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Abstract

We present a population density and moment-based description of the stochastic

dynamics of domain Ca2+-mediated inactivation of L-type Ca2+ channels. Our ap-

proach accounts for the effect of heterogeneity of local Ca2+ signals on whole cell Ca2+

currents; however, in contrast with prior work, e.g., Sherman et al. (1990), we do not

assume that Ca2+ domain formation and collapse are fast compared to channel gating.

We demonstrate the population density and moment-based modeling approaches using

a 12-state Markov chain model of an L-type Ca2+ channel introduced by Greenstein

and Winslow (2002). Simulated whole cell voltage clamp responses yield an inactiva-

tion function for the whole cell Ca2+ current that agrees with the traditional approach

when domain dynamics are fast. We analyze the voltage-dependence of Ca2+ inactiva-

tion that may occur via slow heterogeneous domains. Next, we find that when channel

permeability is held constant, Ca2+-mediated inactivation of L-type channel increases

as the domain time constant increases, because a slow domain collapse rate leads to

increased mean domain [Ca2+] near open channels; conversely, when the maximum

domain [Ca2+] is held constant, inactivation decreases as the domain time constant

increases. Comparison of simulation results using population densities and moment

equations confirms the computational efficiency of the moment-based approach, and

enables the validation of two distinct methods of truncating and closing the open sys-

tem of moment equations. In general, a slow domain time constant requires higher

order moment truncation for agreement between moment-based and population den-

sity simulations.

Keywords: L-type Ca2+ channel, population density model, moment-based model,

Ca2+-dependent inactivation
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Introduction

Voltage-gated Ca2+ channels fall into three main groups: Cav1 (L-type, L for “long lasting”),

Cav2 (P-, N-, and R-type), and Cav3 (T-type, T for “transient”) [1]. Among them, plasma

membrane L-type Ca2+ channels (LCCs) are widely expressed in many tissues and are known

to play an important role in Ca2+-dependent responses of electrically excitable cells. In

cardiac myocytes, for example, Ca2+ influx via L-type Ca2+ channels into the dyadic subspace

triggers sarcoplasmic reticulum (SR) Ca2+ release and muscle cell contraction [2–4]. L-

type Ca2+ channels also play a key role in coupling synaptic excitation to activation of

transcriptional events that contribute to neuronal plasticity [5]. The activation of LCCs

is voltage-dependent while the inactivation occurs via both voltage- and Ca2+-dependent

mechanisms; consequently, the formation of Ca2+ microdomains following LCC influx can

greatly influence the stochastic gating of LCCs and the physiology of excitable cells [6, 7].

There are four subtypes of LCCs that are denoted Cav1.1–1.4. Cav1.1 is primarily found

in skeletal muscle and Cav1.4 is mainly found in retinal cells [8, 9]. Cav1.2 and 1.3 are

highly expressed in cardiac myocytes and cells of the central nervous system [10,11]. In neu-

roendocrine cells, Cav1.2 and 1.3 are both involved in action potential generation, bursting

activity and hormone secretion [8,12]. Cav1.3 is biophysically and pharmacologically distinct

from Cav1.2. For example, Cav1.3 activates at a more hyperpolarized voltage, has faster ac-

tivation, and slower and less complete voltage-dependent inactivation than Cav1.2 [13, 14].

In the heart, Cav1.2-mediated Ca2+ currents play an important role in systolic events such

as EC coupling (the triggered release of SR Ca2+) [15] and the plateau depolarization (phase

2) of the action potential [16]. Cav1.3, on the other hand, is highly expressed in cardiac

pacemaker cells and is the major regulator of RyR-dependent local Ca2+ release during the

diastolic phase [17]. Inactivation of Cav1.2 channels is both voltage- and Ca2+-dependent [7];

however, certain Cav1.4 L-type channels do not exhibit Ca2+-dependent inactivation [8]. L-

type Ca2+ channels that undergo Ca2+-dependent inactivation do not in fact result in long

lasting currents, in spite of the traditional nomenclature [8].

Models of Ca2+-inactivation often assume a high density of Ca2+ channels and the slow

accumulation of intracellular Ca2+ in a cortical shell near the plasma membrane [18]. In

the context of low density Ca2+ channels, it may be assumed that spatially localized high

[Ca2+] regions (Ca2+ domains) form near any individual channel when that particular chan-

nel is open (Fig. 1, left panel). In both shell and domain models, it is usually assumed that

stochastic gating of L-type channels and the dynamics of the associated domains are indepen-

dent except through global coupling via the bulk [Ca2+] and plasma membrane voltage [19].

