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Abstract 31 

Analysis of High-throughput sequencing (HTS) data is a difficult problem, especially in the 32 

context of non-model organisms where comparison of homologous sequences may be hindered by the 33 

lack of a close reference genome. Current mapping-based methods rely on the availability of a highly 34 

similar reference sequence, whereas de novo assemblies produce anonymous (unannotated) contigs that 35 

are not easily compared across samples. Here, we present Assembly by Reduced Complexity (ARC) a 36 

hybrid mapping and assembly approach for targeted assembly of homologous sequences. ARC is an 37 

open-source project (http://ibest.github.io/ARC/) implemented in the Python language and consists of the 38 

following stages: 1) align sequence reads to reference targets, 2) use alignment results to distribute reads 39 

into target specific bins, 3) perform assemblies for each bin (target) to produce contigs, and 4) replace 40 

previous reference targets with assembled contigs and iterate. We show that ARC is able to assemble high 41 

quality, unbiased mitochondrial genomes seeded from 11 progressively divergent references, and is able 42 

to assemble full mitochondrial genomes starting from short, poor quality ancient DNA reads. We also 43 

show ARC compares favorably to de novo assembly of a large exome capture dataset for CPU and 44 

memory requirements; assembling 7,627 individual targets across 55 samples, completing over 1.3 45 

million assemblies in less than 78 hours, while using under 32 Gb of system memory. ARC breaks the 46 

assembly problem down into many smaller problems, solving the anonymous contig and poor scaling 47 

inherent in some de novo assembly methods and reference bias inherent in traditional read mapping. 48 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 31, 2015. ; https://doi.org/10.1101/014662doi: bioRxiv preprint 

https://doi.org/10.1101/014662
http://creativecommons.org/licenses/by-nc/4.0/


3 

INTRODUCTION 49 

 High-throughput sequencing (HTS) techniques have become a standard method for producing 50 

genomic and transcriptomic information about an organism (Schbath et al. 2012). The Illumina, Roche, 51 

and Life Sciences sequencing platforms produce millions of short sequences referred to “reads” that range 52 

in length from 50 to 700 base pairs (bp) depending on chemistry and platform. In shotgun sequencing, 53 

these short reads are typically produced at random, making them effectively meaningless without further 54 

analysis. The primary challenge in the analysis of HTS data is to organize and summarize the massive 55 

number of short reads into a form that provides insight into the underlying biology. Two analysis 56 

strategies, de novo sequence assembly and sequence mapping have been widely adopted to achieve this 57 

end.  58 

The objective of de novo assembly is to piece together shorter read sequences to form longer 59 

sequences known as contigs. Sequence assembly is a challenging problem that is made more difficult by 60 

characteristics of the sequenced genome (e.g., repeated elements and heterozygosity) and by sequencing 61 

technology characteristics (e.g., read length and sequencing errors). Additionally, assembly algorithms are 62 

computationally intensive for all but the smallest datasets, thus limiting their application (Li et al. 2012). 63 

Finally, de novo assembly of large datasets typically produces many short contigs that require additional 64 

organization and analysis. Despite many advances and a large selection of assembly software packages, 65 

fragmentation and misassembly remain common problems and improving the quality of de novo sequence 66 

assemblies continues to be an area of active research (Bradnam et al. 2013).  67 

Sequence mapping is often the first step carried out in resequencing projects where a good 68 

reference sequence exists. The objective of mapping is to align short reads against a reference sequence, 69 

thereby permitting direct sequence comparisons between a sample and the reference. This approach is 70 

significantly faster than de novo sequence assembly and has proven to be very effective at identifying 71 

sequence variants at a large scale (The 1000 Genomes Project Consortium et al. 2010). Unfortunately, this 72 

approach is entirely dependent on a reference sequence that is similar to the organism being sequenced. 73 
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Differences between a sample and reference sequence (e.g., structural variations (SVs), novel sequences, 74 

an incomplete or misassembled reference, or sequence divergence) can result in unmapped or poorly-75 

mapped reads, which may result in false variant calls (Li, 2011). In the context of RNA-Seq experiments, 76 

unmapped reads result in counting errors, and can affect the identification of differentially expressed 77 

genes (Pyrkosz et al. 2013). Resequencing projects are performed to identify differences between a 78 

sample and an established reference; however, the regions that are most divergent can also be the most 79 

difficult to map reads against. Because of this, mapping based approaches are inherently biased by the 80 

reference and only provide reliable results when sequence divergence is below the threshold at which 81 

reads can be mapped accurately. 82 

The two approaches described above (mapping and de novo assembly) have been developed and 83 

optimized for whole-genome analysis; however, another class of problems exists in which specific 84 

regions of a genome or subsets of the sequenced DNA are analyzed. This type of analysis is appropriate 85 

in many instances, including sequence capture, viral genome assembly from environmental samples, 86 

