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Abstract

During the last decade genome–wide association studies have proven to be a

powerful approach to identifying disease-causing variants. However, for ad-

mixed populations, most current methods for performing association testing

are based on the assumption that the effect of a genetic variant is the same

regardless of its ancestry. This is a reasonable assumption for a causal vari-

ant, but may not hold for the genetic variants that are tested in genome–wide

association studies, which are usually not causal. The effects of non-causal

genetic variants depend on how strongly their presence correlate with the

presence of the causal variant, which may vary between ancestral populations

because of different linkage disequilibrium patterns and allele frequencies.

Motivated by this, we here introduce a new statistical method for associ-

ation testing in recently admixed populations, where the effect size is allowed

to depend on the ancestry of a given allele. Our method does not rely on

accurate inference of local ancestry, yet using simulations we show that in

some scenarios it gives a dramatic increase in statistical power to detect as-

sociations. In addition, the method allows for testing for difference in effect

size between ancestral populations, which can be used to help determine if a

SNP is causal. We demonstrate the usefulness of the method on data from

the Greenlandic population.
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Introduction

An individual’s risk of developing common complex diseases, such as type

2 diabetes, is influenced by specific genetic variants and identifying such

variants using genome–wide association mapping studies (GWAS) has been

a rapidly growing research field the last decade (Klein et al. 2005, Duerr et al.

2006, Burton et al. 2007, Unoki et al. 2008, Thorleifsson et al. 2009, Sparso

et al. 2009, Holm et al. 2011).

So far, most GWAS have been performed in large homogeneous populations

and this has led to important new findings (Morris et al. 2012, Voight B.F., et

al. 2010, Scott et al. 2007). However, a few GWAS have now been performed

in recently admixed populations (Moltke et al. 2014, The SIGMA Type 2

Diabetes Consortium 2013), and these studies have led to interesting new

findings suggesting that such studies can be valuable to perform. This was

recently shown very clearly in a study by Moltke et al. (2014) where a GWAS

performed in the Greenlandic population, which has both Inuit and European

ancestry, led to the identification of a variant that explains more than 10%

of all cases of type 2 diabetes in Greenland. Notably, the variant had not

been identified in earlier much larger studies of homogeneous populations like

the European and East Asian populations, because it is very rare in these

populations.

While being valuable, performing GWAS in recently admixed populations

involves an important challenge: the admixture can bias the statistical test
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in the association mapping and lead to false discoveries. Statistical methods

for association mapping that solves this challenge exists (Devlin & Roeder

1999, Price et al. 2006, Zhou & Stephens 2012), but these methods all share

one essential limitation: they are based on the assumption that the tested ge-

netic variant has the same effect regardless of which ancestral population it is

inherited from. This assumption is reasonable for a disease-causing variant.

However in GWAS, the disease-causing variant is often not tested directly.

Instead a small fraction of common single nucleotide polymorphisms (SNPs)

are genotyped and tested and the aim is to identify the subset of these SNPs,

if any, that are indirectly associated with the disease, because they are lo-

cated close to the causal SNP and therefore in linkage disequilibrium (LD)

with it (see Figure 1). The effect size and strength of the association of a

LINKAGE
DISEQUILIBRIUM

GENETIC
EFFECT

INDIRECT ASSOCIATION

TESTED
VARIANT

CAUSAL
VARIANT

PHENOTYPE

Figure 1: Indirect association between tested genetic variant and a pheno-
type.

variant tested in a GWAS will therefore depend on the allele frequencies of

the causal and tested variants and the strength of the LD between them. And

importantly, since allele frequencies and LD patterns will often be different

between different populations, this means that the effect size and the strength

of association of a given variant may depend strongly on the ancestry of the

chromosomal segment on which this variant is located. The extreme case
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shown in Figure 2 provides a simple illustrative example. Here the tested

variant is present in both populations, but the causal variant is only present

in ancestral population 1, where it is in complete LD with the tested variant.

In this example, the tested variant is clearly more strongly associated with the

phenotype when inherited from ancestral population 1 than if inherited from

population 2 and thus the effect of the tested variant will depend strongly

on which ancestral population it has been inherited from. This illustrates

that the assumption of ancestry-independent effects, which most methods

for association testing in admixed populations are based on, does not always

hold in the context of GWAS in admixed populations. The example also

illustrates another important point: the association with the tested variant

in the example is much weaker than the association with the causal variant,

which in this case equals the association with the tested variant inherited

from population 1. This means that a GWAS can potentially gain power by

allowing for ancestry-specific effect sizes. Motivated by this, we here propose

a statistical method for performing association mapping in admixed popu-

lations, named asaMap, that allows estimation and significance testing of

ancestry-specific effect sizes. In individuals from admixed populations the

local ancestry of an allele (corresponding to the red/blue color in Figure 2) is

not directly observable, but can sometimes be inferred (Sankararaman et al.

2008, Price et al. 2009, Maples et al. 2013, Guan 2014). However, asaMap

does not rely on inferred local allelic ancestry because such inference can be

prone to errors. Instead asaMap is based on a mixture model, where the
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CAUSAL VARIANT

TESTED VARIANT

POPULATION 1 HAPLOTYPES:

POPULATION 2 HAPLOTYPES:

INDIVIDUAL 1
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INDIVIDUAL 1

INDIVIDUAL 2

Figure 2: Extreme case of ancestry-specific effects in a population with an-
cestry from two populations: the tested variant is present in both ancestral
populations, but the causal variant is only present in ancestral population
1, where it is in complete LD with the tested variant. The figure shows
the homologous chromosomes of two admixed individuals with chromosomal
segments colored according to which population the segments have been in-
herited from (population 1 is blue and population 2 is red). Both individuals
carry one copy of the tested variant, however they have inherited them from
different populations and only individual 2, who inherited the tested variant
from population 1, carries the causal variant.
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mixture components are the phenotype distributions corresponding to given

ancestries of the tested SNP and the mixture weights are the probabilities of

these ancestries (for more details see Materials and Methods). This approach

allows us to take the uncertainty of the ancestry of the individual alleles into

account by allowing for all possible ancestries and weighting each possible

ancestry according to its probability of being the true ancestry; the mixture

weights. The mixture weights for a given SNP are in asaMap by default

calculated from genome-wide admixture proportions, population specific al-

lele frequencies and genotypes. However, asaMap also works with provided

mixture weights and thus allows users to use more complex models such as

hidden Markov models (Patterson et al. 2004, Price et al. 2009, Guan 2014)

for obtaining these. The mixture components in asaMap are based on a gen-

eralized linear model (GLM) framework. This has at least three advantages.

First, it means we can correct for population structure by simply including

principal components as covariates. Second, it makes asaMap very flexible,

since it means that it – like a GLM – can be used to perform tests in a

wide range of settings: asaMap can be applied to several different trait types

(quantitative traits and case-control traits) as well as several different genetic

effect types (additive and recessive effects). Third, it allows easy correction

for any additional covariates such as sex or age.

We emphasize that asaMap is an association testing method and not a

method for performing admixture mapping; a mapping approach where cor-

relation between phenotype and inferred local ancestry is used to identify
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candidate regions (Patterson et al. 2004). asaMap is more similar to the

methods of Pasaniuc et al. (2011) and Yorgov et al. (2014), where ancestry-

specific effects are estimated and tested based on inferred knowledge about

local ancestry. These methods focus on the potentially different effects of one

specific allele (which we will refer to as ”the assumed effect allele”) in the an-

cestral populations and they assume that the other allele (which we will refer

to as ”the assumed non-effect allele”) has the same mean phenotypic value in

all ancestral populations after correcting for relevant covariates. Hence they

ignore the possibility that it may be the assumed non-effect allele, and not

the assumed effect allele, that mediates an ancestry-specific effect.

Importantly, although asaMap is similar to the methods of Pasaniuc et al.

