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ABSTRACT

High-throughput  experiments  such  as  microarrays  and  deep  sequencing  provide  large  scale
information on the pattern of gene expression, which undergoes extensive remodeling as the cell
dynamically  responds  to  varying  environmental  cues  or  has  its  function  disrupted  under
pathological conditions. An important initial step in the systematic analysis and interpretation of
genome-scale  expression  alteration  involves  identification  of  a  set  of  perturbed  transcriptional
regulators  whose  differential  activity  can  provide  a  proximate  hypothesis  to  account  for  these
transcriptomic changes. In the present work, we propose an unbiased and logically natural approach
to  transcription  factor  enrichment.  It  involves  overlaying  a  list  of  experimentally  determined
differentially  expressed  genes  on  a  background  regulatory network  coming from e.g.  literature
curation  or  computational  motif  scanning,  and  identifying  that  subset of  regulators  whose
aggregated target  set best  discriminates between the altered and the unaffected genes.  In other
words, our methodology entails testing of all possible regulatory subnetworks, rather than just the
target sets of individual regulators as is followed in most standard approaches. We have proposed an
iterative  search  method to  efficiently  find  such  a  combination,  and benchmarked it  on  E.  coli
microarray  and  regulatory  network  data  available  in  the  public  domain.  Comparative  analysis
carried out on simulated differential expression profiles, as well as empirical factor overexpression
data for M. tuberculosis, shows that our methodology provides marked improvement in accuracy of
regulatory inference relative to the standard method that involves evaluating factor enrichment in an
individual manner.
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BACKGROUND 

The availability of high-throughput technologies in recent years has made it possible to track
the dynamics of a cell’s functional organization on the whole genome level [1,2]. The profile of
genome-wide  expression  together  with  knowledge  of  the  heterogeneous  network  of  intricate
molecular  interactions  determines  the  cellular  phenotype,  and holds  the  potential  for  providing
insights  into how a cell  adaptively responds to  environmental  cues  [2-5].  Functional  genomics
experiments such as those based on microarrays  or RNA deep sequencing are a rich source of
information  about  the  cellular  milieu,  and  provide  a  starting  point  for  generating  causative
hypotheses about biological mechanisms [6-9]. A question that routinely needs to be addressed in
large scale expression studies is the identification of key regulatory pathways underpinning co-
expressed, or differentially expressed genes. Transcription rates are controlled in part by a complex
network of regulatory interactions involving DNA-binding transcription factors (TFs) and cis/trans
acting regulatory sequences distributed throughout the genome [10-13]. Changes in the functional
activity or expression of one or more of these proximally acting regulatory proteins – possibly
representing  consequences  of  signaling  events  initiated  farther  upstream  –  can  directly  cause
reshaping of the transcriptome. The inference of this set of ‘perturbed’ regulators is an initial and
important  step towards arriving at  a  broader  mechanistic  interpretation of  altered genome-scale
expression.

De novo approaches seeking to discover shared factor-binding DNA sequence motifs within
the promoter regions of altered genes provide a rational starting point [14,15]. Such regulatory
information for the genomes of many species continues to accumulate at a rapid rate from ChIP-seq
experiments  as  well  as  low-throughput  studies  [16-23].  Databases  providing  experimentally
determined/predicted transcription factor binding sites, TF motif profiles, and even meta-network
information curated from literature  evidence [24-31]  are  routinely available  now, and could  be
usefully  exploited  by  experimentalists  interested  in  understanding  differential  TF  activation  in
specific contexts. Towards this end, many bioinformatics tools have come up in recent times that
facilitate such regulatory analysis. These methods [32-43] share the common denominator that an
input list of genes specified by the user, e.g. coming from a microarray study, is overlaid on a pre-
specified background regulatory map, which may have been put together by combining information
from diverse sources. In order to deal with the noisy nature of the data, some appropriate statistical
test is applied to each TF in the back-end network to determine a statistically significant association,
or over-abundance, between the targets of the TF and the input gene list,  relative to the overall
genomic background. Depending on the over-representation p-values computed, a prioritized list of
candidate regulatory factors likely to be most relevant for interpretation of the user’s data is thereby
generated. 

A few examples of such applications are noted here. ChIP Enrichment Analysis (ChEA) is
one such popular tool that leverages a curated database of ChIP-seq profiles from mouse and human
experiments to compute over-represented target sets via Fisher’s exact test of significance [32,33].
Two related applications, Kinase Enrichment Analysis (KEA) and Expression2Kinases (X2K), are
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methodologically  similar  but  go  a  step  further  and,  by additionally  exploiting  curated  data  on
kinase-substrate relationships, suggest signaling pathways highlighted by input lists of altered genes
[34,35]. ENCODE ChIP-Seq Significance Tool is a web-based interface which allows users to mine
a back-end comprised of mouse and human TF binding site data generated as part of the ENCODE
series  of  experiments  [36].  Hypergeometric  test  is  applied  to  score  individual  transcriptional
regulators for significant association with the input list of genes. This test is similarly the basis for
TF enrichment analysis implemented within the RENATO [37] and WebGestalt [38] tools. Other
utilities  such  as  Whole-Genome  rVISTA [39,40],  Promoter  Integration  in  Microarray  Analysis
(PRIMA) [41], Cis-eLement OVERrepresentation (Clover) [42] and Relative OVER-abundance of
cis-elements (ROVER) [43] work instead with the binding site motifs of known TFs, represented as
position weight matrices (PWMs), information about which can be found compiled in resources
such as TRANSFAC, JASPAR, HOCOMOCO, UniPROBE etc. [27-31]. Despite differing in the
actual criterion applied for assigning target genes to every regulator, which is based on scanning of
promoter sequences for high-scoring motif matches, they all nonetheless follow the common theme
that over-abundance scores relative to the genomic background (i.e. p-values) are calculated for
each  regulatory  motif  separately against  the  entire list  of  input  genes.  Moreover,  the  null
background implicitly assumed in all the above approaches is essentially one of no association,
corresponding to a random distribution of altered genes over the genome.

 When  evaluating  individual  TFs  for  association  with  a  large  gene  set  detected  as
differentially  expressed  in  a  transcriptomic  experiment  above  some  user-defined  threshold  for
significance [44-46], it is worth noting that the above methods are likely to work well when one or
only a very small number of TFs have been differentially activated. On the other hand, if a gene list
represents the collective consequence of perturbing multiple regulators, then it is conceivable that
individual TFs may well fail to show up as statistically significant on application of one of the tests
previously mentioned. The hypothetical situation in Figure 1 serves to illustrate this point. It is not
hard to imagine a case where the target set of factor A, or B or C by itself may not show statistical
association with the full input gene set I. The effect of other regulators acting concomitantly raises
the possibility that  any one TF may fall  short  of  achieving separation between the altered and
unaltered genes,  when assessed in terms of the corresponding p-value of enrichment.  Thus,  the
deductions  about  relevance of individual transcription factors for alterations in gene expression
might be inaccurate.