For example, the domain model proposed and investigated by Sherman et al. [20] takes this

form. Sherman et al. further assumed that Ca2+ domains form instantaneously when a chan-
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Figure 1. Comparison of equilibrium and dynamic domain models for Ca2+-
mediated inactivation of L-type Ca2+ channels. In equilibrium domain models, low
density channels are not only locally controlled, but also inactivated by a domain [Ca2+] that
is slaved to the channel state (high concentration when open and low concentration when
closed). In the dynamic domain model presented here, low density channels experience het-
erogeneous domain [Ca2+] that depend on channel state in time-dependent manner. The
right panel shows the fluxes associated with a minimal formulation of single domain. Extra-
cellular, cytosolic, and [Ca2+] in the nth domain are denoted by cext, ccyt, and cn, respectively.
The domain influx rate (ninflux) is nonzero when the Ca2+ channel in the nth domain is open.

The diffusion-mediated flux of the nth domain Ca2+ to the cytosol is denoted by ncyt.

nel activates, and collapse instantaneously when a channel deactivates or inactivates. This

equilibrium formulation of domain Ca2+-mediated inactivation of L-type Ca2+ channels is

viable and often utilized as an alternative to shell models. Nevertheless, when the dynamics

of Ca2+ channel activation and inactivation are not slow compared to domain formation and

collapse, the assumption of rapidly equilibrating domain [Ca2+] might be inadequate.

In recent years, computational models of cardiac myocytes have been developed to ac-

count for local control of Ca2+-induced Ca2+ release and heterogeneous dyadic subspace

and junctional SR [Ca2+] [21–24]. In these models, a large number of Ca2+ release units

(CaRUs) are simulated, each of which is represented by a discrete-state continuous time

Markov chain and a compartmental representation of the dyadic subspace and junctional

SR. Unfortunately, when the description of CaRU gating includes many channel states, the

runtime using a Markov chain approach can be excessive.

To avoid the computationally demanding task of performing Monte Carlo simulations of a

large number of CaRUs, Williams et al. [25] presented an approach to modeling local control

and EC coupling in cardiac myocytes that uses probability densities to represent heteroge-

neous time-dependent local Ca2+ signals in a large number of dyadic subspaces and junctional
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SR domains. This approach involves numerical solution of advection-reaction equations for

time-dependent bivariate probability densities of subspace and junctional SR [Ca2+] condi-

tioned on CaRU state, densities that are coupled to ordinary differential equations (ODEs)

for the bulk myoplasmic and network SR [Ca2+]. Subsequently, a moment-based approach to

simulating the dynamics of local Ca2+ signals was found to be several orders of magnitude

faster than conventional Monte Carlo simulation [26]. In this paper, we apply a popula-

tion density and moment-based modeling formalism that extends the framework for domain

Ca2+-mediated inactivation of LCCs to represent the time-dependent dynamics of domain

formation and collapse (Fig. 1, middle panel). Using this modeling approach, we investigate

the dependence of the inactivation function on the exponential time constant of domain

collapse.

The remainder of this paper is organized as follows. First, we formulate a population

density approach to modeling domain Ca2+-medicated inactivation of LCCs. Next, we de-

rive the associated ODEs for the moments of these densities, and truncate and close the

moment equations to produce reduced models that faithfully reproduce population density

results. Using both the population density and moment-based models, we investigate the

voltage-dependence of Ca2+-inactivation that may occur through local Ca2+ signaling in

heterogeneous domains, and how Ca2+-inactivation of L-type channels may be influenced by

non-equilibrium dynamics of domain formation and collapse.

Model formulation

The compartments and fluxes included in the model formulation are shown in Fig. 1 (right

panel), which includes the [Ca2+] in the extracellular space, the cytosol, and individual

domains denoted by cext, ccyt, and cn, respectively. The modeling work presented in this

paper assumes that the cext and ccyt are clamped. However, it is straight forward to extend

the model to account for the dynamic of ccyt (see Discussion). Fluxes between compartments

include the influx from the extracellular space to the nth individual domain (ninflux), and the

flux from each domain to the cytoplasm (ncyt).

Consistent with Fig. 1, the time-dependent dynamics of the [Ca2+] in the nth domain is

governed by the following ODE,

dcn

dt
=

1

λd

(
ξininflux − ncyt

)
, (1)

where ξi = 0 or 1 depending on whether the associated LCC is closed or open. In Eq. 1,

λd = (Ωd/βd)/(Ωcyt/βcyt) is the effective volume ratio between the domain and cytoplasm

that accounts for both physical volume and (constant fraction) buffering capacity. The
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flux from the domain to the cytoplasm is given by ncyt = (cn − ccyt)/τ . The voltage- and

Ca2+-dependent influx, ninflux, is given by Goldman-Hodgkin-Katz current equation [27].