(2011) and Yorgov et al. (2014) in the sense that it allows for ancestry-

specific effect, it differs from those method in several ways. First, as already

described, asaMap does not require prior knowledge of the ancestry of each

allele. Second, it enables correction for population structure. Third, although

asaMap also focuses on the potentially different effects of a specific assumed

effect allele, it offers an additional test that allows the user to assess if it may

be beneficial to use the other allele as the assumed effect allele instead.

In the following section, we describe the model behind asaMap in detail.

Then using simulated data, we show that asaMap in some cases provides a

substantial increase in power for association testing and that asaMap provides

a framework that is even more flexible than the GLM, which is often used

for association testing in GWAS. For example, we show that asaMap makes
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it possible to test whether a specific allele has different effects in different

ancestral populations. And since it is reasonable to assume that a disease-

causing allele have the same effect regardless of its ancestry, such a test can

be used to reject that a SNP identified in a GWAS is causal. Finally, using

data from a GWAS in the admixed Greenlandic population (Moltke et al.

2014), we show that asaMap can provide increased power for SNPs that are in

strong LD with the causal SNP and that asaMap can be used to discriminate

between causal and non-causal variants, not only in simulated data, but also

in real data.

Materials and methods

Model

Our asaMap model framework is based on a GLM. It therefore applies to

both quantitative traits and case-control traits (i.e. dichotomous traits) and

allows for both additive and recessive genetic effects. Here we describe the

quantitative trait model for additive genetic effects, while detailed descrip-

tions of the model for case-control data as well as recessive genetic effects

can be found in the Supporting Information.

As argued in the introduction, the strength of an association between

genotype and phenotype is likely to depend on which of the ancestral popu-

lations a genetic allele has been inherited from. Thus, instead of estimating

a single genetic effect of a given allele, we here allow for population-specific
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Effect allele

Non-effect allele 

Population 1 Population 2

Figure 3: The four ancestry-specific allele types that can occur at a dial-
lelic autosomal locus in an individual from a population that consists of two
ancestral admixing populations.

genetic effect sizes, each of which we denote βk for an allele inherited from

ancestral population k. Below we describe the model that allows us to do

this. The description is limited to two ancestral populations, but is easily

extended to more than two populations.

Mixture model. We assume that we are analyzing data from N individ-

uals from an admixed population that is a mixture of two ancestral pop-

ulations. An individual from such a population will at any given diallelic

autosomal locus have inherited each of its two chromosome copies from one

of the two ancestral populations, and each of these will either carry the effect

allele or not. Thus there are four possible ancestry-specific allele types, as

illustrated in Figure 3. As a consequence, each individual will have one of 16

different ancestry-specific allele type combinations at any given diallelic auto-

somal locus. We will refer to these ancestry-specific allele type combinations

as locus states, s. The 10 distinguishable locus states are shown in Figure 4.

The locus state is unfortunately not directly observable from genotype data.

It can sometimes be inferred, but local ancestry inference from genotype data

is associated with uncertainty and ignoring this may lead to false positives.
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Genotype 2

Genotype 1
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Two alleles from 
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Figure 4: The 10 distinguishable locus states (combinations of two ancestry-
specific allele types) that can occur at a diallelic autosomal locus in an indi-
vidual from a population that consists of two ancestral admixing populations.

Therefore, we have chosen not to base asaMap on inferred locus states, but

to instead use a model that allows us to take the uncertainty of the locus

states into account. This model is based on the observation that when all

that can be observed are the genotypes, i.e. the total number of copies of a

specified allele present at the tested locus in each individual, the likelihood

function for the observed phenotypes, Y = (y1, y2, ..., yN), takes the form

p(Y |G,Z) =
∏
i

p(yi|G,Z) =
∏
i

∑
s

p(yi|s,G, Z)p(s|G,Z)

Here G is a vector of all observed genotypes at the tested locus, Z is a matrix

of appropriately chosen covariates, the product runs over all individuals i =

1 . . . N and the sum runs over all possible locus states s. Assuming that

the trait is conditionally independent of the observed genotypes G given the
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latent variable s and the covariates Z, this likelihood also takes the form

p(Y |G,Z) =
∏
i

∑
s

p(yi|s, Z)p(s|G). (1)

This means that we can model the probability of the observed phenotypes Y

as a mixture of phenotype distributions, where each mixture component is

the phenotype distribution given a specific locus state s, p(y|s, Z), and the

corresponding mixture weight is the probability p(s|G) of that locus state

given the observed genotypes. Notably, this modeling approach makes it

very easy to take the uncertainty of the unobserved ancestry into account,

since this uncertainty is explicitly included in the model in the form of the

mixture weights. Furthermore, the above likelihood function is a function of

our parameters of interest, namely the population-specific effects βk, via the

mixture components p(y|s, Z). Hence we can use the model both for esti-

mating the ancestry-specific effects βk and for performing association testing.

Specifically, in asaMap the βks are estimated using maximum likelihood es-

timation and testing for association is performed using likelihood ratio tests.

Below is a detailed description of how we model the mixture components

and the mixture weights in the likelihood function, followed by a detailed

description of the parameter estimation and testing procedures.

Mixture components. For a given quantitative trait, Y , the mixture

component, i.e. the phenotype distribution p(y|s, Z), is based on a linear

regression model. We assume that given the locus state, s, the phenotype yi
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for a single individual i follows a normal distribution with mean given by the

linear predictor

ηi = α + β1x1(s) + β2x2(s) +
∑
c

γcz
i
c. (2)

Here α parameterizes the intercept (baseline) and additional covariates such

as principal components for correcting for potential confounding by popu-

lation structure (Price et al. 2006) enters the model in the zic with effects

γc. Finally, assuming an additive model, x1(s) and x2(s) are the counts of

the assumed effect allele from population 1 and 2, respectively, for a locus

in locus state s. If one instead assumes a recessive model, the definition of

the terms x1(s) and x2(s) is different and is described in more details in the

Supporting Information.

Mixture weights. The simplest approach to calculating the mixture weights,

i.e. the probabilities of the different possible locus states for individual i given

i’s genotype g, is to use i’s genome-wide admixture proportions Qi and the

population specific allele frequencies f , both of which can be inferred using

standard software tools such as ADMIXTURE (Alexander et al. 2009). In

the case of two admixing populations the genome-wide admixture propor-

tions are Qi = (qi1, q
i
2), where qi1 and qi2 is the fraction of is genome that

has been inherited from population 1 and 2 respectively, and the population

specific allele frequencies are f = (f1, f2), where f1 and f2 is the frequency

of assumed effect allele in population 1 and 2, respectively.
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We can use Qi and f to calculate the probability of the locus state s

given a genotype g in three steps after introducing the notation s = (a, t),

where a = (a1, a2) is the ordered allelic ancestry and t = (t1, t2) is the

ordered allelic genotype (with t1 + t2 = g). In the first step we consider

the conditional distribution of the ordered allelic genotype t = (t1, t2) given

genotype g = t1 + t2, which takes the form:

p(t|g) =


1 if g = 0

1
2

if g = 1

1 if g = 2

.

In the the second step we consider the probability of the ordered allelic

ancestry a = (a1, a2) given the ordered allelic genotype t = (t1, t2). Here

we use the genome-wide admixture proportions Qi to give the probability

p(a|f,Qi) = qia1q
i
a2

of ancestry a assuming independent ancestry of alleles

and we use the corresponding population specific allele frequencies f to cal-

culate the probability of ordered allelic genotype given the ordered allelic

ancestry p(tj|aj, f, Qi) = f
tj
aj(1 − faj)1−tj . With this the desired probability

of the ordered allelic ancestry a given the ordered allelic genotype t can be
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calculated by

p(a|t, f, Qi) =
p(a, t|f,Qi)

p(t|f,Qi)
=
p(t|a, f,Qi)p(a|f,Qi)

p(t|f,Qi)

=
qa1qa2p(t|a, f,Qi)∑

a′∈{1,2}2 qa′1qa′2p(t|a′, f, Qi)

=
qia1q

i
a2
f t1a1(1− fa1)

1−t1f t2a2(1− fa2)
1−t2∑

a′∈{1,2}2 q
i
a′1
qia′2
f t1a′1

(1− fa′1)1−t1f
t2
a′2

(1− fa′2)1−t2
.