RNA-Seq, mitochondrial or chloroplast genome assembly, metagenomics, and more. In cases like these, it 87 

has been necessary to develop custom pipelines to carry out analyses. In order to assemble the mammoth 88 

mitochondrial genome from whole genome shotgun data, Gilbert et al. (2007) first mapped the reads to a 89 

reference mitochondrial sequence, filtered the mapped reads and then “assembled using scripts to run 90 

existing assembly software”. Other tools that have been developed to address sub genome assembly 91 

include: MITObim an extension of the MIRA assembler (Hahn et al. 2013; Chevreux et al. 1999). It 92 

requires the user to first perform a mapping based assembly with MIRA, then to use the output of this 93 

assembly to do iterative read recruitment and assembly; however, according to the documentation, 94 

MITObim does not take advantage of paired-end reads for recruitment or extension. Further, it is not 95 

optimized for multiple targets or multiple samples, due to many steps that are manually carried out. The 96 

Mapping Iterative Assembler (MIA) uses an iterative mapping and consensus calling approach 97 

(https://github.com/udo-stenzel/mapping-iterative-assembler). The algorithm is tuned for ancient DNA 98 
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and was reported by Hahn et al. (2013) to be very slow. It also appears to only function with a single 99 

sample and reference; Other groups such as Malé et al. (2014), and Picardi and Pesole (2012) have also 100 

developed strategies for assembling smaller subsets from larger datasets; however, none of these were 101 

developed as a general purpose, highly parallelized homologous sequence assembler.  102 

To address this problem we introduce a hybrid strategy, Assembly by Reduced Complexity 103 

(ARC) that combines the strengths of mapping and de novo assembly approaches while minimizing their 104 

weaknesses. This approach is designed for the myriad of situations in which the assembly of entire 105 

genomes is not the primary objective, but instead the goal is the assembly of one or many discreet, 106 

relatively small subgenomic targets. ARC is an iterative algorithm that uses an initial set of reference 107 

sequences (subgenomic targets) to seed de novo assemblies. Reads are first mapped to reference 108 

sequences, and then the mapped reads are pooled and assembled in parallel on a per-target basis to form 109 

target-associated contigs. These assembled contigs then serve as reference sequences for the next iteration 110 

(see Figure 1). This method breaks the assembly problem down into many smaller problems, using 111 

iterative mapping and de novo assembly steps to address the poor scaling issue inherent to some de novo 112 

assembly methods and the reference bias inherent to traditional read mapping. Finally, ARC produces 113 

contigs that are annotated to the reference sequence from which they were initiated from, making across 114 

sample comparisons possible with little additional processing. 115 

RESULTS 116 

Experiments were conducted to determine how well ARC performs across an array of 117 

progressively more divergent references,  assembly of short, poor quality reads produced from ancient 118 

DNA samples, and to measure ARC's performance on a large dataset. ARC was tested using two datasets. 119 

The first dataset is made up of Illumina sequence reads from two chipmunk (Tamias sp.) exome capture 120 

experiments (Bi et al. 2012; Sarver et al. in prep). The second dataset consists of Roche 454 FLX 121 

sequence reads from a whole-genome shotgun sequencing experiment using ancient DNA extracted from 122 

a mammoth hair shaft sample (Gilbert et al. 2007). The workflow and results of these experiments are 123 
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presented below. 124 

Assembly by Reduced Complexity Workflow 125 

 The iterative mapping and assembly principle (Figure 1) and workflow (Figure 2) behind ARC 126 

consists of several steps: 1) align sequenced reads to reference targets, 2) use alignment results to 127 

distribute reads into target specific bins, 3) perform assemblies for each bin (target) to produce contigs, 128 

and 4) replace initial reference targets with assembled contigs and iterate the process until stopping 129 

criteria have been met. During the read alignment step (1), either the sequence aligner BLAT, or Bowtie 2, 130 

is used to identify reads that are similar to the current reference targets. The assembly step (3) is 131 

performed using either the Roche GS De Novo Assembler (aka “Newbler”) or SPAdes assemblers. 132 

ARC accepts a plain text configuration file, a FASTA formatted file with reference target 133 

sequences, and either FASTA or FASTQ formatted files containing reads for each sample. An output 134 

folder is generated for each sample that contains the final set of contigs, the reads recruited on the final 135 

iteration, and ARC statistics. 136 

 ARC is open source software implemented in the Python programming language with source 137 

code available for download from GitHub (http://ibest.github.io/ARC/). Prerequisite software packages 138 

include: Python 2.7.x, Biopython (Cock et al., 2009), BLAT (Kent, 2002) or Bowtie 2 (Langmead and 139 

Salzberg, 2012) and Newbler (Margulies et al., 2005) or SPAdes (Bankevich et al., 2012). These software 140 

packages are all free and easy to obtain, and may already be available on systems previously used for 141 