That is, if the nth LCC is open, ninflux = −Amıninflux/(zF ) where Am = Cmβcyt/Ωcyt is

a whole-cell capacitance scaling factor, Cm is the capacitive membrane area, z = 2 is the

valence of Ca2+ and F is Faraday’s constant. The Ca2+ current, ıninflux, is given by ıninflux =

z2FP TV (cn − cexte
−zV/Vθ)/[Vθ(1 − e−zV/Vθ)] where P T is the total permeability, V is the

membrane voltage, Vθ = RT/F , R is the gas constant and T is the absolute temperature.

Twelve-state LCC model

The LCC model used in this paper was introduced by Jafri et al. and reparameterized by

Greenstein and Winslow [21, 28]. In this model, the gating of the LCC is represented by

a continuous-time, discrete-state Markov chain with twelve states, ten of which are non-

conducting (closed) and two of which are conducting (open). As illustrated in Fig. 2, the

upper and lower rows of states are Ca2+-unbound (mode normal) and Ca2+-bound (mode

Ca), respectively. When in mode Ca, transitions to the open state OCa are extremely rare,

because g′+ � g+. Transitions from mode normal to mode Ca depend on the rate constant

γ = γ0c
n, which is a linear function of the domain [Ca2+], that is, high [Ca2+] induces more

transitions to mode Ca (more Ca2+-dependent inactivation). In both mode normal and

mode Ca, there are five closed states (C0, ..., C4 and CCa0, ..., CCa4) and one open state (O

and OCa). Voltage-dependent transitions are determined by rate constants α(V ) and β(V ),

which are increasing and decreasing functions of membrane voltage, respectively (see Fig. 2,

caption).

The transition rates between the 12 states of the LCC model can be written as a 12× 12

infinitesimal generator matrix (Q matrix) that takes the form

Q(V, c) = Kφ(V ) + cKc, (2)

whereKφ(V ) includes the Ca2+-independent transitions (both voltage-dependent and voltage-

independent with units of time−1), and Kc collects the association rate constants for the

transitions mediated by domain Ca2+. Monte Carlo methods for simulating the dynamics of

a population of N LCCs, each associated with its own domain, require numerical solution of

N Markov chains and N ODEs.

Population density formulation

We here present a population density approach to modeling the domain Ca2+-mediated

inactivation of L-type Ca2+ channels that is an alternative to Monte Carlo simulation. As-
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Figure 2. Gating scheme of the L-type channel. The 12-state L-type Ca2+ channel
includes Ca2+-unbound and Ca2+-bound states (denoted mode normal and mode Ca, respec-
tively). In both modes there are five closed states (C0, ..., C4 and CCa0, ..., CCa4) and one open
state (O and OCa). Transitions from mode normal to mode Ca depend on the rate constants
γ (proportional to domain [Ca2+]) and ω. Voltage-dependent transitions are determined by
rate constants α(V ) and β(V ) (mode normal) and α′(V ) and β′(V ) (mode Ca). Parame-
ters follow Greenstein and Winslow [21], α = α0 exp(α1(V − V0)), β = β0 exp(β1(V − V0)),
α′ = aα, β′ = β/b, γ = γ0c

n, g+ = 0.85 ms−1, g− = 2 ms−1, g′+ = 0.005 ms−1, g′− = 7 ms−1,
α0 = 2.0, α1 = 0.0012, β0 = 0.0882, β1 = −0.05, a = 2, b = 1.9356, γ0 = 0.44 mM−1 ms−1,
ω = 0.01258 ms−1 and V0 = 35 mV.

suming a large number (N) of domains, we define a continuous univariate probability density

function for the domain [Ca2+] of a randomly sampled channel,

ρi(c, t) dc = Pr{c < c̃(t) < c+ dc and S̃(t) = i}, (3)

where the index i ∈ {C0, C1, ..., OCa} runs over the twelve states of the LCC, and the tildes

on c̃(t) and S̃(t) indicate random quantities. The time-evolution of these joint probability

densities is governed by the following system of advection-reaction equations [25,29–31],

∂ρi

∂t
= − ∂

∂c
[f iρi] + [ρQ]i, (4)

where i is an index over channel states, Q is the generator matrix given by Eq. 2, the row-

vector ρ = (ρC1 , ρC1 , ..., ρOCa) collects the time-dependent joint probability densities for

domain Ca2+, and [ρQ]i is the ith element of the vector-matrix product ρQ. In Eq. 4, the

reaction terms [ρQ]i account for the probability flux associated with channel state changes.