          From Figure 1 it also follows that aggregating the targets of A, B and C together would yield
a more significant association of this union with the differentially expressed gene set. This suggests
an  alternative  approach  to  delineating  a  set  of  immediately upstream transcriptional  regulators
causally underlying an altered expression profile. In the present work we propose a perspective
which entails the testing of all possible subsets of TFs, i.e. the unions of their target genes, instead
of just the target sets of individual TFs. In our opinion, this reformulation would appear to be a
more natural and powerful approach to ascribing differential gene regulation to a set of perturbed
transcription factors. A hypothesis for differential expression is therefore proposed by identifying
the  TF  combination that  collectively best  separates  the  differentially  regulated  genes  from the
unaltered genes derived from any high-throughput expression profiling experiment. 
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RESULTS

The default approach can lead to inaccurate inferences in an 'idealized' setting:

A microarray expression profile can be regarded as representing a combination of signal (S),
the  'true'  pattern  of  differential  transcription  resulting  from altered  TF  activity,  and  noise  (N)
introduced by various sources which result in the occurrence of false positives/negatives. We begin
our analysis by considering TF enrichment in the N  → 0 deterministic limit, where all the gene
targets of a randomly chosen group of TFs are labeled as differentially expressed. This noiseless
limit can be expected to provide an upper bound on the efficacy of any statistical enrichment test for
regulatory inferences. We first assess the  default, or standard, method of testing which involves
estimating over-abundance p-values for individual TFs. What needs to be evaluated is how the p-
value of every TF varies with the number of regulators present in the input set, and the possible
effects  of target  set  size and TF-TF overlap/co-targeting of  common genes  on the ascribing of
statistical significance. 

Figures 2 and 3 summarize the results for 104 runs with simulated expression data on the E.
coli RegulonDB network [26]. The efficacy of the default method has been gauged in terms of the
frequency distribution of TF occurrences in the enriched set. This is compared with the underlying
'input'  TF  distribution,  which  to  the  first  approximation  is  uniform.  Figure  2  displays  the
comparison for a p-value significance threshold of 0.05, with TFs being ordered according to their
out-degrees  along  the  horizontal  axis.  Two  features  that  Figure  2(B)  illustrates  are  the  over-
representation of the higher degree regulators in the output set on the one hand, and a dip in the
frequencies of occurrence of the TFs with small target sets on the other. This can be seen by a direct
comparison of the input (blue) and enriched (red) distributions. Similar trend is also seen for other
choices of the p-value threshold, in the range 0.01-1e-6. These features suggest that when multiple
TFs  are  simultaneously  perturbed,  regulators  with  smaller  target  set  sizes  might  fail  to  show
statistically significant enrichment for the combined differentially transcribed gene set. Further, TFs
which are themselves not differentially activated,  but co-target genes with other regulators,  can
show a spurious association when evaluated by the hypergeometric/Fisher's exact test. 

Figure 3 presents the above trend from a slightly different angle. The percentage of runs in
which  any given  regulator  is  included  in  the  input  set,  but  does  not show a  significant  over-
abundance, is plotted against the ordered sequence of TFs ranked by increasing out-degree. This
representation  is  consistent  with  the  dip  at  the  left  end seen  in  Figure  2B,  and brings  out  the
possibility  that,  when  evaluated  one  at  a  time  against  the  combined  set  of  all differentially
expressed genes, TFs with smaller target sets might be missed out by the test for significance when
regulatory activity of multiple factors is altered in concert. Thus, an artefactual under-representation
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of TFs can be observed. 

 

Benchmarking reveals the best among three iterative search methods:

We  now  explore  testing  combinations  of  TFs  for  association  against  the  differentially
expressed genes, instead of treating each TF separately, such that the combination which is found
most consistent (in terms of minimum collective p-value for association) provides an alternative
hypothesis for the altered regulatory activity. However,  the infeasibility of exhaustively searching
the space of possible combinations presents a practical stumbling block. For example, in typical
bacterial networks, there are around O(100) transcription factors [26,69,70]. With the numbers of
differentially  expressed  genes  that  usually  occur  in  genome-wide  datasets,  the  number  of
overlapping TFs would be of the same order of magnitude, requiring the computation of O(2100) or ~
O(1030) enrichment p-values. Even if we restrict the biologically sensible combinations to involve
not more than 20-30 TFs, this would still leave about 100!/(30!*70!) possibilities to be tested, and
even this number would be beyond the limitations of computational tractability. With eukaryotic
gene regulatory networks and especially those for higher organisms like mouse or human, a factor
of 10 increase over prokaryotes in the number of regulators to O(500-1000) is expected, based on
standard regulatory meta-network datasets used in the literature [19-25]. This would translate into
an even larger number of candidate combinations that would need to be swept over in order to
identify the best-fit hypothesis. We therefore seek a solution that is sufficiently close to the global
minimum, through a computationally efficient heuristic approach. 

As the nonlinearity of the objective function sought to be minimized precludes the adoption
of exact linear programming methods, we have tested three iterative search methods to efficiently
arrive at such an approximate solution, which are described in the Materials and Methods section.
Method A (Figure 4) is linear in the dimensionality of the search space, i.e. in the number of TFs
tested, and the solution is built up by sequentially adding TFs in increasing order of their individual
p-values. In the case of the Method B (Figure 5), it is easy to see that O(N) p-values have to be
estimated in every iteration, because the differentially expressed gene set shrinks at every step as
the genes already covered by the TFs selected up to that point are systematically eliminated from
consideration. The origin of a quadratic execution timescale follows from this. The O(N2) scaling of
Method C (Figure 6) also derives from the fact that the p-values corresponding to the TFs not
already included in the growing solution have to be recomputed at every update.  

We note that, even though the two O(N2) approximations proposed here can be expected to
yield  better  results  than  the preceding linear-time greedy search,  they still  represent  only local
sampling  of  the  search  space,  and so,  like  Method A,  cannot  ensure  that  the  minimum found
represents the true exact solution.

Figure 7 displays the results for the combinations obtained by running each of the three
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heuristics,  Methods  A-C,  on  the  7  GEO datasets  [52-55].  This  selection  is  not  intended  to  be
exhaustive in any way, but is representative of the microarray data available in the public domain,
and serves to illustrate the salient features of our approach as well as some statistical properties of
the search space. It is seen clearly that across all the 7 conditions analyzed, Method C outperforms
the other two heuristics, yielding solutions with lower enrichment p-values. It is also observed that,
consistent with our expectations, the O(N) Method A is found to be least effective of the three
methods.