HTS analysis. ARC can be installed on most Linux servers, but will also work on many desktops or 142 

laptops, provided the required prerequisites are installed. The installation size is only 3Mb, and system 143 

administrator access is not required, making it easy to download and use. Configuration is done via a 144 

plain text file that can be distributed to make replication of results simple.  145 

ARC performs well with divergent references 146 

A divergent reference sequence can result in unmapped and misaligned reads (Li, 2012). To test 147 

how robust ARC is to reference sequence divergence, we assembled mitochondrial genomes using reads 148 
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from an exome sequence capture experiment performed on 55 chipmunk specimens representing seven 149 

different species within the Tamias genus (T. canipes, T. cinereicollis, T. dorsalis, T. quadrivittatus, T. 150 

rufus, T. umbrinus, and T. striatus) (Bi et al. 2002; Sarver et al. In prep.). We ran ARC using a set of 11 151 

mitochondrial references spanning Mammalia, including Eastern long fingered.bat, Cape hare, Edible 152 

dormouse, Gray-footed chipmunk, Guinea pig, House mouse, Human, Platypus, Red squirrel, Ring-tailed 153 

lemur, and Tasmanian devil. Sequence divergence of mitochondrial references with respect to Tamias 154 

cinereicollis ranged (in percent identity) from 71.2% (Platypus) to 94.9% (Gray-footed chipmunk). 155 

Generally speaking, the more divergent the reference sequence, the more ARC iterations were needed in 156 

order to complete the assembly process (see Figure 3), while still producing the same resulting 157 

mitochondrial genome sequence. 158 

Supplemental Table 1 reports ARC results for final number of reads recruited and used for 159 

assembly (as well as the common count of reads across all 11 reference targets), contig size (total sum of 160 

bases across all contigs produced), contig count, ARC iterations needed before stopping criteria were met, 161 

and final ARC status (completed or killed) across the 11 reference target sequences for each of the 55 162 

samples. Results show that the choice of reference sequence did not qualitatively impact the final result, 163 

ultimately producing, in most cases, the same final mitochondrial genome sequence. In general each of 164 

the 11 reference target species recruited the same number of reads, produced the same number of 165 

contigs,and resulted in the same length product, with the primary difference being the number of ARC 166 

iterations conducted before stopping conditions were met.  The relationship between target and read 167 

recruitment is further illustrated in Supplemental Figure 1, which shows that the most similar target, the 168 

Gray-footed chipmunk (T. canipes), typically recruits almost the full set of reads in the first iteration and 169 

finishes by the third iteration. At the other extreme, platypus recruited a significantly smaller proportion 170 

of reads on the first iteration, but continues to recruit more reads at each iteration until it acquires the full 171 

(and often, the same) set of reads. Quality of the original read dataset attributed more to determining the 172 

success of assembly than choice of reference sequence.  173 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 31, 2015. ; https://doi.org/10.1101/014662doi: bioRxiv preprint 

https://doi.org/10.1101/014662
http://creativecommons.org/licenses/by-nc/4.0/


8 

We observed some variation in final contig lengths across the reference sequences; however, this 174 

can be attributed to the linearization of the circular mitochondrial genome. As an example, ARC 175 

assembled a single contig for sample S160 across all 11 references, with the length of contig differing by 176 

29 bp between two groups of targets: Edible dormouse, Ring-tailed lemur, and Eastern long-fingered bat 177 

targets produced an identical 16,642 bp contig, and all other references produced an identical 16,671 bp 178 

contig. A combination of pairwise alignments and dot-plots (data not shown) indicate that these 179 

differences are due to the way in which this circular sequence was linearized. The 16,642 bp contig has a 180 

90 bp overlap between the beginning and end of the contig, while the 16,671 bp contig has a 119 bp 181 

overlap, caused from group 2 recruiting one additional read relative to group 1. Therefore, even though 182 

the assembled length differed slightly the resulting mitochondrial genomes were identical and equal in 183 

length after trimming overlapping ends. 184 

ARC assembles large contigs from short, poor quality reads produced from ancient DNA 185 

Methods that permit investigators to extract DNA from samples that are as much as 50,000 years 186 

old and prepare libraries for HTS have been developed (Gilbert et al. 2007, 2008; Knapp and Hofreiter 187 

2010). The DNA from these ancient samples tends to be partially degraded resulting in shorter, poorer 188 

quality reads (Knapp and Hofreiter, 2010). As described previously, ARC relies on an iterative process to 189 

extend assemblies into gaps. Recruiting reads with partial, overhanging alignments at the edge of a contig 190 

eventually fills these gaps. To test the effectiveness of ARC with short, single-end reads produced from 191 

ancient samples, we used ARC to assemble the mammoth (Mammuthus primigenius) mitochondrial 192 

genome using reads sequenced by Gilbert et al. (2007) from DNA collected from hair samples. 193 

Sequenced reads were obtained for Mammuthus primigenius specimen M1 from the Sequence 194 