The advection terms of the form −∂(f iρi)/∂c represent the divergence of the probability

flux φi(c, t) = f i(c)ρi(c, t) where the advection rate f i(c) account for the state-dependent
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deterministic dynamics of domain Ca2+,

f i =
1

λTd

(
ξiinflux − cyt

)
, (5)

λTd = Nλd and N is the number of domains. As in the Monte Carlo formulation (Eq. 1), the

flux term cyt in Eq. 5 is given by (c−ccyt)/τ . The influx term influx is linear in domain [Ca2+]

and can be written as influx = 0− 1c where 0 = zAmP
TV cexte

−zV/Vθ/[Vθ(1− e−zV/Vθ)] and

1 = zAmP
TV e−zV/Vθ/[Vθ(1 − e−zV/Vθ)]. Consequently, the whole cell Ca2+ current is given

by

Iinflux =
zF

Am

∫
(−0 + 1c)(ρ

O + ρOCa) dc. (6)

The time evolution of the joint densities ρi(c, t), i.e., the dependent variables of the popu-

lation density model are found by integrating Eqs. 4–5 using a total variation diminishing

scheme that has been described previously [25, 32]. The most important observable of the

model is the probability that a randomly sampled LCC is in a given state,

Pr(S(t) = i) =

∫
ρi(c, t) dc, (7)

where i ∈ {C0, C1, ..., OCa}. Another important observable is the expected [Ca2+] in a

randomly sampled domain,

E[c̃](t) =
∑
i

∫
cρi(c, t) dc. (8)

The expected [Ca2+] conditioned on a randomly sampled channel being in state i is

Ei[c̃](t) = E[c̃
∣∣S̃(t) = i](t) =

∫
cρi(c, t) dc∫
ρi(c, t) dc

. (9)

Moment-based LCC model

The probability density approach described above is generally fast compared to Monte Carlo

simulation, in part because the joint densities are univariate. However, this computational

advantage diminishes when an LCC model is complex, because one joint density is required

for each state. In this section, we develop a moment-based modeling approach that is

computationally more efficient than the population density approach.

We begin by writing the qth moment of the ith joint density as

µiq(t) =

∫
cqρi(c, t)dc. (10)

This expression implies that the zeroth moments µi0 are the time-dependent probabilities
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that a randomly sampled channels is in state i (Eq. 7). The first moments, µi1(t) =
∫
cρidc

are related to the expected value of domain [Ca2+] conditioned on channel state though

Ei[c] = µi1/µ
i
0 (cf. Eq. 9). The conditional variance in a randomly sampled domain is a

function of the first three moments: Vari[c] = µi2/µ
i
0 − (µi1/µ

i
0)

2.

The derivation of the moment-based LCC model begins by differentiating Eq. 10 with

respect to time,
dµiq
dt

=

∫
cq
∂ρi

∂t
dc. (11)

The ODEs of the moment-based model are found by replacing the factor ∂ρi/∂t in the

integrand of Eq. 11 by the advection-reaction equation of the population density model

(Eq. 4), which yields

dµiq
dt

=

∫
cq
[
−∂(f iρi)

∂c
+ [ρQ]i

]
dc

= −
∫
cq d(f iρi) +

∫
cq [ρ(Kφ + cKc)]

i dc.

Integrating by part gives

dµiq
dt

= q

∫
f icq−1ρidc+ [µqKφ]i + [µq+1Kc]

i, (12)

where we have eliminated boundary terms using the fact that φi(c, t) = f i(c)ρi(c, t) = 0

on the boundary (conservation of probability). We evaluate the first integral of Eq. 12 by

substituting for f i (Eq. 5) and simplifying,

q

∫
f icq−1ρidc =

q

λTd

∫ (
ξi(0 − 1c)−

c− ccyt
τ

)
cq−1ρidc

=
q

λTd

(
ξi0 +

ccyt
τ

)
µiq−1 −

q

λTd

(
ξi1 +

1

τ

)
µiq+1. (13)

Finally, substituting Eq. 13 into Eq. 12 results in the following equation for µiq,

∂µiq
∂t

=
q

λTd

(
ξi0 +

ccyt
τ

)
µiq−1 −

q

λTd

(
ξi1 +

1

τ

)
µiq + [µqKφ]i + [µq+1Kc]

i. (14)

where ξi = 0 for i ∈ {C0, ..., C4, CCa0, ..., CCa4} and ξi = 1 for i ∈ {O,OCa}, µq =

(µC0
q , ..., µ

OCa
q ), µq+1 = (µC0

q+1, ..., µ
OCa
q+1 ), and [µqKφ(V )]i and [µq+1Kc]

i are the ith element

of the vector-matrix product of µqKφ(V ) and µq+1Kc, respectively. Note that Eq. 14 is an
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open system of ODEs that takes the form,

dµi0
dt

= f i0(µ0,µ1), (15)

dµi
q

dt
= f iq(µq−1,µq,µq+1), q = 1, 2, 3, .... (16)

In particular, note that the equations for the qth moments depend on the (q+ 1)th moments.