A three-way comparison was also carried out on the larger M3D E. coli expression dataset
[57].  Based on the set  of perturbed genes identified in each condition,  the associated upstream
transcription factors were then inferred by applying the three approximations in turn. The results of
this  analysis  are summarized in Table 1.  We assessed the performance of Method C separately
against Methods A and B. In line with the outcomes in Figure 7, we find that Method C displays
improved performance overall. For instance, in over 98% of the experiments, Method C yields a
significance p-value that is at least as low as the outcome of Method B. Similarly, in no experiment
does Method A improve on the p-value yielded by the application of Method C. It may also be
noted that these results are reproduced across three different choices for the Z-score threshold (2,
2.5 and 3).   

Out of the 466 experiments in total, with a Z-score cutoff of 2.0, we found 68 conditions in
which the differentially transcribed gene set sizes were small enough such that only ≤ 14 TFs were
found to overlap with these genes. In these instances, it was possible to identify the exact solution
by enumeration over all possible combinations, allowing for a direct comparison with the results of
the greedy methods. Across these 68 cases, we have estimated the number of conditions in which
each of the three methods yields a p-value equal to that of the globally top-scoring combination. In
addition,  the quality of  the obtained approximate solution  has  been assessed by its  rank in  an
ordered list of TF subsets representing the full search space. Figure 8 summarizes the results of this
exercise, supporting our earlier conclusion about the better performance of the O(N2) Method C,
which not only yields the true best p-value more often but is also able to get closer to the global
minimum, as assessed by the average rank of the obtained solutions. Similar results were obtained
with the more stringent Z-score threshold of 3.0 as well, displayed in Figure 9.

Search space can be rugged with multiple local solutions:

The greedy heuristics considered above represent incremental approaches in which only the
local neighborhood – comprising the current solution and its neighboring combinations differing at
most by a single TF – gets sampled at every update. When multiple local minima coexist [58,62],
local search might only yield a sub-optimal solution. In such a complex search space, stochastic
approaches like simulated annealing (SA) or genetic algorithms with a larger radius of convergence
might be preferable [61,62]. However, even these latter approaches do not guarantee convergence to
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the global extremum in a single run, and it is a known fact that SA requires fine tuning of the
operational parameters for optimal performance, which is problem-dependent [63]. It is therefore of
relevance  to  understand,  to  what  extent  an  iterative  search  can  achieve  a  favourable  balance
between speed (local methods are typically faster) and quality of the obtained solution (which is
generally better in a suitable optimized SA procedure).

Greedy searches like the ones investigated here may not provide any benefit over simple
steepest gradient method in a solution space which is smooth containing one or only a few local
minima. In order to address this possibility, we have attempted to estimate how rugged the solution
space is [58-60]. Towards this end, we implemented gradient descent search starting from different
randomly drawn initial configurations (TF subsets), tracking the number of local minima attained as
a function of the number of runs (starting configurations sampled). Figures 10-16 depict the results
of this analysis for the 7 microarray datasets on which we ran the iterative procedure earlier. Over
2000 runs, the search is found to converge to multiple local minima, suggesting that the landscapes,
at least for these specific examples, are moderately rugged. In such a rugged search space, not only
does steepest gradient search have to be run repeatedly with random restarts to sample the multiple
local  minima,  but  even  a  large  number  of  runs  cannot  guarantee  that  all  the  minima,  and  in
particular the global minimum, would be covered. The gradient descent method as implemented
here is therefore slow and in general inefficient.

The  above  summary  statistics  suggesting  rugged  solution  spaces  was  further  used  for
assessing  the  performance  of  the  approximate  Method  C  discussed  earlier.  Although  the  time
complexity  of  both  Method  C  and  gradient  descent  is  the  same  and  O(N2),  Method  C  is
deterministic  in  the  sense  that  the  initial  combination  is  not  selected  arbitrarily,  so  a  direct
comparison between the two for a single run of gradient descent search would depend on the choice
of initial condition for the latter. A more sensible comparison would be to ask, in what proportion of
runs of steepest descent (with random sampling of the starting combination) the converged solution
represents an improvement over the result of Method C. The results of this comparison are tabulated
in columns 3 and 4 in Table 2. We have compared the p-value following from application of Method
C with the sorted list  of p-values (in increasing order) yielded by gradient search with random
restarts. Column 4 indicates that in 4 out of the 7 conditions, Method C attains the top-ranked p-
value identified by gradient search method. Even in the case of the heat shock dataset where the
rank is somewhat lower (62/814), the solution yielded by Method C still appears within the top 10%
of the ordered list.

Considering  the  moderate  ruggedness  of  the  search  space  besides  the  broad  range  of
differences in the objective function values among the various local minima, we also implemented a
simple version of simulated annealing [61-65], which involved carrying out multiple independent
runs of an exponential annealing schedule with different settings for the rate parameter r. Figure 17
illustrates the evolution of the p-value over one run of SA applied to the pH 5.0 dataset, and the
solution obtained by Method C is additionally shown for comparison. In columns 5-7 of Table 2, the
minimum p-values yielded by the SA procedure have been tabulated against  the corresponding
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results  from  Method  C  and  gradient  descent  method.  SA provides  an  independent  objective
benchmark against which to gauge the outputs of the heuristic methods. Making the reasonable
assumption that the solution following from SA represents the true global minimum, our analysis
summarized by columns 5-7 shows that the approximate method C converges to the top-ranked
solution in 4 of the 7 examples, and gets close – up to second best – in all but one of them (the heat
shock profile). A similar comparison was also made on the M3D dataset [57]. The Z-score profiles
were sorted according to the number of TFs targeting the significantly altered gene set, and the two
methods  were  then  applied  to  the  subset  of  top  20  profiles,  for  which  the  search  space
dimensionality (number of overlapping TFs) ranged between 110 and 140 TFs. In 11 (55%) cases,
the iterative Method C yields p-values which matched those obtained by the SA implementation.
We would like to point out that these comparisons need to be assessed additionally keeping in mind
the relative differences in execution speed as well, because for practical implementation achieving a
trade-off becomes important. Both the gradient search with restarts and our implementation of SA
require multiple runs with different starting states and/or settings, and each run involves O(N2) p-
value computations, equivalent to the execution time of Method C. The number of runs of gradient
search required to adequately sample the search space is expected to grow with its dimensionality
(N), and thus become even more of a practical drawback in the larger eukaryotic TF networks. The
examples we have considered here, although not exhaustive, make a case for Method C which is
able to arrive at a good solution efficiently. Taken together, the results summarized by Figures 9 and
10  and  Table  2  provide  support  for  the  efficacy  of  Method  C  in  determining  the  maximally
discriminative  combination  of  TFs  from a  binarized  profile  of  gene  expression  changes.  This
method should be particularly useful when data from elaborate expression studies involving large
numbers  of  conditions/time  points  need  to  be  analyzed,  where  stochastic  search  would  be
considerably slower.