The third step combines the results of the first two steps to calculate the

conditional distribution of locus states given the observed genotype using Qi

and f , splitting the joint conditional probability into the two terms we have

just derived:

p(s|g, f,Q) = p(a, t|g, f,Q) = p(a|t, g, f,Q)p(t|g, f,Q) = p(a|t, f, Q)p(t|g)

(3)

In the last derivation step we exploit the fact that a depends on g via t, and

that t only depends on g. This three-step procedure is the default procedure

used in asaMap. However, the user can also supply the distribution across

locus states to asaMap and can therefore choose to for instance calculate it

based on the output from local ancestry inference software instead.

Parameter estimation and hypothesis testing

Parameter estimation. The parameters of the model described above

(and of the sub-models relevant for testing purposes described below) are
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estimated using maximum likelihood based on the likelihood function given

in equation 1 (using the details provided in equation 2 and equation 3).

Optimization of this likelihood function must be done numerically and we

have developed an EM algorithm for this (see Supporting Information for

details) that provides faster convergence than standard all-purpose numerical

optimization algorithms such as BFGS.

Hypothesis testing. tandard GLM based methods that are commonly

used for association testing typically assume an additive effect and make use

of statistical tests comparing two models: a model where a given allele has

a genetic effect versus a nested model where it has no effect. In asaMap we

allow the effect sizes to be specific to ancestral populations and therefore

several more nested models can be compared. Specifically, for an additive

genetic effect, then assuming two admixing populations five models M1-M5

are available for comparison. The full model M1 allows separate genetic ef-

fects for each of the two ancestral population: β1 and β2 (see equation 2).

The sub-model M2 assumes no effect in population 1 (i.e. β1 = 0). The sub-

model M3 assumes no effect in population 2 (i.e. β2 = 0). The sub-model

M4 assumes that the effect sizes are the same in both ancestral populations

(i.e. β1 = β2), and finally the null sub-model M5 assumes that there is no

effect in any of the populations (i.e. β1 = β2 = 0). An overview of these

additive models is given in Table 1 and a detailed description can be found in

the Supporting Information. For recessive genetic effects the standard GLM
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Model Hypothesis The model assumes

M1 (β1, β2) ∈ R2 Population specific effects
M2 β1 = 0, β2 ∈ R No effect in population 1
M3 β1 ∈ R, β2 = 0 No effect in population 2
M4 β1 = β2 ∈ R Same effect in both populations
M5 β1 = β2 = 0 No effect in any population

Table 1: Description of the five different possible additive models when there
are two ancestral populations. β1 is the effect size of alleles from population 1
and β2 is the effect size of alleles from population 2. Comparing different pairs
of nested models leads to the tests described in Table 2. For a description of
recessive models, see Table S1.

Models Tests if there is

M1 vs. M5 an effect in any population
M1 vs. M2 an effect in population 1
M1 vs. M3 an effect in population 2
M1 vs. M4 a different effect in the two populations
M2 vs. M5 an effect in population 2 assuming no effect in population 1
M3 vs. M5 an effect in population 1 assuming no effect in population 2
M4 vs. M5 an effect assuming it is the same in both populations

Table 2: Description of the possible tests comparing different nested models
(described in table 1) assuming an additive genetic model.

based methods for association mapping tests a model where carrying two

copies of a given allele has an effect on the individual’s phenotype versus a

model where carrying two copies of the allele has no effect. Here asaMap

allows the effect size to be specific to the ancestry combination of the two al-

lele copies. To do this seven (sub-)models R1-R7 described in the Supporting

Information and Table S1 are implemented.

In asaMap hypothesis tests regarding the ancestry-specific effect sizes is

carried out using likelihood ratio tests comparing nested models among the
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models just described. The implemented models under the additive effect

assumption allow us to test if there is an effect in any population (M1 vs.

M5), an effect in population 1 (M3 vs. M5), an effect in population 2 (M2 vs.

M5), and a difference in the effect specific to the two ancestral populations

(M1 vs. M4). Furthermore, they allow us to test if there is an effect assuming

that it is the same in the two populations (M4 vs. M5). Note that this

latter test is equivalent of the standard test for association performed using

a GLM and it has been implemented in asaMap to enable comparison of the

other tests to the commonly used standard GLM based testing approach. In

addition, the tests M1 vs. M2 and M1 vs. M3 are also implemented and

may be used for performing model checks of the tests based on models M2

and M3. An overview of the implemented tests for additive genetic effects is

given in Table 2. The corresponding tests comparing nested recessive models

are described in the Supporting Information and Table S2.

Implementation. The estimation and testing procedures described above

have been implemented in the software asaMap available at https://github.

com/e-jorsboe/asaMap (C++) and https://github.com/lineskotte/asamap

(R-package), making the method applicable to large scale genome wide as-

sociation studies.
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Testing if the assumed non-effect allele has a population

specific effect

As described in the introduction, like similar methods by (Pasaniuc et al.

2011) and (Yorgov et al. 2014), asaMap focuses on the potentially different

effects of one specific allele in the ancestral populations, the assumed effect

allele, and ignores the possibility that it may in fact be the other allele, the

assumed non-effect allele, that mediates an ancestry-specific effect. To test if

this is the case, and thus that association testing focused on this other allele

instead would be preferred, we introduce an additional model M0, which is

an extension to model M1. In M0 the phenotype yi for a single individual i

follows a normal distribution with mean given by the linear predictor:

ηi = α + β1x1(s) + β2x2(s) + δ1u1(s) +
∑
c

γcz
i
c, (4)

Here the additional predictor u1 is the count of the assumed non-effect allele

from population 1 and the parameter δ1 is effect size of the assumed non-

effect allele in population 1. The other symbols are the same as in equation

2. We use this model by comparing it to model M1 (Table 1), and test if

we can reject the null hypothesis of δ1=0. If so there is evidence that the

assumed non-effect allele has an effect and that this allele may be beneficial

to use as the assumed effect allele. Note that model M0 could equally well

have been formulated using the assumed non-effect allele from population 2
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instead of population 1. This would lead to the same test, because the total

count of alleles across all allele types and ancestries for each individual has

to sum to 2 and thus there are only three independent ancestry-specific allele

count parameters.

Note also that if the assumed non-effect allele has an effect but this effect

is the same in the two ancestral populations, the M0 vs. M1 test will not

be significant. However, if this is the case it does not matter for the asaMap

analyses which allele is chosen as the assumed effect allele and so there is no

reason to analyze the assumed non-effect allele instead of the assumed effect

allele.

The above test is for additive effects. We propose a similar test for re-

cessive effects, in which an additional model, R0, is compared to Model R1.

For details about R0 and this test, see Supporting Information.

Correcting for population structure

To correct for population structure in the real data (described below), we

include as covariates the first 10 principal components calculated from a

genotype-based covariance matrix (Price et al. 2006). We are aware that a

more powerful approach would be a mixed effects approach similar to (Kang

et al. 2008) or (Zhou & Stephens 2012), but we have not succeeded in imple-

menting this in a computationally tractable way in the context of the models

proposed here due to the sum across locus states.
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Simulated data

To be able to assess asaMap, we carried out analyses of simulated samples

with genetic ancestry from two admixing populations. We simulated data

from a total of nine scenarios. In each of these scenarios we simulated data

from a SNP locus, which is assumed not to be causal, but to be in LD with a

causal variant. For all nine scenarios we simulated data from a total of 2500

individuals with admixture proportions from population 1, qi1, in the set

{0, 0.25, 0.5, 0.75, 1} (500 individuals for each value). What varies between

the scenarios is the frequency of the tested variant in the two populations,

f = (f1, f2), the effect sizes in the two populations (β1 and β2), the type of

trait (quantitative or case-control) and the underlying genetic effect model

(additive or recessive). For a description of the nine scenarios see Table 3.

