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Abstract 

 
Tuberculosis (TB) is a global public health emergency. Increasingly drug resistant strains 

of Mycobacterium tuberculosis (M.tb) continue to emerge and spread, highlighting adaptability 

of this pathogen. Most studies of M.tb evolution have relied on ‘between-host’ samples, in which 

each person with TB is represented by a single M.tb isolate. However, individuals with TB 

commonly harbor populations of M.tb numbering in the billions. Here, we use analyses of M.tb 

genomic data from within and between hosts to gain insight into influences shaping genetic 

diversity of this pathogen. We find that the amount of M.tb genetic diversity harbored by 

individuals with TB can vary dramatically, likely as a function of disease severity. Surprisingly, 

we did not find an appreciable impact of TB treatment on M.tb diversity. In examining genomic 

data from M.tb samples within and between hosts with TB, we find that genes involved in the 

regulation, synthesis, and transportation of immunomodulatory cell envelope lipids appear 

repeatedly in the extremes of various statistical measures of diversity. Many of these genes have 

been identified as possible targets of selection in other studies employing different methods and 

data sets. Taken together, these observations suggest that M.tb cell envelope lipids are targets of 

selection within hosts. Many of these lipids are specific to pathogenic mycobacteria and, in some 

cases, human-pathogenic mycobacteria. We speculate that rapid adaptation of cell envelope 

lipids is facilitated by functional redundancy, flexibility in their metabolism, and their roles 

mediating interactions with the host. 
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Author Summary 

 
 Tuberculosis (TB) is a grave threat to global public health and is the second leading cause 

of death due to infectious disease. The causative agent, Mycobacterium tuberculosis (M.tb), has 

emerged in increasingly drug resistant forms that hamper our efforts to control TB. We need a 

better understanding of M.tb adaptation to guide development of more effective TB treatment 

and control strategies. The goal of this study was to gain insight into M.tb evolution within 

individual patients with TB. We found that TB patients harbor a diverse population of M.tb. We 

further found evidence to suggest that the bacterial population evolves measurably in response to 

selection pressures imposed by the environment within hosts. Changes were particularly notable 

in M.tb genes involved in the regulation, synthesis and transportation of lipids and glycolipids of 

the bacterial cell envelope. These findings have important implications for drug and vaccine 

development, and provide insight into TB host pathogen interactions.  

 

Symbols and Abbreviations 

 
Multidrug-resistant (MDR), Extensively drug-resistant (XDR), Nucleotide diversity (π), 

Watterson’s theta (ƟW), Tajima’s D (TD), ratio of counts of non-synonymous variants per non-

synonymous site to synonymous variants per synonymous site (πN/πS), Between-host Tajima’s D 

(BHTD), Within-host Tajima’s D (WHTD), Polyketide Synthase (PKS), Mycobacterial 

membrane protein Large (MmpL), phthiocerol dimycocerosates (PDIM), sulfolipids (SL), 

polyacyl trehalose (PAT), diacyl trehalose (DAT), phenolic glycolipid (PGL), novel complex 

polar lipids synthesized by Pks6 (POL), and mannosyl-β-1-phosphomycoketides (MPM) 

 

Introduction 

 
 Mycobacterium tuberculosis (M.tb) causes over nine million new cases of tuberculosis 

(TB) per year and is estimated to infect one-third of the world’s population [1]. The emergence 

of increasingly drug resistant strains of M.tb [2] demonstrates the bacterium’s ability to adapt to 

antibiotic pressures, despite limited genetic diversity [3]. Prior research has identified the 

influence of bottlenecks, population sub-division, and purifying selection on genetic diversity of 

M.tb circulating among human hosts [4–7]. In these studies, each TB patient was represented by 

a single M.tb strain isolated in pure culture. However, individuals with TB harbor a large 

population of M.tb cells for a period of months to years, which raises the possibility of 

significant diversification of bacterial populations over the course of individual infections.  

 There are few studies of within-host evolution of M.tb. One example is a study of the 

transposable element IS6110 marker that found multiple lines of evidence suggestive of positive 

selection on M.tb populations within hosts [8]. Advances in sequencing technologies have since 

enabled detailed, genome-wide studies of the evolution of intra-host populations of both 

pathogenic and commensal microbes [9–22]. Whole-genome sequencing (WGS) studies of 

natural populations of M.tb have focused primarily on the emergence of drug resistance [23–26]. 

Here, we use analyses of genetic data from within and between patients with TB to characterize 

M.tb variation across evolutionary scales. We find that overall diversity of M.tb populations 

within hosts can vary dramatically and identify candidate genetic loci for M.tb adaptation during 

infection. 
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Results and Discussion 
 

Genome-wide variation 

We quantified genetic diversity of five within-host populations of M.tb (Table 1) using 

data from three published studies. The data we selected from the original studies were directly 

comparable with respect to sequencing platform and other factors we observed to affect diversity 

(see Methods and S1 Table). The data set includes samples susceptible to all first line drugs (A0, 

E0) as well as INH-monoresistant, multidrug-resistant (MDR) and extensively drug-resistant 

(XDR) samples (Table 1). HIV status was not reported in any of the primary studies. M.tb 

lineage 2 (East Asian, Patients A, B, C and D) and lineage 4 (Euro-American, Patient E) are 

included in this sample; patient origin was reported as China (Patients A, B, and C), Abkhazia 

(Patient D) and “Eastern Europe” (Patient E). We used PoPoolation software [27] to estimate 

two standard measures of genetic diversity [nucleotide diversity (π) and Watterson’s theta (ƟW); 

see Inset Box for descriptions] from the pooled within-host M.tb genomic data. It is challenging 

to distinguish rare genetic variants from sequencing errors in pooled genomic data: PoPoolation 

implements methods that account for the effects of sequencing errors on low frequency variant 

allele calls [27,28]. In order to eliminate effects of coverage differences on diversity, we sub-

sampled the genomic data to a uniform 50X coverage (see Methods).  

 
Table 1. Within-host samples of Mycobacterium tuberculosis. Sample dates and resistance profiles 
are from the respective publications; sample timing is in reference to treatment initiation. Treatment at 
sampling is listed. Resistance profile abbreviations: R=resistant; S=susceptible; blank=not reported; 
*indicates more details presented in the original paper. Drug abbreviations: INH (H), isoniazid; STR (S), 
streptomycin; RIF (R), rifampicin; EMB (E), ethambutol; PZA (Z), pyrazinamide; Eth, ethionamide; Ofx, 
ofloxacin; Cip, ciprofloxacin; KAN (K), kanamycin; AMK (Am), amikacin; Pas, para-aminosalicylic acid; 
CPR (Cm), capreomycin; D, Dipasic (isoniazid aminosalicylate); Cs, Cycloserine; Cfz, clofazimine.  
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Treatment 

Patient A Sun et al. (2012)                

0 month 
(-7th day) 

SRR413213 55.8 S S S S          

19 month SRR413216 61.8 R S S S         HR 

24 month SRR413221 191.3 R S S S         HR 

Patient B Sun et al. (2012)                

36 month SRR413226 100.5 R R R S         HR 

Patient C Sun et al. (2012)                

-1 month 
(-24th day) 

SRR413231 89.6 R R R R         DEthZE 

11 month SRR413266 72.5 R R R R         DEthZE  

Patient D Merker et al. (2013)                

0 month SRR611417 70.7 R R S S R S S  R  S R  

9 month SRR611426 68.2 R R R R  S S  R    HRZE 

11 month SRR611415 75.3 R R S R*  R R  R    HRZE 

20 month SRR611416 88.6 R R R R  R R  R    EthCmOfxCsPas 

Patient E Eldholm et al. (2014)                

0 month ERR461940 65.9 S S S S S S S S S S R S  

8 month ERR461941 63.2 R S R S S S S S S S R S HRZ  

12 month ERR461942 64.0 R S R S S S S S S S R S ZESOfx 

14 month ERR461943 66.2 R R R S S S S S S S R S ZESOfx 
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28 month ERR461944 65.5 R R R S S R R R S S R S ZESOfxEth  

31 month ERR461945 67.6 R R R S* S R R R S S R S ZECfzAmk 

34 month ERR461946 65.6 R R R S* S R R R R R R S ZECfzAmk 

39 month ERR461947 68.6 R R R S* S R R R R R R S ZCmCfz  

42 month ERR461948 65.3 R R R S* S R R R R R R S ZCmCfz 

 

We compared the pooled M.tb within-host data to a globally diverse sample of 201 

‘between-host’ genomes from the seven major lineages, where each individual with TB is 

represented by a single isolate of M.tb (S2 Table). These data were originally reported in Comas 

et al [29]. Drug resistance phenotypes were not reported in the original study. We examined the 

between-host alignment at 1004 loci with a reported association with drug resistance [30] and 

found that 37 of these loci had segregating polymorphisms. We conclude that the between-host 

dataset is likely to include both susceptible and drug resistant isolates.  