The proposed approach leads to less biased,  more accurate  inferences of  differentially
acting TFs:

We  now  return  to  the  idealized  setting  described  earlier  in  Results,  with  random
combinations of TFs being selected for perturbation and used as a basis for assigning genes to
altered/unaffected  sets  in  a  deterministic  manner.  We found that  when statistical  enrichment  is
assessed for single TFs against the full set of differentially expressed genes, the sub-dominant TFs
with smaller target sets get under-represented in the recovered set (based on adjusted p-values  ≤
some threshold), while the global regulators tend to occur more often than they are actually selected
for inclusion in the input set (Figures 2 and 3). We would like to compare this outcome with the
results  of  the  Method  C  which  provides  an  approximation  for  the  TF  combination  with  least
collective p-value. Figure 18 displays the result for the distribution of TF occurrence frequencies
across 104 random trials. This plot is the same as in Figure 2, except that now the results for Method
C have  been  additionally  superimposed (in  blue).  Our  alternative  approach  reduces  the  under-
representation at the low degree end, and at the same time also alleviates the over-occurrence of the
high degree TFs. This improvement is quantified in terms of the root mean-squared error (RMSE),
which shows a > 2.5-fold decrease (0.0368 for Method C against 0.0954 for the default method).
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Overall,  the degree-dependent bias suggested by the red curve (the standard approach of testing
single TFs) is to a fair extent suppressed in our method. 

We find that the strategy of identifying the top-ranked combination of TFs also leads to
improved accuracy in the recovery of TFs, i.e. it recapitulates the input set of TFs better. This is
seen from Figure 19, which displays a two-dimensional scatter plot of the accuracy value pairs
(default v/s Method C) for every single trial, at p < 0.05 threshold for the default method. Points
lying above the 45 degree diagonal represent trials in which Method C recovers a better solution set
than the default approach, and vice versa. For the RegulonDB graph [26], in 94.7% of the trials
Method C achieves improved performance compared with the default methodology (as opposed to
only 2.6% going in the opposite direction), and yields significantly higher accuracy values overall
(Wilcoxon signed-rank test [66] p-value = 0). This result is fairly insensitive to the choice of the
cutoff for assigning statistical significance in the standard test, and is reproduced over a range of
threshold values (0.01-1e-6).

Revising the above sampling procedure by now selecting TFs in accordance with the TF-TF
interaction structure of the underlying graph, we find that this modification does not change the
basic  result  obtained  previously.  As  displayed  in  Figure  20,  Method  C  still  shows  improved
accuracy for recovering the input subset of TFs in comparison to the standard methodology of
evaluating each TF separately. At p = 0.05 cutoff, Method C yields higher accuracies compared to
the default approach in 85.4% of the trials, as opposed to only 7.43% of trials showing the reverse
trend.

A second modification we considered is the addition of noise, mimicked by introduction of a
small  proportion  of  misclassified  genes,  wherein  5% of  genes  are  randomly selected  from the
network and reassigned to the opposite category (differentially expressed v/s unaltered). As shown
by the profile of occurrence frequencies in Figure 21,  the deviations from the nearly flat  input
distribution are largely suppressed upon application of Method C. For example, at p < 0.05 cutoff,
the RMSE decreases from 0.0796 (standard approach) to 0.0211 (Method C). Pair-wise comparison
of the accuracy values of the recovered TF sets, displayed as a two-dimensional scatter  plot in
Figure  22,  shows  that  in  85.8%  of  trials  Method  C  improves  on  the  output  of  the  default
significance test, and also yields two-fold increase in the number of trials in which unit accuracy is
obtained  (603 v/s  286,  out  of  104 trials).  Thus,  once  again  we find  that  the  earlier  trends  are
essentially reproduced here, and it is evident that a small  distortion of the idealized differential
expression pattern has  minimal  impact  on the validity of the earlier  result.  Taken together,  the
preceding results make a case for the utility of the combinational approach as an improved and
logically sensible  alternative  for  generating  less  biased,  biologically  meaningful  hypotheses  for
altered TF activity from global expression data.  

The combinatorial approach applied to  M. tuberculosis TFOE data demonstrates marked
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improvement in recovery of the causal TF:

As another independent validation of the methodology presented here, we applied both the
standard approach and the combinatorial search to microarray profiles for M. tuberculosis coming
from recently published TFOE experiments [67,68], to see how well the network based inference
alone  (disregarding  expression  change)  can  recover  the  causal  upstream TF.  Out  of  78  TFOE
experiments  where  the  over-expressed TF was present  in  the  reference  regulatory network,  we
noted  that  in  only  48  cases  the  target  gene  set  of  the  TF  had  a  non-zero  overlap  with  the
differentially  expressed  gene  set.  This  is  merely  indicative  of  the  incomplete  nature  of  the
background network  used [69,70],  and illustrative  of  a  limitation  which  can be  expected more
generally when carrying out system-level analysis, on which scale the availability of interaction
information is  unlikely to be complete  and altogether  accurate.  Our comparison shows that  the
evaluation of each TF separately by Fisher's exact test is able to identify the causal TF in only 21
(44%) cases (at the maximum acceptable p = 0.05 cutoff); in contrast, the TF combination arrived at
by Method C contains the causal TF in 32 (67%) cases, representing ≈ 50% improvement. In fact,
there are 16 experiments in which Method C uniquely identified the over-expressed TF, which by
itself fails to show significant enrichment when tested against the full set of differentially expressed
genes (this may be contrasted against only 5 cases where the opposite is true). We further wanted to
assess whether a simple ranking of the individual over-abundance p-values, regardless of whether
they are  deemed  significant  or  not,  is  able  to  reveal  the  correct  TF.  In  none  of  the  16  cases
mentioned above, the over-expressed TF is found ranked first in the sorted list. It is interesting to
additionally observe that in 10 of the 16 cases,  not only is  the causal  TF not  over-represented
individually, but it even fails to show up among the top k sorted TFs, where k denotes the size of the
corresponding  non-redundant  TF  combination  identified  by  Method  C.  These  differences  in
outcome once again underscore the limitation of assessing TFs one at a time, even in application to
single  TF  OE  profiles,  with  scope  for  improvement  being  suggested  by  the  combinatorial
perspective explored in the present study.