Truncation and closure of moment ODEs

Eqs. 15–16 can be closed by assuming the (q+ 1)th central moment is zero, so that µiq+1 can

be expressed as an algebraic function of lower moments. For example, if we assume that

the conditional variance, given by µi2/µ
i
0− (µi1/µ

i
0)

2
, is zero for each state i, then the second

moments are µi2 = (µi1)
2
/µi0. In this case, Eqs. 15–16 can be truncated and closed as follows:

dµi0
dt

= f i0(µ0,µ1), (17)

dµi1
dt

= f i1(µ0,µ1,µ2(µ0,µ1)). (18)

Closing the moment equations in this manner results in two ODEs per channel state—one

for the zeroth moment µi0, and the other one for the first moment µi1 (24 ODEs in total):

∂µi0
∂t

= [µ0Kφ]i + [µ1Kc]
i (19)

∂µi1
∂t

=
1

λTd

(
ξi0 +

ccyt
τ

)
µi0 −

1

λTd

(
ξi1 +

1

τ

)
µi1 + [µ1Kφ]i + [µ2Kc]

i, (20)

where µ2 is a row vector with elements µi2 = (µi1)
2
/µi0.

Alternatively, we could assume the 3rd central moments are zero. In that case, the

truncated and closed moment equations take the form,

dµi0
dt

= f i0(µ0,µ1) (21)

dµi1
dt

= f i1(µ0,µ1,µ2) (22)

dµi2
dt

= f i2(µ1,µ2,µ3(µ0,µ1,µ2)), (23)

where

µi3 =
3µi2µ

i
1

µi0
− 2(µi1)

3

(µi0)
2
. (24)
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Figure 3. Representative simulation results. (A) The response of the whole cell current
(middle panel) and expected [Ca2+] (bottom panel) to the two-pulse voltage clamp protocol
(top panel). (B) The peak current (top panel) and the inactivation function (Eq. 28, bottom
panel) to a range of prepulse potentials (−40 ≤ Vp ≤ 80 mV). Parameters: Vh = −40 mV,
Vt = 0 mV, Vp = −40 to 80 mV, τ = 100 ms and as in Fig. 2 and Table 1.

This assumption results in a moment-based model that includes 36 ODEs:

∂µi0
∂t

= [µ0Kφ]i + [µ1Kc]
i (25)

∂µi1
∂t

=
1

λTd

(
ξi0 +

ccyt
τ

)
µi0 −

1

λTd

(
ξi1 +

1

τ

)
µi1 + [µ1Kφ]i + [µ2Kc]

i (26)

∂µi2
∂t

=
2

λTd

(
ξi0 +

ccyt
τ

)
µi1 −

2

λTd

(
ξi1 +

1

τ

)
µi2 + [µ2Kφ]i + [µ3Kc]

i (27)

where µ3 is row vector with elements µi3 = 3µi2µ
i
1/µ

i
0 − 2(µi1)

3/(µi0)
2.

Below, Eqs. 25–27 are referred to as the “third-order moment truncation approach” while

in the sequel, Eqs. 19–20 are called the “second-order moment truncation approach.”
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Table 1. Parameters for the population density and moment-based model. See
Fig. 2 for the parameters of the 12-state L-type Ca2+ channel.

Symbols Definition Units Value
F Faraday’s constant coul mol−1 96,480
R gas constant mJ mol−1 K−1 8314
T absolute temperature K 310
Vθ RT/F mV 26.72
P T total permeability / specific capacitance cm3 s−1 µF−1 10−4

Cm capacitance µF 1.534× 10−4

Am capacitive to volume ratio mF L−1 356.7
λTd effective volume ratio of domains and cytosol - 0.1
cext extracellular Ca2+ concentration mM 2
ccyt bulk Ca2+ concentration µM 0.1
css maximum Ca2+ concentration (Eq. 30) µM 35

Results

Representative population density simulation results

To illustrate the population density approach to modeling domain Ca2+-mediated inactiva-

tion, we first show simulations of a two-pulse voltage clamp protocol, analogous to those

used in the experimental quantification of Ca2+-inactivation of LCCs [20, 33]. As shown in

the top panel of Fig. 3A, the simulated command voltage began at the holding potential of

Vh = −40 mV, and the joint densities of the model equations were equilibrated with this

voltage. The command voltage was then stepped up to various prepulse potentials, Vp, and

held at Vp for a prescribed length of time, tp. The voltage was then stepped back down to

the holding potential, Vh, for duration th, and then up to the test potential given by Vt.

