Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Rates of Karyotypic Evolution in Estrildid Finches Differ Between Island and Continental Clades

Daniel M. Hooper, Trevor D. Price
doi: https://doi.org/10.1101/013987
Daniel M. Hooper
1Commitee on Evolutionary Biology, University of Chicago, Chicago, Illinois 60637
2E-mail:
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: dhooper1@uchicago.edu
Trevor D. Price
3Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Reasons why chromosomal rearrangements spread to fixation and frequently distinguish related taxa remain poorly understood. We used cytological descriptions of karyotype to identify large pericentric inversions between species of Estrildid finches (family Estrildidae) and a time-dated phylogeny to assess the genomic, geographic, and phylogenetic context of karyotype evolution in this group. Inversions between finch species fixed at an average rate of one every 2.26 My. Inversions were twice as likely to fix on the sex chromosomes compared to the autosomes, possibly a result of their repeat density, and inversion fixation rate for all chromosomes scales with range size. Alternative mutagenic input explanations are not supported, as the number of inversions on a chromosome does not correlate with its length or map size. Inversions have fixed 3.3× faster in three continental clades than in two island chain clades, and fixation rate correlates with both range size and the number of sympatric species pairs. These results point to adaptation as the dominant mechanism driving fixation and suggest a role for gene flow in karyotype divergence. A review shows that the rapid karyotype evolution observed in the Estrildid finches appears to be more general across birds, and by implication other understudied taxa.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted January 19, 2015.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Rates of Karyotypic Evolution in Estrildid Finches Differ Between Island and Continental Clades
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Rates of Karyotypic Evolution in Estrildid Finches Differ Between Island and Continental Clades
Daniel M. Hooper, Trevor D. Price
bioRxiv 013987; doi: https://doi.org/10.1101/013987
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Rates of Karyotypic Evolution in Estrildid Finches Differ Between Island and Continental Clades
Daniel M. Hooper, Trevor D. Price
bioRxiv 013987; doi: https://doi.org/10.1101/013987

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Evolutionary Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (3502)
  • Biochemistry (7343)
  • Bioengineering (5319)
  • Bioinformatics (20258)
  • Biophysics (10008)
  • Cancer Biology (7735)
  • Cell Biology (11293)
  • Clinical Trials (138)
  • Developmental Biology (6434)
  • Ecology (9947)
  • Epidemiology (2065)
  • Evolutionary Biology (13315)
  • Genetics (9359)
  • Genomics (12579)
  • Immunology (7696)
  • Microbiology (19008)
  • Molecular Biology (7437)
  • Neuroscience (41011)
  • Paleontology (300)
  • Pathology (1228)
  • Pharmacology and Toxicology (2134)
  • Physiology (3155)
  • Plant Biology (6858)
  • Scientific Communication and Education (1272)
  • Synthetic Biology (1895)
  • Systems Biology (5311)
  • Zoology (1087)