DISCUSSION

Rewiring of transcriptional regulatory networks under different perturbations is an important
problem that  needs  to  be  understood  on  the  systems  level.  Several  methodologies  have  been
proposed in the literature to interpret data derived from high-throughput profiling experiments in
terms of enriched biological functions or over-abundant proximal regulatory elements [71-75]. The
particular approach which has been the starting point for the present work involves reducing the
case v/s  control  comparison of large scale  gene expression to a  binary profile  with a  step-like
threshold, where each gene is classified as either differentially expressed or unchanged according to
the result of some suitable chosen statistical test applied to the gene expression values. Pathways or
DNA cis-regulatory motifs which over-occur in the differentially expressed subset are then inferred
based on the null hypothesis that the significantly altered genes are randomly distributed over the
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genome and have no statistical association with the functional gene set under consideration. We
note that the results of this approach are dependent on the threshold deemed significant for calling a
gene differentially expressed, and would in general vary as the dichotomous assignment changes
according to different choices of this confidence p-value. Other methods proposed in the literature
work instead with the unfiltered expression values directly and are less sensitive to this subjectivity.
For example, the popular methodology GSEA [75] computes enrichment scores for gene sets (such
as  pathways  or  targets  of  regulatory  motifs)  starting  with  an  ordered  list  of  all  genes  ranked
according to some measure of expression change (e.g. t-test score), to identify gene sets whose
members show concordant changes in expression between two phenotypes. Furthermore, GSEA and
its  related offshoots  [75-77]  use a  permutation-based approach of randomly reassigning sample
labels to generate a null distribution of scores, which thus differs from the negative control defined
for the hypergeometric test that assumes a random binomial distribution of gene labels to gauge
statistical association. While Fisher’s exact test applied to binarized data, which is the basis for the
present approach, has its limitations, this sort of test is in fact used quite widely in enrichment
analyses, as illustrated by the examples mentioned in the introductory section [27-43,74]. Thus, the
motivation for the present work is quite justified, and the relevance and utility of the alternative
approach we have proposed and explored here should be assessed against the backdrop of these
other currently existing tools for transcription factor analysis, all of which are essentially based on
application of either the hypergeometric test or some close variant thereof.

It  is  suggested here that  an equally acceptable hypothesis  for differential  regulation can
instead be arrived at by seeking a group of TFs which is collectively most predictive for the altered
large-scale expression. This approach identifies a candidate set of TFs that is overall distinct and
not trivially obtainable from a sorted list of TFs arranged in ascending order of their  individual
over-representation p-values.  As this  alternative methodology presents the practical difficulty of
having to deal with a solution space whose size grows exponentially with the overall number of TFs
in the network, greedy heuristics were proposed and their efficacies compared. Our comparison
between two quadratic-time methods for estimating an approximate solution (based on application
to E. coli microarray data), in particular, holds some relevance going beyond the problem studied
here.  Many  machine  learning  approaches  to  classification,  e.g.  logistic  regression,  involve
identifying a small subset of discriminative features from a high-dimensional, more diverse feature
vector.  Linear  methods  based  on  sequentially  adding  features  to  a  growing  set  based  on  the
discriminative performance of each individual feature are usually adopted for this purpose (e.g.
[78]). Our analysis of Method C suggests an alternative take on feature selection which might lead
to  improved  classifier  performance,  especially  when  dealing  with  a  large  number  of  potential
features. We reiterate that this procedure is distinct from the other iterative method (Method B)
which is analogous to the set cover heuristic [50].   

A possible direction in which the current work could be extended would be to incorporate
the principle  of parsimony.  From the point  of  view of practicality,  a simpler  hypothesis  (i.e.  a
smaller number of inferred TFs) might be more favorable, and so, instead of the global minimum, an
optimal subnetwork could be sought which strikes a judicious balance between the TF set size and
the fit to the data (over-abundance p-value), analogous to Bayesian/Akaike information criterion for
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parameter estimation in multivariate regression [79]. This could be implemented in the iterative
procedure by, e.g., requiring that every additional TF incorporated into the growing solution provide
some minimum reduction in the overall p-value. Thus, once the point is reached beyond which
further  addition  of  TFs  does  not  produce  substantial  improvement,  the  algorithm  could  be
terminated. Since we have wanted to keep the analysis presented here fairly general, this additional
constraint has not been imposed, as it would require introducing a user-defined parameter which
decides  the  balance between parsimony and fit,  and the  outcome of  the  procedure would  then
depend on the numerical value of this additional parameter.

Finally, we note that the present methodology could be revised to incorporate combinatorial
effects of TFs, especially relevant in the case of eukaryotes and higher organisms where cooperative
synergistic  interactions  between pairs  (or  even larger  groups)  of  TFs are quite  common in  the
transcriptional control of gene expression [80-83]. In particular, if a TF requires co-binding of other
regulators to nearby DNA sequences to modulate the rate of transcription of its gene targets, then an
analysis based on the entire set of binding sites of that TF, as identified e.g. from enriched peaks in
a  ChIP-seq  genome-wide  binding profile  [16],  may not  give  correct  results,  as  many of  those
binding sites may not translate into bona fide causal regulatory interactions. Thus, the use of gene
sets which are co-targeted by multiple TFs (i.e. regulatory ‘modules’) as building blocks, instead of
the  target  sets  of  individual  regulatory motifs  as  has  been  followed  here,  might  provide  more
realistic hypotheses for discriminative regulatory subnetworks. The results of such an analysis could
in fact even be leveraged to reveal novel TF-TF combinatorial effects. These ideas are currently
under investigation.

In summary, we have proposed a general, unbiased, and logically natural methodology to
come up with a set of differentially active regulatory factors implicated by large-scale differential
gene expression data, which avoids the somewhat artificial breaking up of the problem that happens
when testing each regulator separately. By effectively boosting regulators with smaller target sets,
our strategy holds out the possibility of revealing biologically important regulators which might be
missed by many standard approaches that all share the common feature of assessing each regulator
separately for overlap against the full list of altered genes. This perspective should be of immense
utility  in  contributing  to  a  clearer  mechanistic  understanding  of  the  global  transcriptional
remodeling underpinning adaptation, or dysfunction.

METHODS

Re-examining the default approach to identifying perturbed regulators in the noiseless limit
with simulated profiles:
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We assume a deterministic setting in which a subset of transcription factors is randomly
chosen  for  differential  activation,  and  all their  direct  targets  are  assigned  to  the  differentially
transcribed gene set. Overlaying this idealized differential expression profile on the transcriptional
regulatory network,  we  first  assess  how well  the  Fisher's  exact  test  applied  to  individual  TFs
recovers the original subset. For this example, we have made use of the regulatory network for E.
coli retrieved from the RegulonDB database (Release 8.6, dated 4-11-2014), which comprises 4061
empirically validated regulatory interactions spanning 197 transcription factors and 1807 genes,
covering nearly half of the coding genome [26]. 