Estimates of M.tb diversity within hosts were very sensitive to coverage and platform; 

measures of diversity from some samples were also sensitive to base quality score and minor 

allele count threshold (S3 File, S4 Table).  Patients D and E were similar in that both developed 

progressive drug resistance during treatment, and therapy was tailored to results of extended drug 

susceptibility testing (DST). Patient E’s treatment outcome was eventually successful; treatment 

outcome of Patient D was not reported. For a given set of parameters, estimates of diversity from 

Patients D (M.tb lineage 2) and E (M.tb lineage 4) were very similar to each other, and stable 

across serial samples (Fig. 1 and S4 Table). Estimates from Patient E were slightly more 

sensitive to the minor allele count threshold, suggesting this patient harbored more rare variants 

than Patient D.  

 

Description of statistical measures used in the text. 

We used two measures to quantify genetic diversity in the samples included in our 

study.  Nucleotide diversity (π) is the proportion of loci at which sequences differ in pairwise 

comparisons (π/site is reported in the text). Watterson’s theta (ƟW) is an estimate of the 

population mutation rate (the product of the effective population size and mutation rate). It is 

based on the number of segregating sites in a sample of sequences. Segregating sites are loci 

at which differences are found in one or more sequences. We report ƟW/site in the text.  

Tajima’s D (TD) computes the difference between scaled average numbers of 

pairwise differences and segregating sites. In a neutrally evolving population of constant size, 

TD is expected to be zero. Many neutral and selective influences can cause TD to deviate 

from zero. For example, selection against deleterious mutations (‘purifying’ selection), 

population expansion, and past selective sweeps (in which an advantageous mutation rapidly 

increases in frequency) can cause TD to decrease. TD can increase as a result of population 

sub-division and selection that maintains diversity in the population. 

πN/πS is the ratio of counts of non-synonymous variants per non-synonymous site to 

synonymous variants per synonymous site. Stably maintained amino acid polymorphisms 

(πN/πS > 1) may indicate diversifying selection or local sweeps (selection for advantageous 

mutations under a regime of restricted migration).  
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Fig. 1. Patterns of nucleotide diversity (π) and Watterson's theta (ƟW) across the Mycobacterium 
tuberculosis (M.tb) chromosome. Sliding-window analyses were performed using 100-Kb windows with 
a step-size of 10-Kb on uniformly subsampled alignments of each sample (50X sequence coverage); 
plotted values are the mean of each window across 9 replicate subsamplings. Chromosomal coordinates 
reflect the genomic positions of the reference strain H37Rv, against which pooled-sequence reads were 
mapped. Temporal samples of each patients’ M.tb population are colored to reflect the sample collection 
date as shown in the legend; global and lineage-specific estimates are colored as indicated in the legend. 

 

Patient A (M.tb lineage 2) was described as non-adherent during standard therapy of 

drug-susceptible disease; the second and third samples from this patient exhibited INH-

monoresistance. Patient A was treated with two months of four-drug treatment, followed by 27 

months of INH and RIF (i.e. only one drug to which the bacteria were susceptible). Measures of 

diversity from the M.tb population of Patient A were similar overall to those from Patients D and 

E, but showed an increasing trend over the sampling period (Fig. 1). Increasing diversity could 

indicate loss of control of the infection. Patient A defaulted treatment, and no further samples 

were reported after the sample collected at 24 months into treatment. 

Patients B and C had MDR TB. Extended DST results were not reported for these 

patients, and both died. M.tb diversity of pre-terminal samples from patients B and C was 

extremely high relative to the other intra-host samples (Fig. 1). This difference in diversity could 

be due to a technical issue, such as relatively high sequencing error rates in these data. In this 

case, we would expect that application of more stringent quality filters would decrease observed 

diversity. Application of a higher base quality threshold did not result in loss of relative diversity 

of these samples. Differences between samples from Patients B, C and the others were, however, 

less marked when the minor allele count threshold was increased (S4 Table). This suggests that 

high diversity of B36 and C11 was driven by rare variants. Excess rare variants are a hallmark of 

an expanding population; diversity of pre-terminal samples from Patients B and C could reflect 
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expansion of the M.tb population in the final phases of an uncontrolled infection. Another 

possibility is that terminal progression of their TB infections involved extensive breakdown of 

lung tissue allowing sampling of previously inaccessible M.tb sub-populations.  

TB patients included in our within-host data set were culture positive for prolonged 

periods: this is atypical for settings with well-functioning TB control programs and these patients 

are unlikely to be broadly representative. Further studies of within-host diversity of TB patients 

from a range of settings and with a variety of clinical presentations are needed to fully 

characterize M.tb adaptation within hosts. Nonetheless, these data delineate some interesting 

patterns of within-host diversity. It is striking that M.tb within-host diversity is so similar across 

patients from three independent studies (Patients A, D, and E). In vitro estimates of M.tb’s 

mutation rate vary substantially according to lineage [31], yet we did not observe an obvious 

effect of lineage on diversity in comparisons of M.tb populations from lineage 2 (Patients A and 

D) and lineage 4 (Patient E). This could reflect differences between in vitro and in vivo mutation 

rates, or perhaps other parameters are more important in shaping overall patterns of diversity 

within hosts. Diversity of M.tb lineage 2 was lower than lineage 4 at the between-host scale (Fig. 

1), whereas lineage 2 isolates have been observed to evolve more quickly in the lab.  

Our data set includes four within-host samples that were collected prior to the initiation 

of treatment (A0, C1, D0, and E0). We did not observe a substantial decrease in M.tb diversity 

following initiation of treatment in any of these patients (A19, C11, D9, and E8). It could be that 

TB treatment does not affect the average number of pairwise differences and segregating sites of 

resident M.tb populations. Alternatively, measures of M.tb diversity may change in response to 

treatment in TB patients whose sputum cultures convert more quickly than the patients in our 

study. Our study included two M.tb samples with susceptibility to all first line agents (A0 and 

E0). Diversity of these samples was not markedly different from samples with a drug resistant 

phenotype. 

 In summary, our results suggest that M.tb lineage, initiation of TB treatment and drug 

resistance do not have strong impacts on diversity measures for within-host M.tb populations. 

Disease severity, on the other hand, appears to have marked effects on M.tb diversity.  

 

Genes and gene categories with distinct patterns of variation across evolutionary scales  

Several studies have identified distinct patterns of variation at M.tb genetic loci 

associated with different functions [4,32]. Such patterns of variation may reflect distinct regimes 

of natural selection, heterogeneity of mutation rates, or other influences. We sought to identify 

bacterial genetic loci with extreme patterns of variation at within- and between-host scales; these 

are candidate loci for M.tb adaptation during transmission and infection.  

For each gene with data that passed our quality thresholds (see Methods), we quantified π 

and ƟW using methods that account for sequencing error [27]. We used the same approach and 

estimated two statistics designed to capture deviations from neutral patterns of variation: 

Tajima’s D (TD, [33]) and the ratio of non-synonymous changes per non-synonymous site (πN) 

to synonymous changes per synonymous site (πS) (see Inset Box). We disregarded genes lacking 

either synonymous or non-synonymous variation in comparisons of πN/πS. Since neutral forces 

such as population growth can affect patterns of variation, we compared relative values of 

statistics in each within-host sample, where all genes are likely to have the same demographic 

history. 

Natural selection can lead to population differentiation when the relative fitness of 

genotypes varies among environments; empirical outlier analyses for loci with extreme measures 
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of population differentiation are commonly used to identify candidates of positive selection [34–

36]. Treating each serial sputum sample from an individual patient as a distinct M.tb population, 

we calculated pairwise FST values for polymorphic sites covered by at least 10 reads with a 

minimum minor allele count of 6 (pooled across all samples from a patient) with PoPoolation2 

[37]. In order to reduce biases introduced by variable coverage, we conditioned our analysis on  

the ability to detect a significant change in allele frequency between samplings using a two-sided 

Fisher’s exact test as previously proposed [38] (see Methods).  

 

Patterns of variation among genes involved in lipid metabolism.  

In order to identify candidate groups of genes under selection, we examined the extreme 

tails (≤ 5th percentile, ≥ 95th percentile) of π, ƟW, and TD for enrichment of specific functional 

categories. We did not observe any consistent patterns of enrichment in genes with extreme 

values of π, ƟW, or the upper tail of TD (S5 Table). There was, however, a striking pattern of 

enrichment among genes with extremely low values of TD across evolutionary scales (Fig. 2). 