For all scenarios, we followed the same simulation procedure: for each

individual we sampled the ordered allelic ancestry a = (a1, a2) based on the

individual admixture proportions qi1. Then based on this ancestry a and the

allele frequencies f in the ancestral populations, we sampled the ordered al-

lele types t = (t1, t2) for each individual. Knowing a and t, the genotype and

locus state for each individual is known and based on the latter the pheno-

type of each individual is simulated using the relevant phenotype distribution

(quantitative or case-control), the relevant genetic model (additive or reces-

sive) and scenario specific effect sizes (β1 and β2). For quantitative traits we

generated the phenotype value using a normal distribution with variance 1

and for case-control studies we generated the disease status using a binomial
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Scenario Frequencies, f=(f1,f2) Effects Trait Model

A1 (0.1, 0.3) Population 1 Quantitative Additive
A2 (0.1, 0.3) Both Quantitative Additive
A3 (0.1, 0.3) Population 2 Quantitative Additive
B1 (0.2, 0.2) Population 1 Quantitative Additive
B2 (0.2, 0.2) Both Quantitative Additive
B3 (0.2, 0.2) Population 1 Quantitative Recessive
C1 (0.2, 0.2) Population 1 Case-Control Additive
C2 (0.2, 0.2) Both Case-Control Additive
C3 (0.4, 0.4) Population 1 Case-Control Recessive

Table 3: Simulated scenarios. All scenarios have 2500 individuals and indi-
vidual admixture proportions from population 1 in {0, 0.25, 0.5, 0.75, 1}. The
allele frequencies f = (f1, f2) in the two ancestral populations are shown in
the ”Frequencies” column. For each scenario we vary the effect size, however,
they are restricted in some scenarios as shown in the ”Effects” column. E.g.
in scenario A1 there is only an effect in population 1, so here the effect size in
population 2 is restricted to 0. When there is an effect in both populations,
we assume that they are the same. The type of trait simulated is shown in
the ”Trait” column and the simulated effect model is shown in the ”Model”
column.

distribution.

These simulations gave us access to association data where the true

ancestry-specific effects are known and therefore allowed us to assess the

consistency and unbiasedness of the estimators in asaMap. The simulations

also allowed us to assess the power of the tests for association implemented

in asaMap. Finally, because we explicitly simulate the ancestry-specific allele

type combinations (locus states), the simulations allowed us to compare the

power of the tests in asaMap to the hypothetical power of a test where the

true locus states, which in reality are unobservable, are known.

22

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 18, 2018. ; https://doi.org/10.1101/014001doi: bioRxiv preprint 

https://doi.org/10.1101/014001


Skotte Mapping ancestry specific effects

Data for TBC1D4 in a Greenlandic cohort

To illustrate that allowing for ancestry-specific effect sizes can be informa-

tive and appropriate for real data we applied asaMap to genotype data in

combination with measurements of 2-hour (2-h) plasma glucose levels of

2575 individuals in the Inuit Health in Transition cohort from the admixed

Greenlandic population (Moltke et al. 2014, Jorgensen et al. 2013). More

specifically, we applied asaMap to five genotyped SNPs in the TBC1D4 gene

(rs61736969, rs7330796, rs1062087, rs2297206 and rs77685055). In (Moltke

et al. 2014) all five SNPs were found to be strongly associated with an increase

in 2-h plasma glucose levels. rs7330796 was the lead SNP in the discovery

part of the study, which was based on SNP chip data and rs61736969 is the

causal SNP that was in a later part of the study identified from sequencing

data. The three remaining SNPs were also identified from sequencing data

in the search for the causal variant.

The study received ethics approval from the Commission for Scientific

Research in Greenland (project 2011-13, ref. no. 2011-056978; and project

2013-13, ref.no. 2013-090702) and was conducted in accordance with the

ethical standards of the Declaration of Helsinki, second revision. Participants

gave written consent after being informed about the study orally and in

writing.
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Results

To investigate the cost and benefits of asaMap compared to a standard GLM

we first applied both methods to simulated data to compare their statistical

power and to assess important statistical properties of asaMap, like bias and

false positive rates. Then we applied both methods to real data to compare

the range of their potential usage. In both cases we investigated populations

that are mixtures between two populations.

Standard GLM based methods for association mapping makes use of sta-

tistical tests comparing two models: a model where a specific allele has a

genetic effect is compared to a model where the allele has no effect. In

asaMap, where we allow the effect sizes to be specific to ancestral popula-

tions, several more models can be compared (for an overview see Table 1

and Table 2), a detailed description is provided in Materials and Methods.

Briefly, in the context of an additive genetic effect, the full model (M1) al-

lows separate genetic effects for each ancestral population, in the case of two

ancestral populations: β1 and β2. The sub-models then assumes no effect in

population 1 (M2), no effect in population 2 (M3), the same effect in both

populations (M4), and no effect in any population (M5). This allows us to

test if there is an effect in any population (by comparing M1 vs. M5), if

there is an effect in population 1 (by comparing M3 vs. M5), if there is an

effect in population 2 (by comparing M2 vs. M5), and if there is a different

effect in the two populations (by comparing M1 vs. M4). Furthermore, it
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allows us to test if there is an effect assuming that it is the same in the two

populations by comparing M4 vs. M5. In the context of a recessive genetic

effect, corresponding hypothesis can be tested by comparing the models R1-

R7, further details are given in Supporting Information and Tables S1 and

S2.

Note that test comparing M4 and M5 (R6 vs. R7) is equivalent of the

standard GLM based test for association. In the following we will therefore

perform the comparison of asaMap and the standard GLM based test by

comparing the M4 vs. M5 (R6 vs. R7) test with the remaining tests in

asaMap.

Simulation-based results

To assess the power and other statistical properties of asaMap we first sim-

ulated data for individuals with genetic ancestry from two admixing popu-

lations according to nine scenarios (scenarios A1-C3); six with quantitative

traits and three with case-control traits (Table 3, see Materials and Methods

for details).

Power assessment for quantitative traits. First we simulated a sce-

nario (scenario A1) with a causal variant that is only present in one of the

ancestral populations, but with the tested variant present in both ancestral

populations, causing the tested variant to have population-specific effects.

More specifically, the tested variant was simulated to have an additive ef-
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fect, with an effect size in population 1, β1, that varied in the range [0, 1.5],

and with no effect in population 2 since the causal variant is not present

in this population. Furthermore, the tested variant was simulated to have

a frequency 10% in ancestral population 1 and 30% in ancestral population

2. When applying asaMap to data from this scenario, the standard GLM

based (linear regression) test (M4 vs. M5), where the effect size is assumed

to be the same in both populations, required much larger effect sizes for full

statistical power than the full test where the effect size is not assumed to be

the same (M1 vs. M5), see Figure 5:A1. Also, the test of whether there is

an effect in population 1 (M1 vs. M2 and M3 vs. M5) was slightly more

powerful than the full test (M1 vs. M5), which is expected since it has only 1

degree of freedom and the full test has 2 degrees of freedom. Finally, asaMap

could test whether there is a difference in the effect sizes between ancestral

populations (M1 vs. M4) with good statistical power, even for variants with

effect sizes lower that those detectable using the standard GLM based test.