Read Archive (SRA001810) and preprocessed as described in the Methods section. ARC was run using 195 

three mitochondrial references target sequences: the published sequence from Mammuthus primigenius 196 

specimen M13, Asian elephant (Elephas maximus) the closest extant relative of the mammoth (Gilbert et 197 
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al. 2008), and a more divergent reference, the house mouse (Mus musculus) (accessions: EU153445, 198 

AJ428946, NC_005089 respectively). 199 

We evaluated ARC results by alignment to the published Mammuthus primigenius M1 sequence 200 

(EU153444), which is 16,458 bp in length. Results of this comparison are presented in Table 1. Percent 201 

coverage (> 99%) and identity (> 98%) is high for both the mammoth and elephant references. The mouse 202 

reference resulted in a slightly smaller assembly (total length 15,781 bp), however coverage (95.9%) and 203 

identity (99.4%) were still high. Not surprisingly, the mouse reference required 78 ARC iterations to 204 

build its final set of contigs, recruiting only 223 reads on the first iteration. Despite starting from such a 205 

small number of initial reads, the final iteration recruited 4,507 reads, almost the same number as the 206 

other reference sequences, but from a significantly more divergent reference sequence. 207 

All contigs assembled by ARC could be aligned to the published reference sequence, however the 208 

lengths of contigs assembled using the mammoth (16,620 bp) and elephant references (16,603 bp) were 209 

both longer than the published sequence length (16,458 bp). To investigate whether this was due to a poor 210 

quality assembly on the part of ARC, or an error in the published sequence, we aligned the ARC contigs 211 

produced from the mammoth reference (Mammuthus primigenius M13) and the published Mammuthus 212 

primigenius M1 sequence against the published Asian elephant sequence (Supplemental Figure 2). The 213 

alignment showed a number of gaps existed in the ARC assembly as compared to the published contigs. 214 

Each of these gaps was associated with a homopolymer (consecutive identical bases, e.g., AAA), a known 215 

issue with Roche 454 pyrosequencing technology. More interesting was that the D-loop region of the 216 

published Mammuthus primigenius M1 sequence contains 10 'N' characters followed by a 370bp gap 217 

when aligned against the Asian elephant reference. ARC assembled 220 bp of this sequence, including 218 

sequence that crosses the unknown, “N” bases in the published sequence. These assembled bases align 219 

with high identity against the Asian elephant reference, suggesting that they represent an accurate 220 

assembly of this locus and that the published M1 mitochondrial sequence is either missing sequence or is 221 

misassembled in this region. 222 
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ARC computational requirements for large datasets 223 

To be useful for modern genomic experiments ARC must be able to process large datasets with 224 

multiple samples and potentially thousands of targets. We benchmarked ARC's performance with the 225 

previously described chipmunk exome capture dataset that contains reads from 55 specimens and exonic 226 

sequence captured from 7,627 genes as well as the full mitochondrial genome. After stringent read 227 

cleaning to remove adapters, PCR duplicates, and overlapping of paired-end reads with short inserts, this 228 

dataset contains 21.9 Gbp in 194,597,935 reads. For comparison purposes, we also carried out de novo 229 

assemblies of three libraries using the Roche Newbler v2.6 assembler (Table 2). 230 

ARC required 77 hours 45 minutes to process all 55 samples and 7,627 genes, carrying out a total 231 

of 1.3 million assemblies and using a maximum of 31.19 GB of memory. On average this equates to 1 232 

hour 25 minutes per sample. By comparison, individual whole dataset assemblies for a representative 233 

three samples were variable, requiring between 6.71 GB and 17.54 GB of memory, with running times of 234 

between 31 minutes and 13 hours 27 minutes to complete using Roche Newbler. Although time and 235 

memory requirements are smaller for assembly of an individual sample, the total time required to 236 

assemble 55 samples in serial would have been be much greater than the time required by ARC to process 237 

all samples on a single machine. Likewise, the total memory usage needed to assemble all 55 samples 238 

concurrently on a single machine would exceed the memory usage required by ARC on the same machine. 239 

Further, assembly algorithms produce anonymous (unannotated) contigs, requiring significant additional 240 

processing and analysis before homologous sequences are identified and can be compared between 241 

samples. In contrast ARC contigs are annotated to the target from which they were initiated, facilitating 242 

across sample comparisons. 243 

Since ARC breaks a large assembly problem into smaller, more manageable pieces, we postulated 244 

that memory requirements would scale as a function of the number of CPUs used to perform ARC 245 

assemblies rather than as a function of the total number of reads as is normally the case with sequence 246 

assembly (Li 2012). To test this, we performed nine ARC runs using between 10 and 50 CPU cores with 247 
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the 55-specimen chipmunk dataset. We used a random subset of 200 targets instead of the full 7,627 248 

targets so that the experiment could be completed in a reasonable amount of time. During each assembly 249 

we recorded maximum memory usage. The results indicate a linear increase in memory usage as the 250 

number of cores increases (see Figure 4). A linear model was fit to this data resulting in an estimated 251 