We have applied one-sided Fisher's exact test [47] to identify TFs significantly associated
with the differential gene expression. This test of significance yields the probability that an overlap
between the targets of a  TF and the genes with altered expression at  least  as  large as the one
observed can be explained by chance. As depicted in Figure 23,  the p-value calculation for each TF
follows from a 2x2 contingency table that slots genes into one of four groups, which are represented
by  a,  b,  c  and  d.  The  required  probability  under  the  null  hypothesis  is  obtained  from  the
hypergeometric distribution, given by

P=
(a+b )! (c+d )! ( a+c)! (b+d )!

a!b!c!d! (a+b+c+d )!

and the final p-value is a summation over terms of the above form with a ranging from amin (the size
of  the  overlap)  to  amax (the  size  of  either  the  differentially  expressed  set  or  the  TF target  set,
whichever is smaller). In every trial, the over-representation p-values have been separately obtained
for all regulators having non-zero overlaps with the differentially regulated gene set. The raw p-
values obtained in this manner are adjusted by applying Bonferroni correction [48] to account for
multiple hypotheses testing, which essentially involves multiplying the uncorrected p-values by the
total number of TFs targeting at least one differentially expressed gene each. For different choices
of the p-value threshold for significance, statistics for occurrences of all the TFs have been obtained
over 104 simulated trials. 

The  recovery  of  the  input  set  was  assessed  in  terms  of  the  prediction  accuracy  [49],
calculated as the fraction of correct classifications out of the total test set (i.e. all TFs with non-zero
overlap). If TP denotes the number of true positives, i.e. the TFs correctly recovered from the input
set, P stands for the total number of TFs present in the input set, TN is the number of TFs which are
not part of the input and are not found in the enriched set, and finally N denotes the complement of
the P subset, then the accuracy is given by the following formula:

Accuracy  = 
TP+TN

P+N

Thus, for example, if at the p < 0.05 level the enriched set of TFs is found to be identical to the
input set, the accuracy assumes its maximum value of unity, and any mismatches would result in a
lowered accuracy, restricted to the range 0 to 1. 
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Identification  of  key  regulators  underlying  differential  expression  by  evaluating
combinations of TFs:

Our objective has been to identify a combination of transcription factors that best accounts
for observed differential gene expression. An exhaustive search for such a combination is usually
not computationally tractable. A greedy search that iteratively builds up an approximate solution
based on making the best local choice at every step is routinely sought in problems of this nature.
We have evaluated three variants of a heuristic procedure for obtaining an approximate solution,
one of which has linear dependence of the number of p-value computations on the number of TFs in
the test set, and two other alternatives which evaluate in quadratic time. These are introduced and
described below.

The simplest procedure involves first ranking and ordering the TFs in accordance with their
individual overlap p-values, and then, starting from the top-ranked regulator, sequentially adding
the next TF from this sorted list until there is no further improvement in the combined p-value that
is  evaluated  for  the  union  of  direct  targets.  We  denote  this  heuristic  as  Method  A,  which  is
represented by the flowchart in Figure 4. As this scheme makes use of the original prioritized list
made at the initialization to select a TF at every update, only one p-value is computed at every
subsequent step, giving an O(N) dependence of the number of p-value computations on the size of
the sorted list (i.e. on the number of overlapping TFs, N). Given that at each step, the best available
choice is made, there is no guarantee that the converged solution represents the global minimum.

The efficacy of the above simplistic method is assessed against two other approximations,
both of which involve generating a prioritized list of TFs at every step in the iteration. Thus, these
approaches would have a time complexity of O(N2). Method B, summarized by the flowchart in
Figure 5, is analogous to the greedy search that has been proposed for obtaining an approximation
to  the  set  covering  problem [50].  Starting  with  the  best  single  TF,  as  in  Method  A,  at  every
subsequent step, one additional TF is added to the growing solution. In order to make this choice,
we apply the criterion that,  the next  TF chosen is  the one which has  the best overlap p-value
evaluated on the remaining subset of altered genes, i.e. those which are not already covered by the
running set of TFs built up thus far. The search is stopped when no further addition of a TF from the
remaining set yields a reduction in the combined p-value. 

A second O(N2) procedure is additionally implemented. This is similar to Method B, in that
a rank-ordered list of the remaining TFs is generated at every update. However, now we employ the
criterion that the next TF chosen is the one which,  when added to the already built up (running)
solution, gives the best combined p-value (schematic in Figure 6). This procedure, which we shall
refer to as Method C, differs not just from Method B, but also from the earlier Method A. Once
convergence is reached such that no additional TF provides further improvement in the collective p-
value, the progressive search is halted, yielding a candidate solution. 
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Comparative analysis of approximations on published microarray data:

We have performed a comparative analysis and benchmarking of the three approximations
defined above on a set of microarray expression profiles downloaded from GEO [51] describing
responses  of wild-type  E. coli to  various  stress  conditions.  Expression datasets  associated with
previous publications [52-55] for the following stress conditions for E. coli were downloaded: heat
shock (45 oC for 10 minutes) and stationary phase; pH 5.0 and pH 8.7; sucrose osmotic stress and
NaCl osmotic stress; and 1 ug/ml norfloxacin exposure, with the corresponding GEO accession
numbers being GSE12190, GSE4511, GSE15534 and GSE6836 respectively. For each experiment,
a set of genes differentially transcribed in a test v/s control comparison were first identified by using
the  accompanying  GEO2R  tool  [56],  uniformly  applying  an  FDR  threshold  of  <0.001  and  a
minimum fold-change criterion of 2.0 across all the datasets. By integrating with the RegulonDB
compilation  of  regulatory  interactions,  each  of  the  seven  gene  sets  was  then  used  to  infer  a
discriminative combination of TFs by each of the three previously described methods, A, B and C. 

A similar comparison among the three methods has been carried out on a larger compendium
of  normalized  expression  profiles  for  E. coli retrieved  from  the  Many  Microbes  Microarrays
Database (M3D, Version 4, Build 6) [57]. For the 466 experiments representing various perturbation
conditions  in  M3D,  the  RMA-processed  log2-transformed  expression  values  across  all  the
conditions were first normalized by converting them to gene-wise Z-scores, which quantify how
much the expression of a gene in any particular condition deviates from the baseline defined by its
mean over all the conditions. Applying a cutoff of abs(Z-score) > 2.0, for every condition, genes
which show ‘abnormal’ expression with respect to their global average were identified. Thus, the
approach we have followed here does not involve comparing the expression values on each array
with a common control condition. Instead, the control for every gene is set by its global average.

Ruggedness  of  search  space  and  iterative  search  v/s  steepest  descent  v/s  stochastic
search:

Ruggedness of a combinatorial search space is normally defined in terms of the number of
local minima accessible by steepest descent search [58-60]. Steepest gradient descent for the current
problem has been implemented in the following manner: starting from a randomly selected initial
configuration,  at  each  update,  the  current  state  (TF  combination)  is  compared  with  all  the
neighboring configurations,  which each differ by the addition or exclusion of a  single TF.  If  a
neighboring  configuration with  a  lower overlap  p-value  is  found,  then it  is  chosen as  the  new
solution. This process is continued until no improvement in the p-value is obtainable by moving to a
neighboring state.  The probability of gradient search attaining any particular local minimum would
depend on the size of the corresponding basin of attraction. In order to obtain an estimate for the
ruggedness of the solution landscape, gradient descent search was run 2x103 times starting from
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different  initial  combinations,  sampled  uniformly,  and  the  number  of  distinct  overlap  p-values
obtained upon convergence was tracked as  a  function of  the  number  of  runs  carried out.  This
exercise was repeated for all the 7 GEO profiles introduced previously. 

