated. In some 

cases, the gap was very small (less than 10kb) indicating that the candidate was 

likely to be a false positive, generally due to families of genes with similar 

sequence or repeated sequence in the genome. These candidates were discarded. 

Candidates between adjacent genes can also be reported due to run-through 

transcription or unannotated splicing. We tried to distinguish these scenarios 

from genuine fusions with small gaps, by looking for evidence of a genomic 

rearrangement or inversion, based on the direction of the de novo transcript with 

respect to the genome. If no such evidence was found and the gap was less than 

200kb the fusion was flagged as a “PotentialRegularTranscript” (not reported by 

default). Next we determined whether the breakpoints lay on known exon-exon 

boundaries, as would be expected if the fusion occurred within intronic DNA and 

the exon structure was preserved. If it did, we checked whether the fusions were 

in-frame, using the most common frame of the gene’s isoforms. Finally, we 

grouped candidates that predicted the same genomic breakpoint, aggregated 

read counts and selected the sequence with the most spanning reads as a 

representative. For each candidate that was identified by JAFFA we use the 

spanning reads, spanning pairs, whether the transcriptional breakpoint aligned 

with exon boundaries and genomic gap to classify then rank the candidates, as 

described in Results. 

 

Combine multi-sample results – The pipeline described above was executed in 

parallel for each sample in a dataset. As a final step, we merged the results from 

all samples, outputting a table of results and candidate fusion sequences. 
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Reference data – The reference transcriptome sequences (GENCODE version 

19), exon structure information and human genome version hg19 were 

downloaded from UCSC. The reference transcriptomic data is provided with the 

JAFFA package. 

 

Dataset Availability 

The Edgren and ENCODE dataset can be found on SRA under accession numbers 

SRP003186 and SRR534293 respectively. The PacBio data can be found at 

http://blog.pacificbiosciences.com/2013/12/data-release-human-mcf-7-

transcriptome.html. The FusionMap simulation is available with the FusionMap 

software at http://www.arrayserver.com/wiki/index.php?title=FusionMap. The 

BEERS simulation is available from the authors by request. The gliomas dataset 

was created from SRP027383. The 13 SRA samples are listed in Additional File 4. 

Downsampling was non-random, with the first n reads being taken from the 

fastq file using “head”. An example is provided in Additional File 5. 

 

Fusion Finder Comparison 

TopHat-Fusion 2.0.13 was run with the parameters similar to those specified on 

its example website for analyzing the Edgren dataset. Specifically, using the 

tophat options “--fusion-search --keep-fasta-order --bowtie1 --no-coverage-

search --max-intron-length 100000 --fusion-min-dist 100000 --fusion-anchor-

length 13 --fusion-ignore-chromosomes chrM,chrUn_gl000220” and the tophat-

fusion-post options “--num-fusion-reads 1 --num-fusion-pairs 2 --num-fusion-

both 5”. For single-end reads we set “--num-fusion-pairs 0”. The insert size (-r) 

and standard deviation (--mate-std-dev) were modified to match each dataset. 

For the Edgren dataset we used the values advised on the TopHat-Fusion 

website. For the FusionMap, BEERS, ENCODE and gliomas datasets we used an 

insert size of  8, 100, 50 and 0 respectively and a standard deviation of 20, 100, 

50 and 100 respectively. When the ENCODE reads were trimmed to 50bp, we 

increased the insert size to 150. JAFFA 1.04, DeFuse 0.6.2, SOAPfuse 1.26 and 

FusionCatcher 0.99.3d were all run with default settings. For deFuse, we used 

the results file that had been thresholded on probability. For all tools, samples 

within a dataset (e.g. Edgren) were run individually and not pooled. A shell script 
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to reproduce the results from JAFFA is provided as Additional File 5. For the 

analysis of sensitivity and specificity, we only counted fusion gene pairs with 

multiple breakpoints once. True positives were identified by their gene name. 

Any order of gene names was accepted. Different gene aliases were also 

considered. 
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Description of additional files 

The following additional data are available with the online version of this paper.  