slope of 0.07 GB per CPU core (P < .005, R2 = 0.96) for this dataset. It is important to note that even 252 

though this dataset contains 21.9 Gbp of reads, analysis using a small number of CPU cores and a reduced 253 

dataset required less than 3 GB of RAM total, making it possible to use ARC on any size dataset with any 254 

modern desktop computer. 255 

DISCUSSION 256 

In this paper we introduce ARC, a software package that facilitates targeted assembly of HTS 257 

data. This software is designed for use in situations where assembly of one or several discreet and 258 

relatively small targets is needed and (potentially divergent) homologous reference sequences are 259 

available for seeding these assemblies. ARC fills the gap between fast, mapping based strategies which 260 

can fail to map, or misalign reads at divergent loci, and de novo assembly strategies which can be slow, 261 

resource intensive, and require significant additional processing after assembly is complete. ARC was 262 

evaluated in three ways: 1) we determined whether ARC results were biased by divergence of the 263 

reference; 2) we tested the effectiveness of ARC to produce assemblies using short, low quality reads 264 

produced from ancient DNA; and 3) we characterized performance on a large HTS dataset with 55 265 

samples and thousands of subgenomic targets. 266 

Assemblies using a divergent set of references with chipmunk specimens show that ARC does not 267 

require a close reference to produce high quality final contigs. Supplemental Figure 1 illustrate that on the 268 

initial iteration, ARC is able to map only a tiny fraction of the mitochondrial reads to all but the most 269 

closely related gray-footed chipmunk reference, yet is able to recover, in most cases, a full set of reads 270 

and complete mitochondrial genomes by iteration 50. This small set of reads represents the total number 271 

of reads that would have been aligned using a traditional mapping strategy and further illustrates how 272 
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sensitive read mapping is to high levels of divergence. A similar pattern emerged when we used a mouse 273 

reference to seed assembly of a mammoth mitochondrial genome. A mere 223 reads mapped on the first 274 

iteration, which was sufficient to seed assembly of an almost full-length mitochondrial sequence 275 

assembled from 4,507 reads.  276 

Repetitive sequences and excess coverage are well-known issues, which increase memory usage 277 

and slow assembly (Li 2012; Miller et al. 2010). Although ARC partially addresses this problem by 278 

breaking the full set of reads into smaller subsets before assembly, it can still encounter issues with very 279 

high coverage libraries, or when a target includes repetitive sequence and recruits a large numbers of 280 

similar reads. For example, when testing ARC's ability to handle diverse mitochondrial references, 281 

assemblies did not complete for specimen S10 using any of the 11 reference target sequences. In this case 282 

the sequence depth was ~1500x for the mitochondrial genome; this depth is not suited for the Newbler 283 

assembler, which performs pairwise comparisons of every read and works best when coverage is closer to 284 

an expected depth of 60x. The excess coverage led to long assembly times and an eventual timeout. 285 

Although the iterative ARC process did not run to completion in this case, intermediate contigs are still 286 

reported and contained the full, although fragmented, mitochondrial genome.  287 

ARC has a number of built in mechanisms to mitigate problems caused by repetitive sequences 288 

and excess coverage. These include a masking algorithm that inhibits recruitment of reads from simple 289 

tandem repeats, as well as tracking of read recruitment patterns that quits assembly if an unexpectedly 290 

large number of reads are recruited between iterations, and an assembly timeout parameter that terminates 291 

assemblies that run beyond a specified limit. In addition to these strategies there is also an option to 292 

subsample reads in cases of known very high sequence depth. Subsampling was not used in any of the 293 

tests described here, but may have improved results for samples such as S10. During testing and 294 

development, we observed improved behavior with each of these measures on large datasets while 295 

minimizing the impact of excess sequencing coverage and repeat elements. Implementing them has 296 

allowed ARC to run more quickly and efficiently; however, it is clear that in some cases, recruitment of 297 
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excess reads and repeat elements can still cause problems for some targets or samples. In all completed 298 

assemblies, the resulting set of reads and contigs were either identical or nearly so, providing strong 299 

evidence that ARC is able to assemble high quality, unbiased contigs using even very divergent 300 

references. This capability makes ARC a very useful tool when analyzing sequence data from non-model 301 

organisms or when the identity of a sample is in question. 302 

We tested ARC's ability to assemble contigs with short, low quality reads recovered from ancient 303 

mammoth DNA and found that read length and quality did not impact ARC’s ability to assemble full 304 

length genomes. The resulting mitochondrial genome assemblies appear to be as good as or even better 305 

than the published assembly for this sample despite using a divergent reference for ARC. Assembly of the 306 