Second, we simulated a scenario (A2), where the tested variant has the

same effect in both populations, which corresponds to a situation in which

the causal allele is tested. In this scenario, the test of M1 vs. M5 was

less powerful than the standard GLM based test (M4 vs. M5), which was

expected because of the extra degree of freedom (scenario A2, Figure 5).

However, interestingly the difference in power is very small. On the other

hand, the test, M3 vs. M5, of whether there is an effect in population 1,

where the tested variant has the lowest frequency is markedly less powerful.
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Figure 5: Power assessment results obtained by applying asaMap to data
simulated from nine different. The curves show the fraction of simulated p-
values that are smaller than 10−8, based on 1000 simulations for each effect
size for each scenario. The simulated population specific effects β1, β2 are
additive, except for scenario B3 and C3. f1, f2 denotes the population allele
frequencies.

27

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 18, 2018. ; https://doi.org/10.1101/014001doi: bioRxiv preprint 

https://doi.org/10.1101/014001


Skotte Mapping ancestry specific effects

Notably, in this scenario we do not reject that the effect is the same for the

two populations (M1 vs M4).

Third, we simulated a scenario (A3) in which the tested variant only has

an effect in population 2, where the variant allele occurs with the highest

frequency. In this scenario, the statistical power of the test, M1 vs. M4,

of whether there is a difference in effect sizes, was the same as for scenario

A1, but, unlike in scenario A1 the standard GLM based test was almost as

powerful as the remaining tests (scenario A3, Figure 5).

Next, we simulated a scenario (B1) where the tested variant has the same

frequency of 20% in both ancestral populations. As was the case for scenario

A1, the test with the best statistical power was the test of whether there

is an effect in population 1 (M3 vs. M5) (scenario B1, Figure 5). Notably,

this test was only slightly more powerful than the full test for effects (M1

vs. M5), but both these test provided remarkable improvements in power

compared to the standard GLM based test of effect assuming same effect in

both populations (M4 vs. M5).

We then simulated scenario B2, which was identical to scenario B1 with

the exception that the tested variant was simulated to have the same effect

in both ancestral populations. Again, as was the case for scenario A2, the

expected loss of power of M1 vs. M5 due to the more complicated modeling

compared to M4 vs. M5 was very small (scenario B2, Figure 5), while the

single population tests (M1 vs. M2 and M1 vs. M3) were less powerful.

Finally, to compare the power of the different tests for a variant with a
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recessive effect, we simulated a scenario (scenario B3), where the frequency

of the tested variant was 20% in both ancestral populations and it had a

recessive effect in population 1 and no effect in population 2. The results for

this scenario were similar to the results for scenario A1 and B1: the test of

an effect in population 1 (R4 vs. R7) was slightly more powerful than the

full test (R1 vs. R7) and both represent remarkable improvements compared

to the standard GLM based test (R6 vs. R7) (Figure 5.

Power assessment for case-control study data. For case-control study

data we simulated from a population of mixed ancestry where the tested

variant has a frequency of 20% in both populations. The effect of the allele

was simulated as log-additive in the logistic model and either only present in

ancestral population 1 (scenario C1, Figure 5) or present in both ancestral

populations (scenario C2, Figure 5). The results are similar to the results for

the quantitative trait versions of these scenarios (scenarios B1 and B2). In

scenario C1 the asaMap test for an effect in ancestral population 1 (M3 vs

M5) is the most powerful test, slightly more powerful than the asaMap test

for an effect in any population (M1 vs. M5), and both these tests outperform

the standard GLM based (logistic regression) test for association. In scenario

C2, where the effect is present in both ancestral populations, the standard

GLM based test is as expected the most powerful, but only slightly better

than the asaMap test for an effect in any population (M1 vs. M5).

We also simulated a similar case-control scenario (scenario C3), where
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Figure 6: Consistency results obtained by applying asaMap to data from
scenario A1 simulated with a fixed effect size of 0.5 in population 1 and 0
in population 2 and with sample sizes ranging from 500 to 5000. Each box
corresponds to 1000 simulations.

the effect of the tested variant is recessive and present only in ancestral

population 1 (scenario C3, Figure 5). Note that to reach any statistical

power for the simulated odds ratios, we here allowed the frequency of the

tested allele to be 40% in both ancestral populations. In this scenario, the

standard GLM based test of whether there is an effect assuming it is the

same in both populations (R6 vs. R7), does not reach satisfactory statistical

power for any realistic odds ratios (ORs). The tests that allow for population-

specific effects (R1 vs. R7 and R4 vs. R7) on the other hand perform much

better, although they also require quite high ORs to reach full statistical

power.

Bias, consistency and false positive rates. Besides using the simulated

data for power comparisons, we also used it for assessing asaMap’s estimators
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for population specific effects. We did this for all nine simulated scenarios

(A1-3, B1-3 and C1-3). This showed that asaMap’s estimators are unbiased

for these scenarios (Figure S1). For all simulation setups, we also simulated

data under the null, i.e. without any effect in any of the populations, and

applied all tests available in asaMap to the data to assess if asaMap has a

controlled false positive rate. This was done to ensure that the uncertainty

in ancestry does not lead to inflated test statistics. More specifically, we did

this for the shared null model of scenarios A1-A3, the shared null of scenarios

B1-B2, the null of scenario B3, the shared null of scenario C1-C2 and the null

of scenario C3, which means that we performed the assessment both in the

context of quantitative traits and of case-control data and both for variants

with additive effects and variants with recessive effects. The corresponding

QQ-plots of the p-values achieved show that the false positive rate is indeed

controlled for in all the tests (Figure S2).

Finally, to assess consistency of the estimators, we next re-simulated sce-

nario A1 with increasing sample sizes and a fixed population specific effect

size of 0.5 in population 1 and 0 in population 2. This showed that asaMap’s

estimators are consistent and that the decrease in variance with increasing

sample size is consistent with the expected 1/n relation (Figure 6).

Assessment of potential power gain from knowing the locus states.

In the process of simulating ancestry-specific association data for the above

power assessment, we explicitly simulated the ancestry-specific allele type
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combinations (locus states, s), which are not directly observable in real data.

This allowed us to compare the tests implemented in asaMap with hypothet-

ical tests of equivalent models based on known locus states. As expected, the

tests based on correctly known locus states is more powerful and the variance

of the estimators is a bit smaller (Figure 7, results only shown for scenario

A1), which shows that if the ancestry of each allele copy was known without

error there is potential for an even larger increase in statistical power.
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Figure 7: Comparison of power and bias results obtained by applying asaMap
with or without known locus state (s) to simulated data from scenario A1.
Left: Results of power comparison. The power obtained with the true (sim-
ulated) locus states are shown with dashed curves and the power obtained
without are shown with solid curves. Right: Results of bias comparison. Box
plots of estimates obtained with the true (simulated) locus states are shown
in black, whereas estimates obtained without are shown in colors.

Assessment of the test for whether the assumed non-effect allele

has an ancestry-specific effect. In the above assessments, we used the

simulated effect allele as the assumed effect allele in all cases. To assess
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how well our proposed tests for whether the assumed non-effect allele has an

ancestry-specific effect and thus should be used as the assumed effect allele,

we again simulated data from the nine scenarios from Table 3. However,

this time we performed the asaMap analyses of the data with the simulated

effect allele as the assumed non-effect allele in statistical models M1 (R1).

We compared M0 vs. M1 (R0 vs. R1) to see if these tests correctly reject

that δ1 = 0 (equation 4) and that δ1 = δ2 = 0 (equation 7) and thus reveal

that the effect allele is misspecified. In most scenarios the tests have high

power to correctly reject the choice of effect allele (Figure S3). The only

exceptions are the scenarios where the effect sizes of the simulated effect

allele is the same in the two populations (scenarios A2, B2 and C2) and

where it therefore does not matter which allele is assumed to be the effect

allele. To check that the false positive rate of the test for a misspecified effect

allele is controlled, we also applied the M0 vs. M1 (R0 vs. R1) test with

the simulated true effect allele as the assumed effect allele in the statistical

model M1 (R1). Here, by simulation δ1 = 0 in the statistical model M0 and

the corresponding hypothesis should only be rejected at rate α. The check

indeed showed that the test has the expected false positive rate (Figure S3).