The Tuberculist [39] categories “lipid metabolism” (LIP), “conserved hypotheticals” (CHP), and 

the Clusters of Orthologous Groups (COG) [40] category “secondary metabolite biosynthesis, 

transport, and catabolism” (COG:Q) are significantly enriched in the low tail of the distribution 

of gene-wise TD values of most samples, and all patients, in the within-host studies, as well as in 

the global between-host sample (Fig. 2; S5 Table).  
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Fig. 2. Enrichment of annotation categories among genes with extreme negative values of 
Tajima’s D (TD). Within each sample (labeled at the bottom of the heatmap), gene-wise TD values were 
compared and the bottom 5% of genes in the distribution were tested for overrepresentation of functional 
categories using a two-sided Fisher’s exact test. To account for multiple hypothesis testing, a false 
discovery rate of 5% was used and the resulting q-values are displayed on a continuous scale with 
varying shades of blue indicating significance at the 0.05 level. The manually curated TubercuList 

“conserved hypotheticals” and  “lipid metabolism” categories [39], as well as the computationally 

predicted COG:Q “secondary metabolites biosynthesis, transport and catabolism” [40] are notable for 

their consistent enrichment at both the within- and between-host scales. 

 

To clarify whether the same genes are driving the enrichment of LIP, COG:Q, and CHP 

categories across evolutionary scales, we examined the overlap of genes in the  bottom 5% tail of 

the between-host distribution with the bottom 5% tails of the TD distributions from within-host 

samples: all 181 genes in the bottom tail of the between-host TD distribution are also in the tail 

of at least one within-host sample’s TD distribution.  

Low values of within- and between-host TD in COG:Q (234 genes in category) are 

driven in part by genes that are also categorized as LIP (272 genes in category). Eighty-eight 

genes overlap between the two classification schemes, of which 42 are in the bottom tail of at 

least one within-host sample, and 12 are in the bottom tail of the between-host, gene-wise TD 

distribution. Intriguingly, in a study that analyzed M.tb RNA-Seq data over the course of a TB 

infection, COG:Q was also found to be enriched among genes whose expression was down-

regulated [25]. Eldholm et al did not look for differences in expression of TubercuList 

categories, so we do not know whether LIP and/or CHP were differentially expressed in their 

study. 

Our results indicate that influences producing distinct patterns of variation among genes 

in LIP, CHP and COG:Q categories are found across a range of human genetic backgrounds and 

environments. The fact that expression of COG:Q genes appear responsive to the environment 

within hosts provides further evidence in support of the hypothesis that they are targets of 

adaptation during infection.  

Systematic errors in sequencing and mapping at LIP, CHP and COG:Q loci could 

potentially also produce unusual patterns of genetic variation. In order to investigate this 

possibility, we compared base and mapping quality scores of variants in COG:Q, CHP and LIP 

with genome-wide values. We did not identify significant differences in quality scores among 

genes in these categories, suggesting that extreme patterns of variation are not driven by errors in 

sequencing and processing of sequencing data (S6 Figure).  

Mutation rate variation is another possible explanation for our observations. That is, loci 

with a relatively high mutation rate could plausibly produce excess rare variants (low TD) and/or 

excess non-synonymous variation (high πN/πS). In this case, we would expect to see the same 

pattern of category enrichment among genes with extremely high diversity as we do among loci 

with low TD. We did not, however, observe a consistent enrichment of functional categories 

among loci with high (or low) values of π or ƟW (S5 Table).  

Low values of TD can be observed among loci under selection to remove deleterious 

mutations. Here, we might expect to observe low levels of non-synonymous variation at the same 

loci, and perhaps a positive correlation between TD and πN/πS. At the between-host scale, there is 

no overlap between genes in the bottom 5th percentiles of TD and πN/πS (Fig. 3). The relationship 

between TD and πN/πS is complex, with a possible switch from a negative to a positive 

correlation within the distribution. M.tb genes with low TD are associated with a range of πN/πS 

values. Ratios of non-synonymous to synonymous variation are an imperfect measure of 
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selection strength for within-population (as opposed to between-species) comparisons [41]: 

values may be flat over a range of selection coefficients. It is possible that TD and πN/πS are 

responsive to purifying selection in different ways – e.g. over different timescales – and that this 

is the reason for the non-linear relationship we observed between the two statistics.  
 

 
Fig. 3. Gene-wise estimates of Tajima’s D and 
πN/πS at the between-host scale. Each circle 
represents a gene in the H37Rv genome. πN/πS 
values are plotted on a logarithmic (base 2) scale.  

 

LIP and COG:Q categories contain several large genes, so we wondered about an effect 

of gene size on TD. LIP and COG:Q categories were enriched for genes in the 95th percentile for 

size, as were seven other categories (S7 Figure). We observed a weak correlation between TD 

and gene size (R squared 0.25). While the small number of extremely large genes (>5kb) all have 

low TD, genes in the 5th percentile of TD have a range of sizes (S8 Figure). One possible 

explanation for an association between gene size and TD is an effect of the target size for 

deleterious mutations, with larger genes providing larger mutational targets. Given the strong 

linkage of sites in the M.tb genome, these effects may be particularly relevant.  

Low values of TD can also be associated with selective sweeps, where an advantageous 

mutation rises quickly in frequency. In recombining organisms, this can create local reductions 

in TD around the site of selection following the sweep. However, for organisms like M.tb in 

which linkage of sites is thought to be complete (i.e. strictly clonal [42]), all variants, which are 

linked to the adaptive mutation, should move in parallel with it. Therefore, we would not expect 

differences among M.tb loci in values of TD to be driven by selection for advantageous 

mutations. There is, however, little theoretical work to guide the interpretation of locus specific 

variation in TD for clonal organisms. More work is needed to identify conditions under which 

regional variation in TD may be observed in the setting of complete linkage of sites. Our 

observations could result from unexplored neutral and/or selective regimes that give a signature 

of locus specific patterns of TD in a linked genome. It is also possible that linkage of M.tb loci is 

not in fact perfect, and our results reflect unrecognized recombination during TB infection.  

 

Patterns of variation at drug targets. 

As expected, alleles at several known targets of anti-TB drugs underwent extreme 

changes in frequency between serial, within-host samples (FST outliers, Fig. 4 and S9 Table). 

This is due to the emergence of drug resistance mutations, which increase in frequency in 
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response to selection pressures imposed by drug therapy. Interestingly, several drug targets were 

in the low tail (≤ 5th percentile) of TD across numerous within-host samples. We defined a cutoff 

of 5 or more samples as extreme, based on the observation that < 4% of genes met this criterion. 

Within-host values of TD were in the extreme low tail in 5 or more samples for gyrA, gyrB, 

embB, and ethA.  

Two recent studies identified M.tb genetic variants associated with drug resistance 

phenotypes using tests for excess polymorphisms and homoplastic polymorphisms, respectively 

[43,44]. These variants could play a direct role in drug resistance, or they could increase the 

fitness of bacteria with drug resistance mutations at other loci (compensatory mutations). The 

‘targets of independent mutation’ (TIM) category identified by Farhat et al. was enriched among 

genes with low TD in two of the samples in our study (Fig. 2). Two of the targets identified by 

Zhang et al, lprO and fadE33, harbor FST outlier SNPs in our dataset (Fig. 4 and S9 Table). A D-

>G variant in lprO emerged in Patient A’s population and rose to near fixation in parallel with a 

D->N variant in katG. A SNP in fadE33 emerged in the last sample collected from Patient E. 

Based on their allele frequencies, it may have been on the same genetic background as a non-

synonymous variant in gid that is thought to mediate streptomycin resistance. Interestingly, a 

different SNP in fadE33 also emerged in Patient D’s M.tb population. We were not able to 

confidently calculate allele frequencies of this SNP across more than one sample, due to low 

coverage at the site. FadE33’s function is not known; it is essential for M.tb growth on 

cholesterol [45]. Based on these data and the findings of Zhang et al, we hypothesize that LprO 

and FadE33 play a role in compensation for drug resistance mutations.  
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Fig. 4. Population differentiation between samples. A.) Pairwise FST of polymorphic sites. Each patient 
sample was treated as a population and FST was calculated individually for each polymorphic site in a 
population. Calculations were performed on all polymorphic sites covered by at least 10 reads per sample 
for which the minor allele was supported by a minimum of 6 reads across all samples from the population 
(see Methods). Dots show the highest observed FST value for each single nucleotide polymorphism (SNP) 
across the H37Rv genome. Red color coding indicates allele frequencies changed significantly across the 
sampling interval (based on a Fisher’s exact test; q-value < 0.01). Genes implicated in drug resistance 
are outlined in black. Outliers of the FST distribution are likely to be under positive selection, or linked to a 
mutation under positive selection. B.) Allele frequencies over the course of treatment for SNPs with 
significant changes in allele frequency (red dots in A).  