 

File name: Additional file 1 

File format:  DOCX 

Title of data: Supplementary Figures and Tables 

Description of data: Additional file 1 includes eleven supporting figures and two 

supporting tables. A description of each is given within the file. 

 

File name: Additional file 2 

File format:  CSV 

Title of data: Performance of four transcriptome assemblers on the Edgren 

dataset 

Description of data: A table of which true positive breakpoint sequences were 

assembled by Trinity, Oases, TransABySS and SOAPdenovo-Trans on the Edgren 

dataset. Oases assembled the highest number of true positive breakpoints with 

31. 

 

File name: Additional file 3 
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File format:  XLSX 

Title of data: Fusion genes in the BT-474, SK-BR-3, KPL-4 and MCF-7 cell lines 

Description of data: A list of the true positive fusion genes used in the validation 

of JAFFA on the Edgren and ENCODE dataset, along with a list of the probable 

true positives, and the fusion calls from JAFFA. 

 

File name: Additional file 4 

File format:  XLSX 

Title of data: Fusion genes in the glioma dataset. 

Description of data: A list of the true positive fusion genes, probable true 

positives and results from JAFFA for the gliomas dataset. 

 

File name: Additional file 5 

File format: sh 

Title of data: JAFFA commands 

Description of data: This script provides commands to reproduce the results 

from JAFFA shown in the manuscript. 
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Tables 
 

Table 1. A comparison of fusion detection performance on simulated RNA-

Seq. We ran all three modes of JAFFA in addition to SOAPfuse, TopHat-Fusion, 

deFuse and FusionCatcher on a simulation set of 57 thousand 75bp RNA-Seq 

read pairs provided with FusionMap. JAFFA had the highest sensitivity when run 

in Hybrid mode, identifying 44 out of 50 possible fusion events. For all JAFFA 

modes, no false positives were reported. In parenthesis we show the value at 

each of JAFFA’s classifications levels: ( high / medium / low) confidence. 

 

 True Positives Sensitivity  False Positives 

JAFFA - Hybrid 44  (32/12/0) 88% 0 

JAFFA - Assembly 39  (28/11/0) 78% 0 

SOAPfuse 37 74% 1 

JAFFA - Direct 34 (32/2/0) 68% 0 

deFuse 34 68%  0 

TopHat-Fusion 27  54% 0 

FusionCatcher Unable to run on a low number of reads 

 

 

Table 2. A comparison of fusion detection performance on cancer RNA-Seq.  

(A) The Edgren dataset, consisting of between 7 and 21 million 50bp read pairs 

of the BT-474, SK-BR-3, KPL-4 and MCF-7 cell lines. Using a list of 99 validated 

fusions in these cell lines, we compared the predictions of JAFFA to TopHat-

Fusion, SOAPfuse, deFuse and FusionCatcher. In total, 48 true positives have 

been reported for this dataset. Predictions not in the list of validated fusions, but 

involving one of the partner genes in the list of validated fusions, or fusions that 

were predicted by three or more tools are designated as probable true positives. 

(B) We compare JAFFA against alternative tools on the ENCODE dataset which 

consists of 20 million read pairs of MCF-7. Combing the results of all tools, 30 

true positives were observed. JAFFA reports more true positives than the other 

methods. (C) JAFFA’s high sensitivity is also seen on 100bp paired-end dataset 

from 13 glioma samples for which 31 true positives are known. The samples 

range from 15 to 35 million read pairs. 