Channel inactivation was measured by estimating the inactivation function, h∞(Vp), defined

as the normalized peak current during the test voltage pulse as a function of the prepulse

potential [20],

h∞(Vp) =
peak[I(Vp)]

peak[I(Vp = Vh)]
. (28)

The inactivation function h∞(Vp) gives the fraction of channels that are not inactivated and

takes a value between 0 and 1. When h∞ = 1, none of the channels are inactivated; when

h∞ = 0, all of the channels are inactivated.

The middle and bottom panel of Fig. 3A show the whole cell Ca2+ current (Iinflux) and

the mean domain [Ca2+] (E(c)) during the simulated two-pulse protocol. The largest inward

currents during the test phase occurred when the prepulse voltage Vp was very low or very

high (Fig. 3B top panel). This is consistent with the observation that during the prepulse
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phase little current was expressed at extreme voltages, preventing an accumulation of domain

Ca2+ that could potentially inactivate LCCs.

The lower panel of Fig. 3B shows the inactivation curve h∞(Vp) calculated via Eq. 28.

Similar to the peak current, the inactivation function is biphasic with minimal Ca2+ inactiva-

tion (h ≈ 1) when the repulse potential is very low or high, and maximum Ca2+ inactivation

(h ≈ 0.6) for intermediate repulse potentials.

Fig. 4A shows the model response to the two-pulse voltage clamp protocol using a range

of domain time constants (τ). Slower domain time constants (large τ , purple line) lead

to decreased inward whole cell currents during the prepulse phase (compare green and red

lines). This is consistent with the observation that a slow domain time constant leads to

higher expected domain [Ca2+] and more Ca2+ inactivation.

Fig. 4B shows the sum of the joint density functions of open states (i.e., ρO + ρOCa) for

three different domain time constants at three different times during the two-pulse protocol

(arrows labeled a, b, c in panel A). Note that these densities have been normalized for

clarity, so the integrated areas no longer correspond to channel open probability, which is

shown as text. Consistent with Fig. 4A, the open probability at time t = 80 ms (b) is

higher than at times t = −50 and 750 ms (a and c, respectively) regardless of the domain

time constant. When τ is small (fast domain), the density functions (red and green shaded

regions) are narrow and delta-function like (small variance). When τ is large (slow domain),

the densities have greater variance (purple shaded regions).

Comparison of population density and moment closure approaches

Fig. 5 compares the moment-based model that uses second-order and third-order truncation

methods to the population density model (the correct result). When τ is fast or intermediate

(e.g., τ = 100 ms), the assumption of zero variance (green) leads to nearly the same result

as the population density model (+ symbols). However, when τ is slow (e.g., τ = 10 s),

the result computed from the second-order moment truncation approach (khaki) deviates

slightly different from the population density model (× symbols). As might be expected,

this small error is eliminated using the third-order moment truncation approach (purple).

Moment-based calculations in the remainder of the paper will utilize the third-order trunca-

tion method, which accurately approximate the population density model for domain time

constants in the physiological range (τ = 1 ms to 10 s).
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Figure 4. Two-pulse protocol simulation results with varied domain time con-
stant. (A) Command voltage traces, Ca2+ current and expectation [Ca2+] when domain
time constant τ is varied. (B) Snapshot of the sum of the joint densities for open states,
ρO + ρOCa , at three different times (a, b, c) and three domain time constants. Parameters:
τ = 10 ms (red), 100 ms (green) and 1 s (purple), times a, b and c are shown as arrows at
−50, 80 and 750 ms, in (A), Vh = −40 mV, Vp = 20 mV, Vt = 0 mV and as in Fig. 2 and
Table 1.

Steady-state Ca2+-inactivation and the domain time constant

When an LCC is open, the time-dependence of domain [Ca2+] can be rewritten as

dc

dt
=

1

λd

(
0 − 1c−

c− ccyt
τ

)
, (29)

where 0 and 1 are defined above and we have dropped the index n for clarity. From Eq. 29,

it is straight forward to derive the steady state domain [Ca2+] for and open LCC,

css =
0 + ccyt/τ

1 + 1/τ
. (30)