 

Extreme patterns of variation in mycolic acid synthesis genes. 

Lipid metabolism genes are found among those with πN/πS > 1 at the within-host scale 

(183/2122 genes with πN/πS > 1 are categorized as LIP). In the M.tb population of Patient E, a 

specific sub-group of lipid metabolism genes – those in the mycolate biosynthesis superpathway 

- are over-represented among genes in the top 5% of values of πN/πS at two different time points 

(E0, p-value = 0.026; E12, p-value = 0.049), and over-represented among genes in the bottom 

5% at one time point (E42, p-value 0.031).  

Many individual genes in the mycolic acid synthesis pathway exhibited interesting 

patterns of variation across evolutionary scales. For example, fatty acid synthase (fas, Rv2524c) 

is in the 1st percentile of gene-wise TD values in the between-host dataset (BHTD), it was in the 

low tail of gene-wise TD values for 14 within-host samples (WHTD), and it was one of nine 

genes with πN/πS > 1 across three patients’ M.tb populations (Table 2). This gene was also 

identified as a possible target of positive selection in a recent study of genetic variation among 

M.tb strains in the Beijing lineage [46]. Pks5, which is in the mycolate biosynthesis 

superpathway, was also singled out as a target of selection in Merker et al. Pks5 was in the 1st 

percentile of BHTD, it was in the low tail of WHTD in 11 samples, and had πN/πS > 1 across 

three patients’ M.tb populations (Table 2).  
 
Table 2. Genes with πNπS > 1 across 3 within-host Mycobacterium 
tuberculosis populations. Genes identified in at least one sample from 3 
independent patients’ M.tb population with a πNπS > 1 are displayed. Two genes 
meeting this criteria were excluded due to potential copy number variants 
identified by manual inspection of the alignments. *Indicates the gene is in the 
superpathway of mycolate biosynthesis.  
Gene Common 

Name 
Gene Description 

Rv0101 nrp peptide synthetase 

Rv0931c pknD transmembrane serine/threonine-protein kinase D 

Rv1527c pks5* polyketide synthase 

Rv2318 uspC periplasmic sugar-binding lipoprotein 

Rv2476c gdh NAD-dependent glutamate dehydrogenase 

Rv2524c fas* fatty-acid synthase 

Rv2566  conserved hypothetical protein 

Rv2946c pks1* polyketide synthase 

Rv3157 nuoM NADH dehydrogenase I chain M 
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FadD32 is essential for mycolic acid synthesis [47] and is currently being investigated as 

a target for new TB treatments [48,49]. Patient A’s M.tb population harbored an FST outlier SNP 

in fadD32 (Fig. 4 and S9 Table). Expression of fadD32 was recently found to decrease over the 

course of infection in a patient with extensively drug-resistant TB [25]. Eldolm et al speculated 

that down-regulation of fadD32 could help to compensate for drug resistance mutations. In 

addition to identifying this gene in our outlier FST analysis, we found that it had one of the 

highest gene-wise values of πN/πS in the between-host sample (πN/πS = 32), as well as being in the 

93rd percentile of BHTD. These results suggest that FadD32 is a target of selection during 

infection and possibly transmission, and that this leaves a signature of diversifying selection at 

the between-host scale. Although regulatory and/or sequence variation at this locus could play a 

role in compensation for drug resistance mutations, we think it is unlikely that this alone would 

produce the extraordinary levels of diversity observed in our study. Despite recent pre-clinical 

promise of FadD32 as a target of coumarin compounds [48,49], our finding of high diversity in 

this gene suggests that the genetic barrier to acquisition of resistance at this locus is likely to be 

low. 

The gene encoding phosphopantetheinyl transferase (pptT) harbored a non-synonymous 

SNP at a frequency of 41% in the M.tb population of patient B, which was undetected in the 

prior sputum sample (data from this sample did not meet inclusion criteria). PptT belongs to the 

functional categories LIP and COG:Q. PptT activates Pks13, a type-I polyketide synthase 

involved in the final step of mycolic acid biosynthesis, as well as various type-I polyketide 

synthases required for the synthesis of lipid virulence factors [50,51]. Pks13 was found to be 

down-regulated during infection in the study of Eldholm et al. Active FadD32 and Pks13 are 

involved in the final steps of mycolic acid condensation in vitro [47]. The identification of an FST 

outlier in fadD32 (patient A) and a newly emergent SNP in pptT (patient B), the association of 

mycolic acid synthesis genes with extreme values of TD and πN/πS, and the identification of these 

genes as targets of selection/regulatory variation across independent studies suggests that M.tb 

mycolic acids may be modulated over the course of individual TB infections. This individual-to-

individual variation could explain the high diversity observed at the between-host scale in some 

of these genes. Caution is warranted in drug development aimed at this pathway, as loci with 

high natural diversity may not be optimal drug targets. 

 

Variation in polyketide synthases and related genes.  

M.tb polyketide synthases (PKS) play essential roles in the biosynthesis of lipids and 

glycolipids of the cell envelope [52]. These lipids and glycolipids are positioned at the outer edge 

of the envelope, at the host-pathogen interface. As might be predicted based on their location, 

they play important roles in the pathogenesis of TB (reviewed in [52–54]). In addition to mycolic 

acids, PKS-synthesized lipids include phthiocerol dimycocerosates (PDIM), sulfolipids (SL), 

polyacyl trehalose (PAT), diacyl trehalose (DAT), phenolic glycolipid (PGL), novel complex 

polar lipids synthesized by Pks6 (POL), and mannosyl-β-1-phosphomycoketides (MPM).  

Genes encoding polyketide synthases (PKS) are particularly striking for extreme patterns 

of variation: among 22 PKS homologs in the H37Rv genome (excluding the incorrectly 

annotated pks16, and counting pks15/1 and pks3/4 as one locus each [52]), we found 18 

exhibited extreme patterns of variation (5th or 95th percentile at the between-host scale, and/or in 

the extreme low tail of WHTD in ≥ 5 samples). The most common pattern found among PKS is 

low gene-wise TD at both within- and between-host scales. Of 15 genes found in the 5th 

percentile of BHTD and the low tail of WHTD in ≥ 10 samples, 10 are PKS.  
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Similar to pks5 (discussed above), pks1 is also among nine genes with a πN/πS > 1 across 

three patients’ M.tb populations(Table 2). Zhang et al [43] found evidence of an association 

between pks2, pks8 and pks17 variants and drug resistance. Pks2 and pks8 exhibited extreme 

patterns of variation in our study (1st percentile of BHTD and low tail of WHTD in 15 samples; 

1st percentile of BHTD and low tail of WHTD in 11 samples). Farhat et al [44] found evidence of 

positive selection on ppsA, pks3 and pks12, all of which were in the extremes of BHTD and/or 5 

or more samples’ WHTD in our data.  

PKS-synthesized lipids are transported to the cell surface by the Mycobacterial 

membrane protein Large (MmpL) family of membrane proteins. H37Rv includes genes encoding 

13 MmpL transporters [55]; substrates have not been identified for all them. MmpL have been 

shown to play important roles in TB pathogenesis [55,56]. MmpL genes were also notable for 

extreme patterns of variation: 10/13 of these loci were in the extreme tail of πN/πS and/or TD at 

the between-host scale and/or the low tail of TD in 5 or more within-host samples. Similar to 

PKS genes, the combination of low values of gene-wise TD at the within- and between-host 

scales was most common. In addition, we identified an FST outlier SNP in mmpL12 (Fig. 4 and 

S9 Table); mmpL11 has been identified as a target of positive selection in a previous study [46] 

and mmpL1 variants were associated with drug resistance in a separate study [43]. Genes 

encoding two non-MmpL transporters of PDIM, drrA and drrC, also exhibited extreme patterns 

of variation. DrrA is in the 99th percentile of BHTD, whereas drrC is in the 1st percentile of 

between-host πN/πS. These observations suggest that PKS and associated transporter genes are 

involved in adaptation of M.tb during infection. For some of these loci, there is evidence 

suggesting a role in drug resistance, augmenting the phenotype and/or increasing the fitness of 

drug resistant mutants.  