TBC1D4 gene in a Greenlandic cohort

To further assess asaMap, we also applied it to real data from the Greenlandic

population. This population is an Inuit population which is highly admixed:

more than 80% of Greenlanders have some recent European ancestry and the
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Greenlanders have on average approximately 25% European ancestry (Moltke

et al. 2015). A recent GWAS in the Greenlandic population (Moltke et al.

2014) led to the identification of a variant in the gene TDB1D4, which confers

high risk of type 2 diabetes and highly elevated 2-hour (2-h) plasma glucose

levels. The lead SNP in the discovery part of this study was rs7330796 and

to locate the causal variation four coding SNPs in high LD was identified

using exome sequencing and subsequently genotyped. Among these SNPs

rs61736969 located in TBC1D4 was identified as the causative variant and

shown to have a recessive effect.

Based on genotype and phenotype data from the Greenlandic Inuit Health

in Transition (IHIT) cohort described in (Moltke et al. 2014), we tested the

five above mentioned SNPs for ancestry-specific association with 2-h plasma

glucose levels as a quantitative trait using a recessive model (for results see

8). For the four non-causal SNPs; rs7330796 (original lead SNP), rs1062087,

rs2297206, and rs77685055, we observed a more significant recessive effect of

the variant when both alleles are inherited from the Inuit population (R4 vs.

R7) compared to the standard GLM based test (R6 vs. R7), supporting our

simulation based observation that asaMap can increase the power to detect

associations when the causal SNPs remains untyped. Furthermore, for all

four non-causal SNPs asaMap (R6 vs. R2) showed that the effect of carrying

two effect alleles both inherited from the ancestral Inuit population is signif-

icantly different from the effect of carrying two effect alleles of which at least

one is inherited from the ancestral European population. This suggests that
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Figure 8: Association results for data from Greenland. Left: QQ-plot for 2-h
plasma glucose in the Greenlandic IHIT cohort achieved using the asaMap
recessive model for quantitative traits. Specifically, we tested for an effect in
the ancestral Inuit population using the test R4 vs. R7. Right: Minus log10

of the p-values from three different statistical tests implemented in asaMap.

these four SNPs are not causal. On the contrary, for rs61736969 the p-value

for the population specific test for an recessive effect in the Greenlandic pop-

ulation is identical to the p-value of the standard test (R6 vs R7), which is

consistent with the conclusion from (Moltke et al. 2014) that it is casual.

Finally, we note that the QQ-plot in Figure 8 show that the ancestry-

specific association test is not more inflated than regular association map-

ping tests, using the first ten principal components to correct for population

structure as described in Materials and Methods.
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Discussion

In this paper, we have presented asaMap, a flexible statistical testing frame-

work for association mapping in admixed populations, which allows for the

possibility that a tested variant can have different effects in the different an-

cestral populations. asaMap does this by modeling the local allelic ancestry

as a latent variable.

Using simulated data we have demonstrated that asaMap provides ancestry-

specific effect estimates that are unbiased and consistent. Furthermore, we

have assessed how powerful asaMap’s association tests are compared to the

standard GLM based tests, which are commonly used for performing asso-

ciation mapping in admixed populations. Unlike asaMap, these commonly

used tests do not allow for the possibility that a tested variant can have dif-

ferent effects in the different ancestral populations. On the contrary, they

are based on the assumption that the effect of the tested variant is the same

regardless of its ancestry. This assumption is reasonable for a causal vari-

ant, but may not hold for the SNPs tested in a GWAS, which are usually

not causal. Notably, we have here demonstrated that when the effect does

depend on ancestry, the full test in asaMap, which tests if there is an effect

in any population while allowing for ancestry-specific effects (M1 vs. M5)

will outperform the commonly used GLM based tests. However, the gain in

power depends strongly on the allele frequencies in the ancestral populations.

If there is a lower frequency in the population in which the effect is high-
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est than in the other population the gain in power can be very substantial.

Conversely, if the frequency is higher, then gain in power can be negligible.

When the effect is not ancestry-specific, the full test in asaMap is less pow-

erful than the commonly used test, which could be expected since the full

test is based on a more complicated model. However, the difference in power

is small.

In addition to the full test, asaMap also allows for testing if a variant has

an effect in a specific ancestral population - both with or without assuming

that there is an effect in the other population. Testing if a variant has

an effect in one of the ancestral populations, while allowing for an effect

in the other population (M1 vs. M2 or M1 vs. M3) will be less powerful

for identifying new associations than testing if a variant has an effect in

one of the populations, while assuming no effect in the other population

(M2 vs. M5 and M3 vs. M5). However, the former are useful tests for

establishing if the causal variant is present and in LD with the tested variant

in a specific population. Also, if one of the populations has already been

extensively studied for a very large number of individuals, and no effect has

been detected here, then it can be practical to assume that there is no effect

in that population: our results show that the tests M2 vs. M5 and M3 vs.

M5 are the most powerful if the effect is actually absent in one population.

We therefore recommend using the tests M2 vs. M5 for association testing in

datasets where very large-scale association tests have already been applied

to one of the ancestral populations.

37

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 18, 2018. ; https://doi.org/10.1101/014001doi: bioRxiv preprint 

https://doi.org/10.1101/014001


Skotte Mapping ancestry specific effects

All the power results described above were based on simulations of vari-

ants with additive effects. For variants with recessive effects it is a bit more

complicated since there are three possible effects for individuals carrying two

effect alleles assuming there are two ancestral populations. However, we have

here demonstrated that when an allele only has a recessive effect when both

copies of it are inherited from one of the two populations there is potential to

gain a great amount of power by allowing for ancestry-specific effects. More

specifically, we observed a large gain in power when the tested variant was

in high frequency in both populations, both for the full test (R1 vs. R7) and

even more so for the test for an effect in a specific ancestral population (R4

vs R7). We expect the same to be true in all cases where the frequency of the

effect allele is high in the population where it does not have an effect, because

in this case a lot of the individuals carrying two copies of the effect allele will

not be affected, causing the standard GLM based recessive association test

to have low statistical power.

Another useful test is M1 vs. M4, which tests whether the effect sizes

are different in the two ancestral populations. Since we expect the effect of a

causal allele to be similar in the two ancestral populations a significant test

is an indication that a variant is not causal. However, a non-significant test

for different effect sizes can clearly not be taken as evidence that the variant

is causal, since two fairly different populations can have different amounts of

LD between the causal site and the tested variant, but this may not always

be true.
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Finally, asaMap offers a test for whether the assumed non-effect allele,

i.e. the allele that is not assumed to be the effect allele in the default asaMap

model, has an ancestry-specific effect. The motivation for this is that asaMap,

just like other similar methods (Pasaniuc et al. 2011, Yorgov et al. 2014),

focuses its tests on the potentially different effects of a specific assumed

effect allele. However, it could in principle be the other allele that has an

ancestry specific effect. If this is the case it will not lead to false positives,

but it may result in suboptimal power to detect an effect and particularly

to detect difference in effects between populations. We have not experienced

this as a problem in practice, but since it may occur, offering this additional

test seems potentially useful to the users.

To test aseMap on real data, we applied it to genotype data from admixed

individuals from Greenland for five SNPs and corresponding levels of 2-h

plasma glucose. We demonstrated that the ancestry-specific tests in asaMap

can increase the statistical power of the GWAS when the causal variant re-

mains untyped. Also, asaMap correctly provided results that were consistent

with the identified causal loss of function variant being causal. Furthermore,

asaMap correctly provided results, which support that the four remaining

SNPs have ancestry-specific effects and thus are unlikely to be causal.