The concentration css is the maximum [Ca2+] that can be achieved in a domain, its value

depends on membrane voltage, the domain time constant τ and the total permeability P T ,

where V and P T occur as parameters in 0 and 1. In this section, we investigated in how

the domain time constant influences steady-state Ca2+-inactivation under the assumption of
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Figure 5. Comparison between different moment closure techniques and the
population density model. Steady-state Ca2+-inactivation function (h∞, A), total influx
current (Iinflux, B), expected [Ca2+] at close state (EC(c), C) and open state (EO(c), D) as a
function of voltage (V ). Green and khaki lines are calculated via the second-order moment-
based LCC model when τ = 100 ms and 10 s, respectively. Purple line is calculated via the
third-order moment-based model when τ is 10 s. + and × symbols are computed via the
population density model when τ is 100 ms and 10 s respectively. Other parameters as in
Fig. 2 and Table 1.

fixed total permeability. In the following section, we considered the related question of the

domain time constant’s impact on steady-state Ca2+ inactivation when LCC permeability is

adjusted so that the steady-state domain [Ca2+] (css) is fixed.

Fig. 6 shows how the domain time constant (τ) influences the voltage-dependence of the

steady-state Ca2+-dependent inactivation of LCCs in the population density and moment-

based models. For each domain time constant and voltage, the steady-state fraction of

LCCs in four lumped states are shown, namely, mode normal open (PO
normal), mode Ca

open (PO
Ca), mode normal closed (PC

normal, including contributions from states C0, ..., C4),

and mode Ca closed (PC
Ca, states CCa0, ..., CCa4). For all domain time constants studied,

increasing the voltage leads to increased steady-state open probabilities (PO
normal + PO

Ca).

Slowing the domain time constant increases the probability that a randomly sampled channel

is in mode Ca (PC
Ca + PO

Ca) regardless of voltage, consistent with our prior observation that

slower domain time constants result in higher domain [Ca2+] (Fig. 7C) and decreased open

probability (PO
normal + PO

Ca).
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Fig. 7A shows the inactivation function (h∞) at steady state when τ is varied from 1 ms

to 10 s. As the domain time constant τ increases, the inactivation function shifts downwards,

corresponding to increased Ca2+ channel inactivation. This results from residual Ca2+ linger-

ing in the domain, increasing the expected [Ca2+] (Fig. 7B). Although the expected domain

[Ca2+] increases with τ , the total Ca2+ current decreases (Fig. 7B) due to decreased open

probability. Fig. 7D shows that the domain Ca2+ concentrations are more heterogeneous

(higher variance) with slow domain collapse time regardless of voltage. This is consistent

with Fig. 4 where small τ results in narrow distribution and low variance and large τ yields

broader distribution and higher variance.

Ca2+-inactivation when maximum [Ca2+] is fixed

In the parameter studies of Fig. 6 and 7, the permeability PT was held constant as the

domain time constant τ was varied. Structuring the parameter study in this manner allows

τ to influence the domain dynamics by changing the rate of domain formation and collapse

as well as the steady-state domain [Ca2+], given by css = (0 + ccyt/τ) / (1 + 1/τ). Fig. 8
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Figure 7. Steady-state Ca2+-inactivation and domain time constant τ with fixed
PT . Ca2+-inactivation function (h∞, A), Ca2+ influx current (Iinflux, B), expected [Ca2+]
(E(c), C) and the variance of [Ca2+] in different domains (Var(c), D) calculated via the
moment-based model as a function of V . The corresponding population density simulation
results are given by open circles. Parameters: τ = 1 ms (khaki), 100 ms (blue) and 10 s
(purple) and others as Fig. 2 and Table 1.

presents an alternative parameter study that controls for the effect of the domain time

constant on the steady state domain [Ca2+], thereby highlighting the manner in which the

rate of domain formation and collapse influences Ca2+mediated inactivation of LCCs.

Fig. 8 shows that for a given voltage and domain time constant τ , increasing the perme-

ability of the channel (and thus css, the maximum domain [Ca2+] that can be achieved) leads

to an increase in Ca2+-mediated inactivation (decreased h∞). On the other hand, when the

permeability is adjusted so that the maximum domain [Ca2+] is fixed decreasing τ (faster

domain) increases both the mean domain [Ca2+] (Fig. 8C) and Ca2+-dependent inactivation

(Fig. 8A). When css is fixed, a slower domain leads to smaller variance, i.e., Ca2+ channels

in different domains are likely to experience similar [Ca2+] (Fig. 8).

Discussion

Summary of results

In this paper, we have shown how a population density approach (Eq. 4) to modeling Ca2+-

mediated inactivation of L-type Ca2+ channels is an extension of (and improvement upon)
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biophysical theory that assumes that domain [Ca2+] is proportional to single channel current

(recall Fig. 1). The population density approach is similar to traditional domain models of

Ca2+-mediated inactivation [20] in that both assume a large number of low-density Ca2+

channels and a minimally represent action of the heterogeneity of domain [Ca2+]—a poten-

tially important feature of Ca2+-mediated inactivation that is not captured by common pool

models.