 

Patterns of variation among regulators of PKS lipids  

We observed extreme patterns of variation in genes involved in regulation of 

immunomodulatory lipids, in addition to those involved in their biosynthesis and transport (Fig. 

5). For example, the gene encoding a regulator of PDIM synthesis, pknD, was in in the low tail 

of BHTD and six samples’ WHTD. It was also in the group of nine genes with πN/πS > 1 across 

three patients’ M.tb populations (Table 2). PknD is thought to regulate deposition of PDIM on 

the cell wall via its effects on MmpL7, which transports PDIM [57]. Another example is the GTP 

pyrophosphokinase relA (Rv2583c), which regulates M.tb gene expression during the chronic 

phase of murine infection and plays a central role in the response to hypoxia and starvation 

[58,59]. RelA was in the low tail of seven samples’ WHTD. RelA modulates expression of 

pks3/4, pks5 and fas, all of which exhibited extreme patterns of variation (discussed above).  
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Fig. 5. Connectivity of regulators and targets involved in the synthesis of Mycobacterium 
tuberculosis immunomodulatory lipids. Interactions (shown as arrows) among select genes involved 
in the regulation (circles), synthesis (rectangles) and transport (block arrows) of phthiocerol 
dimycocerosates (PDIM), sulfolipids (SL), polyacyl trehalose (PAT), diacyl trehalose (DAT), and mycolic 
acids. The coloring scheme reflects patterns of variation observed at these loci: genes colored red had 
signatures of positive selection (gene contained an FST outlier and/or was in the 95th percentile of πN/πS at 
the between-host scale), blue indicates the gene had extreme Tajima’s D (TD) (5th percentile of between-
host TD and/or 5th percentile of within-host TD for ≥ 5 within-host samples), purple genes contained both 
low TD & signatures of positive selection, while pink signifies the gene had evidence of selection against 
non-synonymous diversity (5th percentile between-host πN/πS). Genes identified as targets of selection in 
other studies are indicated with bolded outlines. See discussion in text for more details. 
 

Patterns of variation in fadD9, which is of unknown function, are similar to many genes 

affecting immunomodulatory lipids (S10 Table): fadD9 was in the 2nd percentile of BHTD and 

the low tail of 10 samples’ WHTD. Expression of fadD9 is under the control of two regulators 

that are central to M.tb’s adaptation to the within-host environment: PhoP [60] and DevR [61] 

(Fig. 5). PhoP controls the production of PAT/DAT and SL [62]. DevR exhibited extreme 

patterns of variation, with BHTD in the 99th percentile. Another regulator of fadD9, moxR3, 

exhibited extreme patterns of variation: this gene was in the 5th percentile of between-host πN/πS 

(Fig. 5 and S10 Table). MoxR3 is upregulated during re-aeration of hypoxic M.tb cultures [63]. 

As noted above, the function of FadD9 has not been identified; patterns of variation in this gene 

and its regulators, as well as its co-regulation with virulence associated lipids, suggest it may 

play a role in host-pathogen interactions, and that it is a target of selection within hosts.  

 

PKS lipids as targets of selection within hosts 

We have shown that numerous genes affecting PKS associated lipids (mycolic acids, 

PDIM, PAT, DAT, PGL, POL, and MPM) exhibit extreme patterns of variation across a range of 

statistical measures and independent data sets. We hypothesize that these patterns of variation are 

due to adaptation within M.tb’s natural human host. Several characteristics of PKS-associated 

lipids make them likely targets of selection during infection.  

PKS associated lipids are important mediators of host-pathogen interactions. For 

example, mycolic acids are known to modify host cell phenotype [64] and to affect virulence in 

animal models of TB [65]. PDIM has major impacts on M.tb’s virulence in animal models of TB 

[66,67] via numerous mechanisms (reviewed in [68]) including protection from innate immune 

responses [69]. Like PDIM, the PKS-synthesized lipids PAT/DAT, SL, MPM, POL and PGL 

also appear to mediate interactions between M.tb and the immune system [66,70–86].  

The capacity for adaptation is predicated on phenotypic variation, which has been 

demonstrated for PKS associated lipids. Production of PAT/DAT has been shown to vary among 

clinical isolates; some isolates do not make them at all [87]. Production of PGL also varies 

among clinical isolates, and variant forms of PDIM have been identified in clinical isolates [54]. 

Based on their roles in pathogenesis and their variability, it has been proposed previously that 

modifications of these lipids could arise during natural infection in order to optimize host cell 

manipulation [54]. The observation of unusual patterns of variation at genes involved in the 

synthesis, transportation and regulation of these lipids provides evidence in support of this 

hypothesis. 

Several features are conducive to efficient selection on genes controlling the synthesis, 

regulation, and transportation of PKS associated lipids. There are connections between 

biosynthetic pathways controlling production of distinct PKS synthesized lipids (e.g. PDIM, SL, 
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and mycolic acids) such that metabolites can be shuttled between them [88,89]. This flexibility 

allows M.tb to respond rapidly to environmental fluctuations. It may also allow more efficient 

selection for adaptive mutations, since single mutations can potentially affect multiple lipid 

products. In addition, since intermediate metabolites could potentially be shuttled down multiple 

pathways, they need not accumulate with potentially toxic effects if one pathway is affected by a 

harmful mutation. 

PDIM, PAT/DAT and SL are not essential for growth of M.tb in artificial media, and 

PDIM is in fact frequently lost during passage of M.tb in the laboratory [87,90]. This suggests 

that functions of these lipids are specific to natural, within-host environments. The expression of 

M.tb immunomodulatory lipids is responsive to physiological conditions (hypoxia, starvation) 

encountered during natural infection [91,92]. In tissue culture and animal models of TB, the shift 

from axenic growth to infection is accompanied by alterations in expression of genes involved in 

lipid metabolism with consequent changes to the bacterial cell envelope [88,93–95]. Further 

supporting the idea that these lipids are important for adaptation to the pathogenic niche, MPM, 

PGL, and PDIM are only found among pathogenic mycobacteria, and DAT/PAT and SL are 

specific to the Mycobacterium tuberculosis complex (MTBC) (Fig. 6) [54,62,79]. It was shown 

recently that even among members of the MTBC, production of DAT/PAT and SL is specific to 

human-pathogenic mycobacteria [62].  

 

 
 
Fig. 6. Mycobacteria maximum likelihood tree. Phylogenetic analysis is based on a core genome 
alignment of 57 strains (S9 Table). Arrows indicate the most probable emergence of specific lipids in the 
phylogenetic history of Mycobacteria based on previous studies [54,62,79]. *Indicates lipids are only 
found in M. tuberculosis sensu stricto, not other members of Mycobacterium tuberculosis complex 
(MTBC). †Indicates uncertainty in the placement because lipids of M. sp. JDM501 have not been 
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characterized. Bootstrap values are 100 unless otherwise labeled. Scale bar indicates the mean number 
of substitutions per site. ABREVIATIONS: PDIM – phthiocerol dimycocerosates; PGL – phenolic 
glycolipids; SL – sulfolipids; MPM – mannosyl-β-1-phosphomycoketides; PAT – polyacyl-trehalose; DAT – 
diacyl-trehalose 

 

Recent work has shown that PAT/DAT, PDIM, and SL all impair phagosomal 

acidification and thereby improve M.tb survival within macrophages; there appears to be 

significant flexibility in how these functions are performed, and distinct lipid moieties may 

compensate for each other [87]. By providing cover during exploration of the fitness landscape, 

both functional redundancy and metabolic flexibility may increase the potential for rapid 

adaptation. For example, they would enable progress toward fitness peaks that are otherwise 

unreachable as a result of a preceding ‘valley’ created by mutations that are deleterious except in 

certain combinations. This may be particularly important for a clonally reproducing organism 

such as M.tb.  

 

Conclusions 

We have shown that genetic diversity of M.tb populations can vary dramatically between 

individuals with TB. Variation correlated with clinical severity, rather than treatment status, drug 

resistance phenotype or M.tb lineage. Further studies are needed to explore the replicability of 

patterns observed here across different types of patients with TB and treatment settings.  

We have also observed distinct patterns of variation among genes associated with M.tb 

virulence lipids: these patterns carry through functional links among genes, and across different 

statistical measures and datasets in our own and previously published studies. These lipids are 

good candidates for adaptation during infection, based on the phenotypic variation observed 

among clinical isolates, their roles mediating host interactions, their specific association with the 

pathogenic niche, and their flexible functional architecture However, it is important to note 

uncertainties in the data and its interpretation. We cannot, for example, assert that all genetic 

variants described here were generated within hosts. In all the studies whose data we analyzed, 

clinical specimens were manipulated in vitro prior to M.tb genome sequencing. Some mutations 

may have occurred during culture.  