M1 mammoth sequence by Gilbert et al. (2007) was achieved through mapping against another mammoth 307 

mitochondrial sequence published by Krause et al. (2006) that was generated using a laborious PCR-308 

based strategy. Because ancient DNA sequencing projects are often targeted at extinct organisms (Knapp 309 

and Hofreiter 2010) there is rarely a high quality reference from the same species that can be aligned and 310 

mapped to. This makes ARC an excellent choice for this type of data, where a target sequence from a 311 

related, extant organism is likely to successfully seed assembly. Even in the case where no closely related 312 

organism exists, a more distance reference may still be available, as was demonstrated by the assembly of 313 

two large contigs representing ~96% of the mammoth mitochondrial genome using a mouse 314 

mitochondrial genome for a reference. Additionally, ARC can be configured to use multiple reference 315 

sequences as a single target. In cases where specimens cannot be identified, the user can select a set of 316 

potentially homologous targets from many phylogenetically diverse taxa so that all sequences may serve 317 

as references in order to seed assembly. 318 

Analysis of HTS data can be computationally intensive, and time and memory requirements can 319 

become serious limitations, especially with larger datasets (Zhang et al. 2011). With ARC, we have 320 

attempted to reduce these requirements using a 'divide and conquer' approach that breaks large HTS 321 

datasets up into many smaller problems, each of which can be solved quickly and with reduced resources. 322 
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In the large, 55 sample, 7,627 target dataset, ARC completed over 1.3 million assemblies, averaging 323 

seven assemblies per second, in less than 78 hours. This approach allows the user to control memory 324 

usage simply by changing the number of CPU cores available to ARC as shown in Figure 4. Less than 3 325 

Gb of RAM was required when using 10 cores, despite processing a 21.9 Gbp dataset that would have 326 

required many times this amount of memory using traditional assembly methods. Of course, using fewer 327 

CPUs comes with the cost of a longer run time, so ARC can be tuned to the resources available.  328 

It is useful to think of the DNA sequence mapping problem as a trade-off between sensitivity and 329 

specificity (Fonseca et al. 2012). To avoid mapping reads to multiple loci throughout the reference, 330 

mapping parameters must be tuned for high specificity. However, when divergent loci exist within the 331 

reference sequence, high specificity limits the sensitivity of the mapper, leaving reads unmapped. 332 

Assembly, on the other hand, can be seen as mapping reads against themselves, thereby removing 333 

difficulties associated with divergent reference loci, but incurring the burden of pairwise read 334 

comparisons that is significant in large datasets. ARC circumvents these problems by removing reference 335 

bias through an iterative mapping and assembly process. As the intermediate reference is improved, more 336 

reads can be recruited without sacrificing specificity, allowing both specificity and sensitivity to remain 337 

high. At the same time, because only a small subset of reads is assembled, the all-by-all comparisons are 338 

less burdensome. This process is carried out in an automated, easily configured manner, with standardized 339 

output that simplifies additional analysis, or integration into existing sequence analysis pipelines. 340 

METHODS 341 

The ARC algorithm proceeds through a number of stages, which have been outlined below and 342 

are presented in Figure 1. This algorithm consists of four steps: mapping, splitting, assembling, and 343 

finishing. A graphical representation of the algorithm is presented in Figure 1, while an example 344 

illustrating the ARC process from the perspective of reads and contigs is provided in Figure 2.  345 

Initialization 346 
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During the initialization stage a configuration file is processed and a number of checks are carried 347 

out to ensure that data and prerequisite applications specified in the configuration file are available. If any 348 

checks fail, ARC will report an informative error message providing details about the problem and then 349 

exit. If all checks pass successfully the initialization process continues by creating internal data structures 350 

to store information about the experiment and pipeline progress. Working directories and read index files 351 

are created for each sample, and names that are file-system safe are assigned to each reference target 352 

sequence. Finally, the job manager is started (including job queues and workers), and read recruitment 353 

jobs are added to the job queue for each sample. With initialization complete, ARC begins the iterative 354 

part of the pipeline.  355 

Read recruitment: reads are recruited by mapping against a set of reference target sequences 356 

 In the first iterative stage, ARC recruits reads by mapping them against a set of reference targets 357 

using one of the two currently supported mappers, BLAT (Kent, 2002) or Bowtie 2 (Langmead and 358 

Salzberg, 2012), which is specified in the configuration file. In all subsequent iterations, the reference 359 

targets consist of contigs assembled from the previous iteration and are therefore highly similar and no 360 

longer represent a divergent reference sequence since they were derived from the sample reads.  361 

BLAT is a fast, seed-and-extend sequence alignment tool that supports gapped alignments and 362 

has proven effective at recruiting reads even in cases where global sequence identity is as low as 70%. In 363 

the first iteration, BLAT is run using default parameters (minIdentity=90, minScore=30) but on all 364 

subsequent iterations mapping stringency is increased (minIdentity=98, minScore=40) to reduce 365 

recruitment of less similar reads. BLAT reports all alignments that meet the minimum score criteria, so it 366 

is possible to use the same read multiple times if it aligns successfully against more than one target. One 367 

drawback of using BLAT is that it does not support the FASTQ format. All current HTS platforms 368 

produce base quality information for reads and this information is typically encoded in FASTQ format. 369 