 

 

 

A) Edgren breast cancer cell line dataset 

 True Positives Probable True 

Positives 

Other Positives 

SOAPfuse 41 1 18 

TophatFusion 35 8 218 

deFuse 29 4 43 

JAFFA - Assembly 28 (24/3/1) 1 (0/0/1) 13 (2/3/8) 

FusionCatcher 27 1 3 
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B)  ENCODE breast cancer cell line dataset 

 True Positives Probable True 

Positives 

Other Positives 

JAFFA – Direct 27 (19/8/0) 9 (3/6/0) 111 (6/101/4) 

SOAPfuse 22 2 46 

deFuse 16 14 90 

FusionCatcher 16 2 14 

TopHat-Fusion 12 4 28 

 

 
C) Gliomas dataset 

 True Positives  Probable True 

Positives 

Other Positives  

JAFFA – Direct 30 (30/0/0) 96 (47/44/5) 3888 

(149/3208/530) 

deFuse 29  53 616 

TopHat-Fusion 29 25 252 

FusionCatcher 28  42 146 

SOAPfuse 22 41 236 
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Figure Legends 
 

Figure 1. The JAFFA Assembly pipeline.  An example of the JAFFA pipeline is 

demonstrated in detail using the RPS6KB1-VMP1 fusion from the MCF-7 breast 

cancer cell line dataset. (Step 1.) RNA-Seq reads are first filtered to remove 

intronic and intergenic reads. 50bp reads would then be assembled into contigs 

using Oases. For longer reads, this step is not necessary. (Step 2.) The resulting 

tumour sequences are then aligned to the reference transcriptome and those 

that align to multiple genes are selected. These contigs make up a set of initial 

candidate fusions. Next, (Step 3.) the pipeline counts the number of reads and 

read pairs that span the breakpoint. (Step 4.) Candidates are then aligned to the 

human genome. Genomic coordinates of the breakpoints are determined and 

(Step 5.) further selection and candidate classification is carried out using 

quantities such as genomic gap size, supporting reads and alignment of 

breakpoints to exon-exon boundaries. (Step 6.) A final list of candidates is 

reported along with their sequence.  

 

 

Figure 2. Performance of JAFFA and four other tools on cancer RNA-Seq. (A) 

An ROC-style curve for the ranking of candidate fusions in the Edgren dataset. 

The Edgren dataset consists of between 7 and 21 million 50bp read pairs of the 

BT-474, SK-BR-3, KPL-4 and MCF-7 cell lines. The number of true positives are 

plotted against the number of other reported positives from a ranked list of 

fusion candidates. Probable true positives (see text for detail) are removed. 

Higher curves indicate a better ranking of the true positives. For each fusion 

detection tool, we ranked the candidates using the tools own scoring system, or 

if absent, the supporting data that maximized the area under the curve. SOAPfuse 

ranked true positives higher than other tools, followed by FusionCatcher and 

JAFFA. (B) On long read data - the ENCODE dataset consisting of 20 million 

100bp read pairs of the MCF-7 cell line - JAFFA ranks true positives higher than 

any other tool. (C) JAFFA’s sensitivity is confirmed on a second long read dataset 

– 13 glioma samples with read depths varying from 15-35 million 100bp read-

pairs. JAFFA identifies 30 of the 31 true positives (total true positives are 

indicated by the dashed line). Downsampling the data to mimic smaller read 

depths indicates that JAFFA has similar sensitivity with 2 million read pairs per 

samples as other tools on 10 million read pairs per sample. 

 

 

Figure 3. Performance of JAFFA and four other tools for different read 

lengths and layouts. We compared the performance of JAFFA, FusionCatcher, 

SOAPfuse, deFuse and TopHat-Fusion on the ENCODE dataset of the MCF-7 cell 

line, trimmed to emulate four different read configurations: single-end 50bp (80 

million reads), paired-end 50bp (40 million read pairs), single-end 100bp (40 

million reads) and paired-end 100bp (20 million read pairs). In each case, the 

total number of bases sequence was 4 billion. Only JAFFA and TopHat-Fusion 

could process single-end data. (A) Most true positives were reported with JAFFA 

on 100bp paired-end reads followed by deFuse on 50bp paired-end reads. (B) 

For each tool we compared the ranking of fusions, by selecting the read length 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 23, 2015. ; https://doi.org/10.1101/013698doi: bioRxiv preprint 

https://doi.org/10.1101/013698
http://creativecommons.org/licenses/by-nc-nd/4.0/


and layout that maximised ROC performance. JAFFA on 100bp reads ranked true 

positives higher than any other combination. 
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