Genetic variation in M.tb is skewed to rare allele frequencies, at both the within- and 

between-host scale. While we have endeavored to ameliorate the impacts of spurious variants 

introduced by sequencing errors and errors introduced during processing of sequencing read 

data, rare variants are difficult to disentangle from sequencing errors, particularly in pooled 

sequencing data. As is standard in studies of M.tb genomics, our analyses excluded genomic 

segments (totaling ~11%, see Methods) that are poorly resolved with short read sequencing 

technologies. Additional measures to reduce the effects of sequencing errors included trimming 

low quality bases from sequencing reads, implementing mapping and base quality thresholds, 

and excluding indels and SNPs demonstrating strand-bias and/or tail-distance-bias. We used 

PoPoolation, which explicitly accounts for the effects of sequencing error, to estimate population 

genetic parameters in our study. Validation studies of PoPoolation have shown that 

implementation of PoPoolation’s recommended minor allele count and quality thresholds 

decreases the error rate from 1% to ~ 0.01% post processing [27]. These studies also 

demonstrated that PoPoolation parameter estimates from pooled sequencing data are highly 

correlated with estimates from Sanger sequencing data.  

However, there are differences between PoPoolation validation datasets and those 

analyzed in our study: PoPoolation was validated for sequencing reads generated on the Illumina 
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GAIIx from a Drosophila melanogaster population (and data simulated to mimic these reads), 

whereas we have analyzed sequencing reads generated on the Illumina HiSeq from M.tb 

populations. GAIIx and HiSeq differ in their biases [96], and GC content differs significantly 

between M.tb and D. melanogaster. We note that despite these potential limitations of 

PoPoolation in correcting errors in our pooled data, we observed similar patterns of genetic 

variation in the between-host dataset, which is based on single-colony isolates and a different 

variant-discovery pipeline. 

Interpretation of genetic data across evolutionary scales is also not straightforward. The 

consistent identification of specific functional categories in extremes of various statistics 

suggests that they are due to natural selection, but the type of selection and where it operates is 

not clear. The patterns we observed may be due to selection imposed by drug therapy, the 

immune response and/or transmission, with further modification as a result of complex neutral 

influences on variation. In addition, our hypotheses need to be investigated at the level of 

phenotypes. Based on the analyses presented here and their contextualization with published 

data, we propose that further characterization of individual-level, phenotypic variation in M.tb 

PKS associated lipids is likely to be fruitful. In addition, several of the loci described here are 

worthy of investigation for a potential role mediating or compensating for drug resistance.  

 

Methods  
              

Data Collection for Within- and Between-Host Datasets 

Within-host M.tb data set (n = 19). We used carefully chosen WGS data from three 

previously published studies [23,25,26] to characterize within-host populations of M.tb. In each 

of these studies, primary specimen from sputum samples of patients being treated for TB were 

subcultured on Lowenstein-Jensen (LJ) slants without single colony passage; genomic DNA was 

extracted from each LJ slant and sequenced on an Illumina platform to capture the M. tb 

population present in the sputum sample (pool-seq). Since sequencing error biases are known to 

vary across platforms [96], we only used WGS data generated on the Illumina HiSeq (data from 

a variety of platforms were analyzed in the original Sun et al and Eldholm et al studies). As low 

frequency variants are important in the analysis of population genetic parameters, we only used 

samples for which the mean coverage across the genome was ≥ 50X in the present study. 

Accession numbers and publicly available meta information for the 19 within-host samples (from 

5 different patients’ M.tb populations) passing these criteria are shown in Table 1. In each of the 

primary studies, standard genotyping methods (restriction fragment length polymorphism 

analysis and/or variable number tandem repeat analysis) indicated that all serial isolates had 

identical profiles. Accession numbers, mapping statistics, and exclusion basis (when applicable) 

for all sequencing runs considered are in Table S1.  

Between-host M.tb data set (n = 201). We used previously published WGS data from 

201 diverse, globally extant strains of M.tb [29] to characterize between-host populations of 

M.tb. The data set includes isolates from all seven major lineages of M.tb [97,98]. Accession 

numbers and more detailed information about the strains are in S2 Table.  

 

Processing of raw sequencing reads 

For the within-host M.tb data set, we trimmed low-quality bases from the FASTQ data 

using a threshold quality score of 20, and reads of length less than 35bp were discarded using 

Trim Galore! (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) - a wrapper tool 
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around Cutadapt [99] and FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 

We mapped reads to H37Rv (NC_000962.3) [100] using the default parameters of the BWA 

MEM algorithm with the –M flag enabled for downstream compatibility [101], and we removed 

duplicates using Picard Tools (http://picard.sourceforge.net). Local realignment was performed 

with the Genome Analysis ToolKit (GATK) [102] in a sample aware manner, and aligned reads 

with mapping quality > 20 were converted to mpileup format using Samtools software [103].  

The resulting reference-guided assembly of each sample spanned over 98.9% of the 

H37Rv genome, with a mean depth of coverage per site ranging from 56X to 192X (S1 Table). 

Loci at which indels were present in a sample were removed along with 5bp of flanking 

sequence using the PoPoolation package [27].  

For the between-host M.tb data set, we trimmed low-quality bases from FASTQ data 

using a threshold quality of 15, and reads resulting in less than 20bp length were discarded using 

Trim Galore! (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) - a wrapper tool 

around Cutadapt [99] and FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 

Reads were mapped to H37Rv (NC_000962.2) [100] using the suggested algorithm of BWA for 

the given sequencing strategy (e.g. paired-end/single-end, read length) [101,104], and duplicates 

were removed using Picard Tools (http://picard.sourceforge.net). We used GATK to perform 

local realignment and variant calls using a minimum phred-scaled confidence threshold of 20 

[102]. Variants were filtered with the following expression “QD < 2.0 || FS > 60.0 || MQ < 40.0 || 

MQRankSum < -12.5 || ReadPosRankSum < -8.0” as described in the GATK best practices. 

Genome alignments were generated with scripts that can be found at 

https://github.com/tracysmith/RGAPepPipe.  

Transposable elements, phage elements, and repetitive families of genes (PE, PPE, and 

PE-PGRS gene families) that are poorly resolved with short read sequencing were removed from 

the mpileup files and alignment prior to subsequent analyses plus 5bp up- and down-stream of 

the genes. We additionally removed regions that were found to have poor mapping quality using 

the CallableLoci tool of the GATK: for each within-host sample, any region reported as poorly 

mapped using the following flags was removed from all datasets (including between-host) plus 

5bp up- and down-stream: -frlmq 0.04 –mmq 20 -mlmq 19. As an additional measure, we also 

removed sites with the lowest 2% average mapping quality in the global alignment from all 

datasets prior to subsequent analysis. Regions removed from all datasets based on these criteria 

can be found in S12 Table. Polymorphisms in the within-host dataset demonstrating strand-bias 

or tail-distance-bias identified  by a previously described method [22]  

(https://github.com/tamilieberman/IntrasamplePolymorphismCaller) were removed along with 

5bp up- and down-stream from all within-host samples (S12 Table).  

 

Population Genetic Estimates of Within-host Populations 

We used the PoPoolation package [27] to estimate nucleotide diversity (π), Watterson’s 

theta (ƟW), and Tajima’s D (TD) in sliding windows across the M.tb genome. Sensitivity 

analyses of these statistics to input parameters are described in the S3 File. Parameter estimates 

were strongly influenced by sequencing coverage (S3 File). In order to alleviate biases in 

parameter estimates caused by variable coverage among samples, we randomly sub-sampled read 

data without replacement to a uniform coverage of 50X; this process was performed 9 times for 

each sample to reduce potential biases introduced by sampling of rare alleles. We used default 

equations in the PoPoolation package to estimate π, ƟW, and TD [27,28]. In order to reduce the 

effects of sequencing errors on parameter estimates, PoPoolation implements modified 
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calculations of the classical π, ƟW, and TD that are only evaluated on SNPs above a designated 

minor allele count. PoPoolation estimators account for the truncated allele frequency spectrum 

and re-sequencing of the same chromosomes that occurs during pool-seq. PoPoolation’s 

recommended minor allele count and quality thresholds are based on simulation studies 

indicating that their implementation decreases the error rate of 1% in the raw data to ~0.01% in 

the processed data. PoPoolation parameter estimates from pooled data have also been found 

highly concordant with estimates from Sanger sequencing data.  