As an alternative approach to seeking the global minimum in a rugged search space, we
have also implemented a simple formulation of simulated annealing (SA). This heuristic represents
one  among  several  different  optimization  techniques  which  contain  a  stochastic  component
allowing to overcome barriers in the search space and to avoid getting trapped in local optima
[61,62]. SA modifies steepest gradient search by permitting locally non-optimal updates which can
increase  the  p-value  (the  objective  function  here),  the  frequency of  which  is  controlled  by an
effective temperature T. The numerical value of T modulates the probability that an update which
results in a (log) p-value change of Δ(log p) is accepted, via the following formula: 

Paccep (T )=min(1,exp[−Δ(log p )
T ])

The effective temperature is gradually decreased as a function of the number of steps according to a
suitably chosen annealing schedule. In the long time T → 0 limit, SA thus reduces to the usual
gradient descent search. In order to circumvent issues related to optimization of the choices for
temperature and annealing schedule tailored to the geometry of the search space [63], we have
adopted a simplified approach by repeatedly running SA over a range of timescale settings and
picking the best run in terms of the final p-value attained to represent the result of the stochastic
search. The starting temperature Ti has been set by requiring that the initial average probability for
accepting  non-optimal  jumps  is  0.8  [61,64].  An  exponential  annealing  schedule  [65]  has  been
adopted,  parametrized by a  fractional  factor  r  which controls  the rate  of  temperature reduction
according to the formula Tn+1 = rTn at the n-th step. Given a final temperature Tf (here kept fixed at
0.01 across all runs and examples), the total number of steps in one run is directly related to r by the
relation NSA = logr(Tf/Ti). We have repeated the search procedure for NSA values ranging from 5N to
25N,  and 10 runs  starting  from different  random initial  combinations  were simulated  for  each
choice of NSA. The running/current log p-value as well as the best p-value attained during the course
of every run was recorded, and the lower of the two was chosen at the end of every run. The SA
search  was  extended  and  supplemented  with  a  gradient  descent  search  at  the  end  to  ensure
convergence to the nearest minimum in the search space. The top-ranked combination in terms of
lowest log p-value obtained across the full set of runs was finally taken to represent the solution
yielded by the SA approach, and used as an independent benchmark to assess the results of the
previous two methods (Method C and gradient search with restarts).  

Benchmarking the proposed methodology in the idealized setting:

In the artificial setting introduced earlier, we additionally run the iterative Method C on
every simulated profile, to obtain a proxy for the TF combination with the least collective p-value
of  association.  The  corresponding  distribution  of  TF  occurrences  across  the  104  trials  is  then
compared with  the  distribution  for  the default  method which was obtained earlier.  The overall
deviation of either distribution from the near-uniform input distribution is quantified in terms of the
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root mean squared error (RMSE), estimated via the formula

RMSE=√ 1
N
∑
i= 1

N

( f i− f 0
i )

2

where the summation runs over all N TFs, and f0
i
 and f i

 stand for the proportions of trials in which
the i-th TF occurs in the input and output sets respectively. A comparison between the lists of the
corresponding accuracy values is also made by applying Wilcoxon signed-rank test for significant
difference [66] implemented in SciPy v0.11.0. 

The above exercise has been repeated, but now selecting TFs in the input set to be consistent
with the regulatory network structure of TF-TF regulatory interactions. In other words, we start with
a ‘seed’ set composed of a small number of randomly selected TFs, and then add all the other TFs in
the network which lie downstream of TFs in the seed set and are therefore regulated directly or
indirectly by them. This is done under the assumption that perturbing the activity of one TF is
expected to lead to a cascade of regulatory rewiring downstream over a longer timescale (in the
previous  analysis,  the  effect  of  perturbing  TFs  was  assumed  to  be  limited  to  only  the  direct
downstream targets). As before, 104 seed sets were randomly sampled.

In order  to confirm whether the trends are  sensitive to  the presence of misclassification
(noise) distorting the expression pattern, we have revised the earlier deterministic setting by now
adding noise in the form of misclassification of genes. This has been implemented by randomly
selecting a fraction of the genes in the network and reassigning them to the opposite class. Thus, if a
differentially  expressed  gene  is  chosen,  it  is  reclassified  as  unaltered,  and  vice  versa.  The
performance of the two inference methods (default and Method C) was assessed over 104 random
trials in the presence of 5% misclassification rate.

Independent comparative assessment on M. tuberculosis TF over-expression experimental
data:

 

As  a  final  and  independent  assessment  of  the  presented  methodology  on  a  different
organism, we have applied it  vis-à-vis the standard approach in the context of  M. tuberculosis
(MTB) gene expression data. Microarray profiles made available as part of a recently published
large-scale  study  [67]  were  downloaded  from  [68].  This  dataset  comprises  over-expression
phenotypes spanning 206 MTB TFs, and genes showing an up/down regulation log fold change
greater than 1.0 were called differentially expressed in each experiment. This expression change
information was integrated with a curated transcriptional regulatory network composed of 91 TFs
and 3682 regulatory connections covering 1787 MTB genes in total. This reference network has
been  obtained  by  merging  two  independent  previously  published  studies  [69,70],  and  was
assembled by a combination of curated experimental evidences  and orthology assignment  from
related species (E. coli  and C. glutamicum). As in the previous analyses, the standard testing of
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individual TFs as well as the Method C were applied to each gene list, and recovery performance
was assessed in terms of the number of times the causal TF (known a priori) is statistically enriched
at p < 0.05 confidence threshold, relative to the number of times it is present in the TF combination
yielded by the iterative search.  
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TABLES

Pairwise comparison
(in terms of p-values)

|Z-score| > 2 

(# expts. = 466)

|Z-score| > 2.5 

(# expts. = 438)

|Z-score| > 3 

(# expts. = 396)

Method C > Method B 67.19 46.34 27.27

Method C >= Method B 98.92 99.32 98.73

Method C > Method A 92.49 77.63 68.18

Method C >= Method A 100 100 100

Method B > Method A 71.88 61.41 58.33

Method B >= Method A 96.13 97.26 98.23

Table 1. Benchmarking iterative search methods on M3D expression profiles.