To facilitate usage of ARC and FASTQ formatted data we include a code patch for BLAT that adds 370 
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support for FASTQ files. Instructions for applying this patch can be found in the online manual 371 

(http://ibest.github.io/ARC/). 372 

Bowtie 2 is another fast, gapped, read aligner that was specifically designed for mapping HTS 373 

reads (Langmead and Salzberg, 2012).  Bowtie 2 is ran in ARC under local alignment mode (--local 374 

option) which enables the recruitment of reads that partially map to the ends of contigs and in low-375 

homology regions. Additionally, the option to report up to five valid alignments (-k 5) is used by default. 376 

This setting can be modified based on the user's expectations by setting the bowtie2_k parameter in the 377 

ARC configuration file. Setting bowtie2_k=1 will cause Bowtie 2 to run in default local-alignment mode 378 

where only the best alignment found is reported. 379 

Split reads into bins: reads are split into subsets based on mapping results 380 

 In the second iterative stage, ARC splits reads into bins based on the mapping results. The 381 

supported mappers, BLAT and Bowtie 2 generate PSL or SAM (Li et al. 2009) formatted output files, 382 

respectively. ARC processes each sample’s mapping output file and reads are split by reference target. 383 

This is accomplished by creating a series of FASTQ files corresponding to reads which map to each 384 

reference target; allowing for the assembly of each target’s reads independently from the others. Splitting 385 

requires fast random access to the read files, which is facilitated by storing read offset values in a SQLite 386 

database as implemented in the Biopython SeqIO module (Cock et al. 2009). Two special considerations 387 

are taken into account during splitting. First, since the Newbler assembler uses pre CASAVA 1.8 Illumina 388 

read identifiers to associate paired reads, it is necessary to reformat the read identifier to ensure 389 

compatibility with Newbler paired-end detection. This is performed by ensuring that the read identifier is 390 

made up of five fields separated by a colon and ending in a sixth field indicating the pair number, a 391 

format compatible with most modern day assemblers. Identifiers for single-end reads are similarly 392 

reformatted, except that the sixth field, which indicates pair number, is left blank. Secondly, regardless of 393 

whether one or both of a read pair map to a target, both members of the pair are recruited as long as at 394 
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least one of them was mapped to the target sequence. Recruiting paired reads in this way takes advantage 395 

of the information stored in paired reads, and allows for faster extension of targets. 396 

Despite using a fast strategy for random accessing of read files, splitting is limited by system 397 

input/output latency and to a single CPU core per sample. To optimize CPU use on modern multi-core 398 

systems, ARC immediately adds an assembly job to the job queue as soon as all reads associated with a 399 

target have been split. This allows assemblies to proceed concurrently with the read splitting process.  400 

Assemble each bin: targets are assembled using either the Spades or Newbler assemblers 401 

Because the read splitting process is carried out sequentially across mapping reference targets, an 402 

assembly job for a target can be launched as soon as all reads associated with the target have been written.  403 

As soon as resources become available, assembly jobs are started, allowing ARC to run read splitting and 404 

assembly processes concurrently. Two assemblers are currently supported, the Roche GS de novo 405 

Assembler (also known as Newbler; Margulies et al., 2005), and SPAdes (Bankevich et al., 2012). 406 

Assemblies within ARC are always run with a timeout in order to gracefully handle the cases where the 407 

assembler crashes, does not exit properly, or takes longer than expected to run. This allows ARC to 408 

continue running efficiently on large projects where a small number of targets might be problematic (e.g., 409 

due to recruiting reads from repetitive elements). The timeout value can be controlled using the assembly 410 

timeout setting in the configuration file.  411 

Newbler was originally designed to assemble reads generated from the Roche 454 412 

pyrosequencing platform (Margulies et al. 2005), but recent versions have added support for Illumina 413 

paired-end reads and Newber can be run using only Illumina reads. The ARC configuration file supports 414 

two Newbler specific parameters that can sometimes improve assembly performance. These are to set 415 

urt=True, which instructs Newbler to “use read tips” in assemblies, and rip=True, which instructs 416 

Newbler to place reads in only one contig and to not to break and assign reads across multiple contigs. 417 

We have found that setting urt=True can reduce the number of ARC iterations necessary to assemble a 418 

target.  419 
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The second assembler supported in ARC is SPAdes (Bankevich et al., 2012). SPAdes is an easy 420 

to use de Bruijn graph assembler that performed well in a recent evaluation of bacterial genome 421 

assemblers (Magoc et al., 2013). SPAdes performs well in the ARC pipeline, but is not as fast as Newbler 422 

for small target read sets (data not shown). This may partly be because SPAdes implements a number of 423 

steps in an attempt at improving the often-fragmented de Bruijn graph assembly results seen in large 424 

eukaryotic genomes. These steps include: read error correction, multiple assemblies using different k-mer 425 

sizes, and merging of these assemblies. In ARC, SPAdes is run using the default set of parameters. 426 