Unless otherwise noted, all calculations performed with the PoPoolation package were 

implemented using the recommended minimum minor allele count of 2 for 50X coverage, and a 

pool-size of 10,000 (see S3 File for justification). Calculations performed under differing 

parameters can be found in the Supplemental Data. Sliding-window analyses were performed 

using a window-size of 100K and a step-size of 10K; data presented are the mean of each 

window across 9 replicate sub-sampled mpileups (Fig. 1). Genome-wide averages are expressed 

as the mean across all windows sufficiently covered (≥ 60% coverage of 50X) (S4 Table). 

To calculate gene-by-gene estimates of π, ϴW, and TD from the 50X sub-sampled 

mpileups, we again used the PoPoolation package [27]. Gene coordinates were obtained from the 

standardized Gene Transfer Format (.gtf) for the H37Rv annotation on the TB database 

(tbdb.org) (S13 file) [105]. Excluding genes with inadequate coverage (<50% of the gene), we 

calculated the mean value of each statistic across the 9 replicate sub-samplings for each gene of 

each sample, and compared it to all other genes within the sample. 

Using the same .gtf file and the PoPoolation package, we also calculated the average 

number of nonsynonymous differences per nonsynonymous site (πN) and the average number of 

synonymous differences per synonymous site (πS) for each gene in the 50X sub-sampled 

mpileups. Recognizing that chance samplings of very rare mutations in one replicate sub-

sampled mpileup would lead to skewed distributions, we took the median values of πN and πS 

across 9 replicate sub-samplings for each gene of each sample and calculated πN/πS. Excluding 

genes with inadequate coverage (<50% of the gene) and genes with πN and/or πS equal to zero, 

πN/πS values were compared relative to all genes passing these criteria within the sample. 

To identify candidate SNPs under selection, we treated each temporal sample of a patient 

as a population, and estimated pairwise FST for each variable site in the genome with 

PoPoolation2 [37].. Unlike the sliding-window and gene-wise estimates, all sequencing data for 

which the minimum base quality was ≥ 20 was considered (i.e. no sub-sampling). We excluded 

all sites with a coverage ˂ 10, and only considered those sites with a minimum allele count ≥ 6 

(pooled across all samples for a patient). FST estimates were subjected to an empirical outlier 

analysis. To reduce biases resulting from variable coverage, we conditioned our analysis on the 

ability to detect a significant change in allele frequency between samplings using a two-sided 

Fisher’s exact test as previously proposed [38]. To account for the large number of tests 

performed we used a false discovery rate (FDR) of 5% and calculated adjusted p-values (q-

values) (R stats Package [106]). SNPs with extreme FST values (> 0.1) and a q-value < 0.01 were 

deemed outliers and are listed in S9 Table.  

S14 Table shows SNPs passing all filtering criteria that were used in the above described 

population genetic estimates for the within-host populations. 

 

Population Genetics of Globally Extant Strains (Between-Host) 

We used PoPoolation [27] with the “disable-corrections” flag enabled (calculations are 

performed using the classical equations) to generate sliding-window estimates of π and ƟW from 
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whole genome alignments of all 201 globally extant M.tb strains, M.tb isolates from lineage 2 

(East Asian lineage, n = 37), and M.tb isolates from lineage 4 (Euro-American lineage, n = 53) 

(S2 Table) [29]. We required a minimum of 75% of the strains have non-missing data for a site 

to be included in the analysis (“minimum coverage”), set the “minimum minor allele count” to 

one, and the “pool-size” to the number of strains being analyzed.   

We calculated gene-by-gene estimates of π, ϴ, TD, πN, and πS for the global dataset in the 

same way as was done for within-host samples, save for a few exceptions: rather than use the 

default PoPoolation estimators that apply corrections for sequencing errors [27,28], we employed 

the “disable-corrections” flag (calculations are performed using the classical equations), set the 

“minimum minor allele count” to one, and the “pool-size” was set to 201 to reflect the number of 

strains in the dataset; the “minimum coverage” was set to 151 to exclude any genes that were not 

represented by at least 75% of strains in the dataset. Finally, no averaging was performed. For 

πN/πS calculations, we again excluded genes with πN and/or πS equal to zero, and compared values 

relative to all genes passing these criteria within the sample.  

 

Functional & Pathway Enrichment Analyses  

For each within-host sample, between 58.7-90.1% of annotated genes in the H37Rv 

genome had sufficient coverage to calculate TD; for the between-host sample, TD was calculated 

for 90.2% of annotated genes in the H37Rv genome, as this was the fraction covered by at least 

75% of the strains. Genes with TD values in the top and bottom 5% of the distribution for a 

given sample were deemed candidate genes of selection. The significance of enrichment for 

functional categories in candidate genes of selection was assessed with a two-sided Fisher’s 

exact test. To account for multiple hypothesis testing, we used a false discovery rate of 5% and 

calculated q-values (R stats Package, [106]). We used the following annotation categories to 

classify M.tb genes: computationally predicted Clusters of Orthologous Groups (COG) (n = 21 

categories) [40]; essential and nonessential genes for growth in vitro as determined by 

transposon site hybridization (TraSH) mutagenesis [107]; genes essential for growth in a murine 

model of TB [108]; "targets of independent mutation" associated with drug resistance [44]; and 

the M.tb-specific, manually curated functional annotation lists from TubercuList (n = 7) [39]. 

COG annotations for the H37Rv genome were obtained from the TB database (tbdb.org) [105], 

as were the TraSH “in vitro essential”, “in vivo essential”, and “nonessential” gene annotations. 

TubercuList functional annotations were obtained from tuberculist.epfl.ch [39] and reflect the 

most up-to-date annotations when the database was accessed (12/01/2013). We did not include 

the TubercuList categories “PE/PPE”, “stable RNA”, and “unknown” in our analyses. S15 File 

contains the genes included in each category. Functional enrichment of genes in the top 5% of π 

and ϴW for each sample were performed in the same manner. 

Variable proportions of annotated genes in the H37Rv genome had sufficient coverage 

and contained both nonsynonymous and synonymous variation in a given within-host sample. 

While a large percentage of genes were also excluded from the analysis because they lacked 

synonymous and/or non-synonymous variation, the inference to be drawn from an elevated πN/πS 

value still holds. To look for commonalities among patients, we examined all genes found to 

have a positive πN/πS value in at least one sample from multiple patients; genes found to have a 

πN/πS > 1 in three patient M.tb populations are shown in Table 2. Upon noticing a preponderance 

of genes in the superpathway of mycolate biosynthesis on the cellular overview tool of the TB 

database (tbdb.org) [105] we formally tested for an enrichment of genes in this category using a 

two-sided Fisher’s exact test.  
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Methods for variant quality & mapping quality. 

We used the Python package pysamstats (https://github.com/alimanfoo/pysamstats) to 

calculate the root-mean-square (RMS) value of base qualities for variant alleles and the RMS 

mapping quality for reads aligned at such polymorphic sites in the reference-guided-assemblies 

of within-host samples. Variants occurring in genes categorized as CHP, LIP, or COG:Q were 

subject to a one-sided Student’s T-test to determine whether the mean RMS base qualities of the 

category was significantly lower than that occurring in any gene. 

 

Mycobacteria Core Genome Alignment and Phylogenetic Tree 

We downloaded finished genomes of mycobacterial species from NCBI (S11 Table). 

Reference guided assemblies for species where only sequencing reads were available were 

performed as described above for the between-host dataset. We used Prokka v 1.7 [109] for 

genome annotation. Protein sequences output by Prokka were clustered into orthologous groups 

using OrthoMCL [110]. The core proteins (those found only once in every genome) were aligned 

using MAFFT [111], trimmed with trimAl [112], and concatenated. Scripts used for core genome 

analysis can be found at https://github.com/tatumdmortimer/core-genome-alignment. We used 

RAxML v 8 [113] for maximum likelihood phylogenetic analysis of the core alignment. We used 

Dendroscope [114] for tree viewing and editing. 
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Supplementary Files  
S1 Table. Summary statistics and meta information for within-host samples considered for 

this study. We used carefully chosen whole genome sequence data from three previously 

published studies [23,25,26] to characterize within-host populations of M.tb. In each of these 

studies, primary specimen from decontaminated sputum samples of patients being treated for TB 

were sub-cultured on Lowenstein-Jensen slants without single colony passage; genomic DNA 

was extracted from each slant and sequenced on an Illumina platform to capture the M. 

tuberculosis population present in each sample (pool-seq). Inclusion criteria for this study was 

threefold: 1.) We only used WGS data generated on the Illumina Hi-Seq platform. 2.) We only 

used samples for which the mean depth of coverage was ˃ 50X. 3.) Only one sequencing run per 

sample was used to avoid biases introduced by combining data across multiple runs. Tab A 

contains information pertaining to all strains considered including sample names, accession 

numbers, and exclusion criteria where applicable. Tab B contains additional base quality and 

mapping statistics for samples selected for use in the current study. 