Three-way comparison among  the  heuristics  proposed,  based  on 466 experiments  with  E.  coli
compiled under M3D. Each column displays the results for a particular choice of the Z-score cutoff
applied for identifying genes with altered expression in every experiment. Numbers in brackets in
the column headers are counts of those experiments in which at least one altered gene is targeted by
a TF from the underlying network. All comparisons are percentages relative to the corresponding
total number of experiments being considered. Performance of each method on every expression
profile is quantified in terms of the over-representation p-value for the TF combination it converges
to.  
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Experiment

Number (resp.
%) of genes

found
differentially
expressed

(p<0.001, log
fold

change>1)

% of runs of
steepest
descent
search

yielding a
local solution

at least as
good as the

output of
Method C

Rank of
solution found
by Method C in
a sorted list of
local minima
sampled by

steepest
descent search

Method C
output log

p-value

 Minimum
log p-value

from
steepest
descent
search

Minimum
log p-value

from SA

pH 5.0
176/4345
(4.05%)

6.1 1/251 -43.4447 -43.4447 -43.4447

pH 8.7
92/4345
(2.12%)

57.6 1/16 -35.7941 -35.7941 -35.7941

Norflox
312/4345
(7.18%)

2.9 1/55 -19.373 -19.373 -19.373

Sucrose
stress

277/4070
(6.81%)

0.8 1/37 -22.1718   -22.1718 -22.1718

NaCl stress
194/4070
(4.76%)

27.25 2/142 -24.2429 -24.3237 -24.3237

Stationary
phase

2324/4493
(51.72%)

0.05 2/356 -32.0485 -32.5571 -32.5571

Heat shock
3146/4493
(70.02%)

5.26 62/814 -43.8734 -47.2333 -47.3869

Table 2. Summary of results for seven GEO microarray datasets.

Benchmarking of Method C v/s gradient descent search based on 7 microarray datasets describing
E. coli stress adaptation. The latter has been run 2000 times with random restarts for each dataset.
Also  tabulated  are  the  p-values  obtained  from the  simulated  annealing  (SA)  procedure,  which
provides an independent estimate of the global minimum.
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FIGURES

Figure 1. Differential expression profile overlaid on a regulatory network. 

Venn diagram illustrating an example situation involving three transcription factors A, B and C each
of which targets a distinct group of genes. Each target set also has an overlap with the input set I,
which represents the genes detected as differentially expressed in a case v/s control comparison of
transcriptomic data.  
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Figure 2. Transcription factor enrichment from simulated trials.

(A) The  E. coli regulatory meta-network used contains 197 TFs,  exhibiting a  broad out-degree
distribution.  (B)  Distribution  of  transcription  factor  occurrences  in  the  input  and  statistically

enriched sets, obtained by aggregating 104 randomly generated binarized profiles in the noiseless
limit.
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Figure 3. Under-representation of TFs in the enriched set.

TFs  with  smaller  target  sets  may  not  always  be  statistically  enriched,  if  multiple  TFs  are
simultaneously ‘perturbed’ producing an extensively altered expression profile.
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Figure 4. Schematic representation of the linear (O(N)) procedure, Method A, for obtaining an
approximation for the most predictive subnetwork.
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Figure 5. Schematic of the heuristic adapted from the set cover problem, Method B, with a
running time (number of p-value evaluations) quadratic in the number of TFs.
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Figure  6.  Flowchart  for  the  approximate  Method  C,  which  also  involves  O(N2)  p-value
computations.
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Figure 7. Benchmarking the iterative methods on GEO microarray datasets.

Comparison of the iterative methods A-C to identify the maximally discriminative combination of
TFs, applied to 7  E. coli expression datasets retrieved from GEO. The number in brackets under
every label corresponds to the number of TFs in the background network targeting at least one
differentially expressed gene each.
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Figure 8. Benchmarking the iterative methods on M3D data. 

Comparison  of  the  three  heuristics  applied  to  a  subset  of  M3D expression  profiles  where  the
manageable numbers of overlapping TFs make exhaustive enumeration possible (Z-score threshold
for significance of altered expression = ± 2.0).
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Figure 9. Benchmarking the iterative methods on M3D data. 

Same comparison as in Fig. 8, but now with application of a more stringent Z-score significance
threshold of ± 3.0. 198 conditions were identified as having not more than 14 overlapping TFs,
making it straightforward to carry out exhaustive search.
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Figure 10. Ruggedness of problem search space. 

Ruggedness estimated by the number of local  minima attained by steepest  descent  search as a
function of the number of initial conditions sampled. This figure is for the heat shock response
profile.
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Figure 11.  Sampling of  local  minima by gradient descent  search for the stationary  phase
comparison dataset. 
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Figure  12.  Sampling  of  local  minima  by  gradient  descent  search  for  the  low  pH  (5.0)
comparison dataset. 
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Figure  13.  Sampling  of  local  minima  by  gradient  descent  search  for  the  high  pH  (8.7)
comparison dataset. 
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Figure 14. Sampling of local minima by gradient descent search for the norfloxacin exposure
dataset. 
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Figure 15. Sampling of local minima by gradient descent search for the NaCl osmotic stress
response dataset. 
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Figure 16. Sampling of local minima by gradient descent search for the sucrose osmotic stress
response dataset. 
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Figure 17. Example of simulated annealing search. 

A single run of SA stochastic search for the global minimum p-value, applied to the pH = 5 vs. pH =
7 comparison microarray dataset. Sharp fluctuations in the red curve arise from the possibility of
non-optimal updates,  the propensity for which depends on the (gradually decreasing) annealing
temperature.
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Figure 18. Comparison of the combinatorial approach with the default method on simulated
trials. 

(A) Comparison of default method with the iterative Method C (over 104 trials) in the noiseless
limit which was introduced in Fig. 2. (B) Deviations of the red and blue curves from the green
profile in (A) have been represented in terms of profiles of percentage differences.  
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Figure 19. Recovery accuracy for TFs based on simulated trials. 

Comparison of classification accuracy values yielded by the default and iterative approaches across

the 104 random trials, represented as a two-dimensional scatter plot. Points above and below the
equality line are colored blue and red respectively, while those lying on the 45° diagonal are shown
in black.
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Figure 20. TF recovery accuracy based on simulated trials. 

Paired comparison of accuracy values yielded by the default and combinatorial approaches across

104 random trials in which the input set of TFs is selected in such a way as to be consistent with the
underlying hierarchy of TF-TF regulatory interactions in the RegulonDB network.
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Figure 21. Comparison of the combinatorial approach with the default method on simulated
trials with inclusion of noise. 

Distribution of TF occurrences for the case where the idealized binary differential expression profile

is distorted by addition of 5% misclassification in gene assignment. Averaged over 104 simulated
trials.
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Figure 22. TF recovery accuracy based on simulated trials with noise. 

Paired comparison of accuracy values across trials where 5% classification error is added to the
binarized differential expression profile.
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Figure 23. Transcription factor enrichment from large scale differential expression data.

Graphical representation of the entries a, b, c and d in the 2x2 contingency table on which the
computation  of  the  enrichment  p-value  via  Fisher's  exact  test  is  based.  This  test  evaluates  the
probability that the size of the observed overlap (a) is consistent with random distribution of the
differentially expressed subset.
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