In summary, we have shown, using both simulated and real data, that

asaMap by allowing for ancestry-specific effects provides tests that in some

cases are much more powerful than the standard GLM based tests that are

commonly used in GWAS. We have also shown the asaMap tests, at least
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the full test, are almost as powerful as the standard GLM based test in all

other investigated cases. Finally, we have shown that asaMap can be used

to test if a variant has an ancestry dependent effect, which can be helpful for

assessing if a tested SNP is causal. This suggests that asaMap is a powerful

and flexible complement to the standard tests commonly used when carrying

out a GWAS in admixed populations.
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Figure S1: Results of bias simulations for all nine scenarios (A1-C3). Each
box show the results of 1000 simulations. The lines show the true effect sizes.
β1 and β2 denotes the effect sizes in population 1 and 2, respectively. The
simulated scenarios are described in Table 3 and the tests are described in
Table 2 and Table S2.
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Figure S2: QQ-plots of the p-values obtained by applying asaMap to simula-
tions from the null model of all simulation scenarios (A1-C3). Each QQ-plot
is based on 100000 simulations. The simulation scenarios are described in
Table 3 and the tests are described in Table 2 and Table S2. The three top
rows show results for the asaMap tests that assume an additive genetic effect,
while the two bottom rows show results for the asaMap tests that assume a
recessive genetic effect. 52
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Figure S3: Results for the tests of whether the assumed non-effect allele has
an effect applied to simulated data from nine scenarios (A1-C3). The simula-
tion scenarios are described in Table 3. The tests are based on comparing M0
vs. M1 and R0 vs. R1. M0 and R0 are described in equations 4 and 7. All
the curves based on 1000 simulations for each effect size for each scenario and
show the fraction of the tests that led to p-values that are smaller than 0.05.
The curves labeled ”misspecified” show the results of applying the tests with
the assumed effect allele misspecified. The curves labeled ”not misspecified”
show the results of applying the tests with the assumed effect allele correctly
specified.
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Supplementary tables

Model Hypothesis The model assumes

R1 (β1, βm, β2) ∈ R3 Ancestry-specific effects
R2 β1 ∈ R, βm = β2 ∈ R Same effect when one or both variant alleles are from pop 2
R3 β1 = βm ∈ R, β2 ∈ R Same effect when one or both variant alleles are from pop 1
R4 β1 ∈ R, βm = β2 = 0 Only an effect when both variant alleles are from pop 1
R5 β1 = βm = 0, β2 ∈ R Only an effect when both variant alleles are from pop 2
R6 β1 = βm = β2 ∈ R Same effect regardless of ancestry
R7 β1 = βm = β2 = 0 No effect

Table S1: Recessive ancestry-specific genetic effects models. β1 is the effect
of carrying two copies of the effect allele when both are inherited from pop-
ulation 1, β2 is the effect carrying two copies of the effect allele when both
are inherited from population 2 and βm is the effect of carrying two copies
of the effect allele when one of the copies is inherited from population 1 and
the other from population 2.

Models Tests if there is

R1 vs. R7 A recessive effect for some combination of ancestry
R1 vs. R4 Only an effect when both alleles are from pop 1
R1 vs. R5 Only an effect when both alleles are from pop 2
R1 vs. R6 Any ancestry dependence of the effect
R2 vs. R6 A different effect when both alleles are from pop 1
R3 vs. R6 A different effect when both alleles are from pop 2
R4 vs. R7 A recessive effect in population 1
R5 vs. R7 A recessive effect in population 2
R6 vs. R7 A recessive effect assuming it is independent of ancestry

Table S2: Relevant tests comparing the different nested recessive ancestry-
specific genetic effects models described in Table S1.
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Supplementary text

Below we describe the models and methods that were not described in detail

in the main text.

Case-control study modification

For case-control studies or other dichotomous traits studies asaMap is based

on a logistic regression analysis, since this allows the inclusion of additional

covariates (such as principal components) in the model. Specifically, given

the locus state s, the probability πi that individual i is affected is modeled

by

log

(
πi

1− πi

)
= ηi = α + β1x1(s) + β2x2(s) +

∑
c

γcz
i
c. (5)

where x1(s) and x2(s) are the design matrix entries for the two ancestry-

specific effects and zic is the value of covariate c for individual i.

Overview of recessive models and tests

In addition to the models that assume an additive genetic effect, models that

assume a recessive effect have also been implemented in asaMap. Their de-

sign is slightly more complicated than the additive models. This is because

we wish to have the best possible power to detect the genetic effect of a re-

cessive disease causing variant that may remain untyped and only be present

in one of the ancestral populations. Notably, due to this more complex mod-
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elling, the recessive genetic model is complicated for more than two ancestral

populations.

A recessive model in general assumes that there only is an effect, when

an individual carries two copies of the effect allele. The full ancestry-specific

recessive model, R1, includes three different effects: β1 is the effect of carrying

two copies of the effect allele when both are inherited from population 1, β2

is the effect of carrying two copies of the effect allele when both are inherited

from population 2 and βm is the effect of carrying two copies of the effect

allele when one of the copies is inherited from population 1 and the other

from population 2. The linear predictor for this model is given by

ηi = α + β1r1(s) + β2r2(s) + βmrm(s) +
∑
c

γcz
i
c, (6)

where r1 = 1 if the individual carries two copies of the effect allele that

are both inherited from population 1 and r1 = 0 otherwise, r2 = 1 if the

individual carries two copies of the effect allele that are both inherited from

population 2 and r2 = 0 otherwise and where rm = 1 if the individual carries

two copies of the assumed effect-allele and has inherited one copy from each

of population 1 and 2.

This allows us to fit both R1 and a range of sub-models (see Table S1

for an overview and later text for a more detailed description). The models

R4 and R5 are of most interest. In R4 it is assumed that there is no effect

of carrying two copies of the effect allele - unless both alleles are inherited
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from population 1. This model can then be compared against R7 - where it is

assumed that there is no effect - to test if there is a significant recessive effect

of the effect allele when inherited from population 1. To test if the model

assumption for model R4 is appropriate we can compare against R1 and to

test if there is a different recessive effect when both alleles are inherited from

population 1 than otherwise, we can compare R2 to R6, where the effect is

assumed to be independent of ancestry. In the exact same way R5 vs. R7

can be used to test for a recessive effect when both variants are inherited

from population 2 and R1 vs. R5 can be used to check the assumptions of

this test.

We have also implemented an expanded model, R0, which also models

the effects of carrying two copies of the assumed non-effect allele that are

both inherited from population 1 or population 2:

ηi = α + β1r1(s) + β2r2(s) + βmrm(s) + δ1ru1(s) + δ2ru2(s) +
∑
c

γcz
i
c (7)

Here, r1, r2, rm, β1, β2 and βm are defined as above, ru1, ru2 are indicators of

whether an individual carries two copies of the assumed non-effect, which

are both inherited from population 1 or population 2, respectively and δ1, δ2

are the corresponding effect sizes. This model allows the user to check if the

assumed effect allele is miss-specified. This check is performed by testing

model R0 against model R1, to see if we reject the null hypothesis of δ1 =

δ2=0. Note that, for this model we assume that δm1 meaning being recessive
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for the assumed non-effect allele but with two different ancestries will not

have an effect that δ1 or δ2 does not detect.