 

S2 Table. Mycobacterial tuberculosis strains used for global and regional datasets in this 

study. Strains used in this study are a subset of those used in a previous study [29]. Information 

pertaining to the place of birth of the patient, the place of isolation of the strain, and the 

phylogeographic area are taken from Comas et al. - Supplementary Table 1 and reported here for 

the ease of the reader. We performed phylogenetic analysis on the selected strains and confirmed 

the lineages reported by Comas et al. Accession numbers are listed for each strain.   

          

 

S3 File. Sensitivity analysis and parameter choice justification for PoPoolation software. 

Supplementary information on our sensitivity analysis of the PoPoolation Software [27]. This 

document includes justification of our parameter choices, as well as four figures with legends in 

the document. 

 

S4 Table. Genome-wide estimates of nucleotide diversity (π) and Watterson’s theta (ϴW) 

under varying parameters. Reference-guided assemblies for within-host samples were 

subsampled without replacement to a uniform coverage of 50X. Sliding-window analyses of π 

and ϴW were performed with default PoPoolation equations that account for sequencing error in 

pooled-data [27]. A window-size of 100Kb, a step-size of 10Kb, and a “pool-size” of 10,000 

were used (see S3 File for justification). Estimates for within-host samples were generated under 

three parameter sets: mbq20 – a “minimum base quality score” of 20 with a “minimum minor 

allele count” of 2; mbq30 – a “minimum base quality score” of 30 with a “minimum minor allele 

count” of 2; mc3 – a “minimum base quality score” of 20 with a “minimum minor allele count” 

of 3. Genome-wide estimates are expressed as the mean across all windows covered by at least 

60% under the given parameters. Genome-wide estimates for the global and lineage-specific 

datasets were performed with classical equations in PoPoolation (“disable corrections” flag 

enabled). Only sites covered by >75% of strains were included in the analyses. A window-size of 

100Kb and a step-size of 10Kb were used, and genome-wide estimates are expressed as the mean 

across all windows passing criteria. Other parameters were not applicable to between-host 

datasets. 
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S5 Table. Functional enrichment analysis of genes with extreme values of Tajima’s D (TD), 

nucleotide diversity (π), and Watterson’s theta (ϴW). Genes with TD, π, and ϴW values in the 

top and bottom 5% of the distribution of each sample were tested for enrichment of functional 

categories (described in methods) using a two-sided Fisher’s exact test. To account for multiple 

hypotheses testing, a false discovery rate of 5% was used and the resulting q-values are reported. 

Red font and cell highlighting indicates significance at the 0.05 level. Note that the results 

presented in the tab “TD-bot5%” are visualized in Fig. 2.  

 

S6 Figure. Distributions of base and mapping quality scores of polymorphic sites in notable 

categories. Box-and-whisker plots of (A) the root-mean-square (RMS) value of base qualities 

for variant alleles and (B) the RMS mapping quality for reads aligned at polymorphic sites in the 

reference-guided-assemblies (pooled across all within-host samples). RMS values were 

calculated with the python package pysamstats https://github.com/alimanfoo/pysamstats. 

Distributions are shown for polymorphisms occurring in any gene (black), TubercuList 

“conserved hypotheticals” (blue), TubercuList “lipid metabolism” (red), and COG:Q “secondary 

metabolites biosynthesis, transport, and catabolism” (purple). Upper and lower whiskers 

delineate highest values within 1.5 times the distance between the first and third quartiles. 

Outliers and plotted as points.  

 

S7 Figure. Enrichment of functional annotation categories among genes in the 95th or 

greater percentile for gene length. The total gene length covered by at least 75% of between-

host strains were compared, and the top 5% of genes in the distribution were tested for 

overrepresentation of functional categories using a two-sided Fisher’s exact test. Genes which 

were not covered by at least 75% of strains for more than half of the total gene length were 

excluded. 

 

S8 Figure. Between-host Tajima’s D (TD) versus gene-length. Each point corresponds to a 

gene in the H37Rv genome. Between-host, gene-wise values of TD are plotted against the length 

of the gene that was at sufficient coverage for the calculation. Genes for which less than half of 

the gene was covered by 75% of the strains have been excluded. The black dotted line marks the 

5th percentile of TD. 

 

S9 Table. SNPs with extreme FST values in serial samples of within-host Mycobacterium 

tuberculosis populations. SNPs found to have an FST > 10 and a q-value ≤ 0.01 (see Methods) 

are annotated for each Patient. Allele frequency change between longitudinal samples, nucleotide 

change, and amino acid change are with respect to the minor allele of the first sample time point 

of each patient (not the H37Rv reference). FST values reported for Patients A, D, and E are the 

maximum observed value among all possible pairwise comparisons. 

 

S10 Table. Gene-by-gene estimates of population genetic parameters from within- and 

between-host samples. For each gene in the H37Rv genome, population genetic parameters 

estimated for global (g) and within-host (accession no.) samples are displayed; column headers 

correspond to the sample followed by one of the following abbreviations: cov – fraction of gene 

resolved at sufficient coverage; theta – Watterson’s theta (ϴW); pi – nucleotide diversity (π), TD 

– Tajima’s D; piN – the number of nonsynonymous mutations per nonsynonymous site (πN); piS 

– the number of synonymous mutations per synonymous site (πS); piNpiS - (πN/πS). Genes had to 
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be resolved at ≥ 50% (and in at least 75% of strains for the between-host dataset) in order for 

statistics to be calculated. See methods for details of how each parameter was calculated. Gene 

symbols, common names, and descriptions are from S12 File obtained from tbdb.org. 

Calculations for within-host samples were calculated with PoPoolation [27] under three different 

parameter sets and are presented under different tabs: mbq20 – a “minimum base quality score” 

of 20 with a “minimum minor allele count” of 2; mbq30 – a “minimum base quality score” of 30 

with a “minimum minor allele count” of 2; mbq20_mc3 – a “minimum base quality score” of 20 

with a “minimum minor allele count” of 3.   

       

 

S11 Table. Strain names and accession numbers for genomes used in Figure 7. Strain names 

and accession numbers are listed for the genomes used to generate the core genome alignment 

and maximum likelihood tree. 

 

S12 File. Regions removed from reference-guided assemblies. Stringent quality filters were 

imposed in our data processing pipeline. A) Non-overlapping regions removed from all datasets 

(within-host and between-host): transposable elements, phage elements, and repetitive families 

of genes (PE, PPE, and PE-PGRS gene families) that are poorly resolved with short read 

sequencing, regions found to have poor mapping quality using the CallableLoci tool of the 

GATK (see Methods), and the lowest 2% average mapping quality in the global alignment. B) 

Non-overlapping regions remove from all within-host datasets: polymorphisms in the within-host 

dataset demonstrating strand-bias or tail-distance-bias in any of the 19 samples as identified by a 

previously described method [22] 

https://github.com/tamilieberman/IntrasamplePolymorphismCaller plus 5bp up- and down-

stream. 

 

S13 File. H37Rv gene transfer format. Tab-delimited gene transfer format file for H37Rv 

obtained from tbdb.org. Chromosome has been changed to reflect the reference sequence 

chromosome used for the between-host dataset. 

 

S14 Table. Polymorphisms passing filtering criteria for each within-host patient. Each tab 

corresponds to a patient (patA-E) and is followed by either “subsampled” or “fst”. Tables list 

allele counts at polymorphic sites used in gene-wise (subsamples) or single nucleotide 

polymorphism (fst) analyses. 

 

S15 Functional Enrichment Categories. We used the following annotation categories to 

classify M.tb genes: computationally predicted Clusters of Orthologous Groups (COG) (n = 21 

categories) [40]; essential and nonessential genes for growth in vitro as determined by 

transposon site hybridization (TraSH) mutagenesis [107]; genes essential for growth in a murine 

model of TB [108]; "targets of independent mutation" associated with drug resistance [44]; and 

the M.tb-specific, manually curated functional annotation lists from TubercuList (n = 7) [39]. 

COG annotations for the H37Rv genome were obtained from the TB database (tbdb.org) [105], 

as were the TraSH “in vitro essential”, “in vivo essential”, and “nonessential” gene annotations. 

TubercuList functional annotations were obtained from tuberculist.epfl.ch and reflect the most 

up-to-date annotations when the database was accessed (12/01/2013). We did not include the 

TubercuList categories “PE/PPE”, “stable RNA”, and “unknown” in our analyses.  
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