However, the population density approach is distinct from traditional multiscale models

of Ca2+-inactivation in its representation of the time-dependent formation and collapse of

Ca2+ domains associated with L-type channels. Similar to previous work focused on local

control of excitation-contraction coupling in cardiac myocytes [25], the population density

approach to modeling Ca2+ inactivation of L-type channels is often preferable to Monte Carlo

simulation of the stochastic dynamics of channels and domains. This is due to the fact that

the computational efficiency of a population density model scales with the number of states

in the Markov chain model of the L-type channel, as opposed to the (far greater) number

of channels present in the plasma membrane of the cell. Traditional equilibrium domain

models also have this advantage, but do not account for the dynamics of domain formation

and collapse that may in some cases influence the kinetics of Ca2+ inactivation [29,30].
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The population density formalism allows the derivation of moment-based models of do-

main Ca2+ inactivation that are extremely computationally efficient. We have derived two

different moment-based models that are distinguished by the number of ODEs per channel

state retained after truncation of the open system of moment equations as well as the as-

sumptions made to close the moment equations. Both the second-order (Eqs. 19–20, zero

variance) and third-order (Eqs. 25–27, zero third central moment) moment-based models

performed well when validated by comparison to corresponding population density simu-

lations, but the third-order moment-based model was extremely accurate and valid for a

wider range of domain time constants (Fig. 5). The second-order moment-based model is

most accurate when the domain time constant is relatively small (fast domain, τ < 100 ms),

because in that case the joint distributions for domain [Ca2+] conditioned on channel state

are very focused (low variance, recall Fig. 5).

Using both the population density and moment-based models, we investigated the de-

pendence of the steady-state inactivation of the 12-state L-type Ca2+ channel model [21] on

the exponential time constant (τ) for domain formation and collapse. When the study was

performed using a fixed permeability for the L-type channel, faster domains (smaller τ) leads

to less inactivation for a wide range of clamped voltages. When the channel permeability

is chosen to be a function of τ that results in a fixed maximum domain [Ca2+], a smaller

domain time constant leads to increased Ca2+-mediated inactivation, presumably because

the kinetics of domain formation subsequent to channel opening are more rapid.

Limitations and possible extensions

Although the computational efficiency of the probability density and moment-cased calcu-

lations is notable, the runtimes of both models are proportional to the number of states in

a given L-type channel model. Consequently, both methods may have little computational

advantage if the LCC model of interest is extremely complex. In addition, the efficiency

of the probability density approach is dependent upon the number of meshpoints used in

solving the advection-reaction equations.

For simplicity, we have illustrated the population density and moment-based models

under the assumption that plasma membrane fluxes do not change the bulk cytosolic [Ca2+]

(that is, ccyt is clamped). However, it is straightforward to relax this assumption and thereby

allow a dynamic bulk intercellular [Ca2+]. For example, assuming the rate of ATP-dependent

plasma membrane Ca2+ efflux is given by Jout = kout ccyt, the ODE for bulk cytosolic Ca2+

is
dccyt
dt

= J∗cyt − Jout, (31)
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where J∗cyt is the total flux from domains to cytosol,

J∗cyt(t) =
∑
i

∫
cyt ρ

i(c, t) dc

= τ−1
∑
i

∫
[c− ccyt(t)] ρi(c, t) dc

= τ−1

[∑
i

µi1 − ccyt(t)

]
.

In spite of the fact that we have chosen to illustrate the population density and moment-

based models through simulated voltage clamp recordings, the modeling formalism is easily

modified to simulate current clamp recordings.

The population density approach presented here is well-suited to investigate whole-cell

potassium currents that arise through voltage- and Ca2+-dependent stochastic gating of

SK and BK channels, both of which play important physiological roles in the heart, brain

and muscle cells and are often spatially co-localized with L-type Ca2+ channels [14, 34–37].

Previous work by Stanley et al. [38] has shown that the stochastic gating of Ca2+ channels

increases the activation of SK channels. Cox recently presented a Cav 2.1/BKCa model

and that suggested that Ca2+ channels will open during a typical cortical neuron action

potential, while the associated BKCa channel opens in only 30% of trials [39]. Furthermore,

this percentage is sensitive to the action potential duration, the distance between the two

channels in the signaling complex, and the concentration of intercellular Ca2+ buffers [39].

Extensions of the population density and moment-based model that account for the dynamic

of Ca2+ buffering and the geometric relationship between channels is an important avenue

for future research.
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