Detailed equations for the additive models

Below we provide a more detailed description of the different nested models

used under the assumption of an additive genetic effect outlined in Equation

2, Equation 4 and Table 1. More specifically, we list the linear predictors for

all the models. In this list, the covariates x1(s) and x2(s) denote the counts

of the assumed effect allele from population 1 and 2, respectively for a locus

in locus state s. In addition, α parameterizes the intercept (baseline) and

additional covariates enters the model in the zic with effects γc. Finally, we

use δ1 to parameterize the effect of the assumed non-effect allele and u1 is

the observed number of assumed non-effect alleles from population 1. With

this notations the linear predictors are:

M0:

ηi = α + β1x1(s) + β2x2(s) + δ1u1(s) +
∑
c

γcz
i
c, (8)

M1:

ηi = α + β1x1(s) + β2x2(s) +
∑
c

γcz
i
c, (9)
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M2:

ηi = α + β2x2(s) +
∑
c

γcz
i
c, (10)

M3:

ηi = α + β1x1(s) +
∑
c

γcz
i
c, (11)

M4:

ηi = α + β(x1(s) + x2(s)) +
∑
c

γcz
i
c, (12)

M5:

ηi = α +
∑
c

γcz
i
c, (13)

Detailed equations for the recessive models

Below we provide a more detailed description of the different nested models

used under the assumption of a recessive genetic effect outlined in Equation

6, Equation 7 and Table S1. More specifically, we list the linear predictors

for all the models.

In this list, r1 and r2 indicates if the individual carries two copies of

the assumed effect allele and both are inherited from population 1 or 2, re-

spectively. Similarly, rm indicates if the individual carries two copies of the
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assumed effect allele and they are inherited from both populations. The

corresponding effects are denoted by β1, β2 and βm. In addition, α parame-

terizes the intercept (baseline) and additional covariates enters the model in

the zic with effects γc. Finally, ru1, ru2 indicates if the individual carries two

copies of the assumed non-effect allele and both alleles are inherited from

population 1 or 2, respectively and δ1, δ2 are the corresponding effects. With

this notation the predictors are:

R0:

ηi = α + β1r1(s) + β2r2(s) + βmrm(s) + δ1ru1(s) + δ2ru2(s) +
∑
c

γcz
i
c (14)

R1:

ηi = α + β1r1(s) + β2r2(s) + βmrm(s) +
∑
c

γcz
i
c (15)

R2:

ηi = α + β1r1(s) + β(r2(s) + rm(s)) +
∑
c

γcz
i
c (16)
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R3:

ηi = α + β(r1(s) + rm(s)) + β2r2(s) +
∑
c

γcz
i
c (17)

R4:

ηi = α + β1r1(s) +
∑
c

γcz
i
c (18)

R5:

ηi = α + β2r2(s) +
∑
c

γcz
i
c (19)

R6:

ηi = α + β(r1(s) + r2(s) + rm(s)) +
∑
c

γcz
i
c (20)

R7:

ηi = α +
∑
c

γcz
i
c (21)

EM algorithm

Below we will go through the details of the EM-algorithm used in asaMap.

Notation. We will use the following notation:
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n individuals

yi phenotype of ind i ∈ {1, . . . , n}

gi genotype of ind i, g ∈ {0, 1, 2}

Q admixture proportions, for individual i, Qi = {qi1, qi2}.

f = {f1, f2} population specific allele frequencies

φ vector of effect sizes e.g. (β1, β2) and other regression parameters e.g.

(α, γ, σ)

s locus state, s = {a, t} where a = (a1, a2) is the ordered information on

ancestry and t = (t1, t2) is the ordered allelic genotype.

Likelihood functions. The likelihood for the observed data, assuming

that individuals are independent given genotypes, admixture proportions and

population specific allele frequencies, is given by:

p(Y |G,Q, f, φ) =
∏
i

p(yi|gi, Q, f, φ) (22)

and splitting the probabilities according to locus state (see Figure 4) gives

p(yi|gi, Q, f, φ) =
∑
s

p(yi, s|gi, Q, f, φ) (23)

=
∑
s

p(yi|s, φ)p(s|gi, f, Q) (24)
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Conditional on locus state, the phenotype follows a normal distribution.

p(yi|s, φ) ∼ N(ηi(s, α, β, γ), σ2) (25)

with

ηi(s, α, β, γ) = α + β1x1(s) + β2x2(s) +
∑
c

γcz
i
c (26)

where we use that for population k xk(s) = t11a1=k + t21a2=k for the additive

genetic model. The normal distribution is part of the exponential family.

The density of a normal with mean η and standard deviation σ is

f(y|η, σ) =
1√

2πσ2
exp
−(y − η)2

2σ2

= exp

(
yη − η2/2

σ2
− y2/2σ2 − log(2πσ2)/2

)
= exp

(
yη − b(η)

a(σ)
+ c(y, σ)

)
(27)

with b(η) = η2/2, a(σ) = σ2 and c(y, σ) = −y2/2σ2 − log(2πσ2)/2.

Derivation of EM algorithm. The expression that must be maximized

in a single EM algorithm step is:

ES|Y,G,φ∗,Q,f [log p(Y, S|G, φ,Q, f)] =
∑
i

Esi|yi,G,φ∗,Q,f [log p(yi, si|G, φ,Q, f)]

(28)
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as a function of all regression parameters φ, where φ∗ is fixed to the parameter

values from previous iteration. Using p(yi, si|G, φ,Q, f) = p(yi|si, φ)p(si|Q, f)

where the second term does not depend on the parameters to be optimized,

this is equivalent to maximizing

∑
i

Esi|yi,G,φ∗,Q,f [log p(yi|si, φ)] = ES|Y,G,φ∗,Q,f [log p(Y |S, φ)] (29)

Following (Lake et al. 2003) we take the derivative with respect to the vector

of ancestry-specific effect sizes and get:

∂

∂β
Esi|yi,G,φ∗,Q,P [log p(yi|si, φ)] = Esi|yi,G,φ∗,Q,f [

∂

∂β
log p(yi|si, φ)]

= Esi|yi,G,φ∗,Q,f [
∂ηi
∂β

∂

∂ηi
log p(yi|si, φ)]

= Esi|yi,G,φ∗,Q,f [x
iyi − b′(ηi)

a(σ)
]

=
∑
si

xi
yi − ηi
σ2

p(si|yi, G, φ∗, Q, f) (30)

where xi = (x1(si), x2(si)) and ηi = η(xi, zi, α, β, γ). The equivalent formula

holds for the derivative with respect to α and γ. We therefore get

∂

∂φ
Es|y,G,φ∗,Q,P [log p(y|s, φ)] =

∑
i

∑
si

(xi, zi)
yi − ηi(φ)

σ2
p(si|yi, G, φ∗, Q, f)

(31)

which is recognized as the score function for a weighted regression where each

individual, i, contributes one observation per possible state si and where the
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weights, p(si|yi, gi, φ∗, Q, f), are the posterior distribution of states given all

the observed data and based on the previously fitted parameters (see below

for details). The same formula holds for the logistic regression. The updated

regression parameters φ can therefore be estimated by fitting a weighted lin-

ear regression in case of a quantitative trait and a weighted logistic regression

for case/control data.

Posterior distribution of locus state. The conditional distribution of

locus state given previous parameters, observed data and genotype is found

using

p(s|yi, G, φ∗, Q, f) =
p(yi|s, φ∗)p(s|gi, Q, f)∑
s′ p(yi|s, φ∗)p(s′|gi, Q, f)

(32)

where p(s|gi, Q, f) is given in equation 3 and p(yi|s, φ∗) is the phenotype

distribution given locus state and previous parameters.

Optimization strategy for normal distributed trait. First a rough

initial guess of the standard deviation is calculated by

σ = sd[y] (33)
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and randomly chosen start values for the regression parameters are sampled

from a uniform distribution e.g.

α, β, γ ∼ unif(−1, 1) (34)

Then regression weights are calculated according to (32) and a weighted

regression according to the score function in (31) is carried out to update

β, γ. This is followed by an update of σ using the weighted sum of squared

residuals from the weighted regression and n−p df, where n is the number of

individuals and p is the number of effect parameters in the linear predictor

e.g. (p = 3 + C) for M1 model with C being the number of γ parameters.
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