In some cases, the reference targets may be very divergent from the sequenced specimen and, 427 

therefore, only a small number of reads are recruited in the first iteration.  If too few overlapping reads are 428 

recruited, the assemblers have very little data to work with, and in the case of SPAdes, may fail to 429 

assemble any contigs. In an attempt to address this specific situation, we provide a final pseudo-assembly 430 

option that skips assembly on the first iteration and treats any recruited reads as contigs. These reads are 431 

then used as mapping reference targets in the second iteration.  This option can be enabled by setting 432 

map_against_reads=True in the ARC configuration file. In some cases using reads as mapping targets 433 

results in recruiting large numbers of reads from repeat regions, causing the assembly to timeout and fail. 434 

For this reason we only recommend using this approach after testing ARC with standard settings. 435 

Finisher: assembled contigs are written as a new set of mapping targets or to finished output  436 

Once all assemblies are completed for a given sample, the final iterative stage in the ARC 437 

pipeline is initiated. During this stage each target is evaluated; if stopping conditions are met, the contigs 438 

are written to the final output file; and if not the contigs are written to a temporary file where they are 439 

used as reference targets in the next iteration (see the section Folder structure: outputs and logging for 440 

details). Stopping conditions within ARC are defined as follows: 1) iterations have reached their 441 

maximum allowable number as defined by the numcycle parameter in the ARC configuration file; 2) no 442 

additional reads have been recruited (i.e., delta read count between iterations is zero); 3) detection of an 443 

assembly that was halted, or killed will result in no further attempts at assembling this target, and any 444 
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contigs produced on the previous iteration will be written to the output file; or 4) a sudden spike in read 445 

counts. Occasionally a target will be flanked by repeated sequence in the genome that can cause a sudden 446 

spike in the number of recruited reads. The max_incorporation parameter in the ARC configuration file 447 

controls sensitivity to this situation and by default is triggered if five times the previous number of reads 448 

are recruited.  449 

During output, target contig identifiers are modified to reflect their sample, original reference 450 

target, and contig number separated by the delimeter “_:_” (e.g.  sample_:_original-reference-451 

target_:_contig). Contigs are also masked of simple tandem repeats in all but the final iteration, using an 452 

approach that relies on frequency of trinucleotides in a sliding window. Repeats are masked by setting 453 

them to lower case for Blat support, or by modifying the repeat sequence to the IUPAC character 'N' for 454 

Bowtie 2 support. All target contigs in their final iteration are written to the final output file, and all 455 

corresponding reads are written to the final read files, however their description field is modified to 456 

reflect which reference target they are assigned to. 457 

For any targets that remain unfinished (i.e., stopping conditions have not been met), those 458 

reference targets are iterated using the newly assembled contigs as the next mapping reference targets.  459 

Description of input files 460 

Inputs to ARC consist of three types of files: a file containing reference target sequence(s), file(s) 461 

containing sequence reads for each sample, and an ARC configuration file. 462 

The reference target sequence(s) file contains the sequences that are to be used as mapping 463 

references during the first iteration of ARC. This file must be in standard FASTA format and should have 464 

informative, unique names. It is possible to use multiple reference sequences as a single target in cases 465 

where a number of potentially homologous targets are available and it is not clear which of them is most 466 

similar to the sequenced sample (e.g. in the case of ancient DNA extracted from unidentified bone 467 

material). This can be accomplished by naming each reference target using ARC's internal identifier 468 

naming scheme made of three parts separated by “_:_” (e.g.,  sample_:_reference-target_:_contig). During 469 
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read splitting, ARC will treat all sequences that have an identical value in “reference-target” as a single 470 

target.  471 

Sample sequence read files are represented with up to three sequence read files; two paired-end 472 

(PE) files, and one single-end (SE) file. ARC will function with only one SE file, a PE set of files, or all 473 

three files if provided. If multiple sets of reads are available for a single biological sample (i.e., from 474 

different sequencing runs or technologies) they should be combined into the above described three read 475 

files. All reads for all samples must be in the same format (i.e., FASTA or FASTQ) and this format needs 476 

to be indicated using the format parameter in the ARC configuration file. It is highly recommended that 477 

reads be preprocessed to remove adapter sequences and low quality bases prior to running ARC. 478 

Removing PCR duplicate reads and merging paired-end reads has also been observed to produce higher 479 

quality, less fragmented ARC assemblies, particularly with capture data (data not shown).  480 

The ARC configuration file is a plain text file describing the various parameters that ARC will 481 

use during assembly, mapping, and output stages and the sample(s) read data data paths. By default the 482 

configuration file should be named ARC_config.txt, but any name can be used as long as the -c filename 483 

switch is used. The configuration file is split into three parts, denoted by the first characters in the line. 484 

Lines starting with the characters “##” are treated as comments and ignored, lines starting with “#” are 485 

used to set ARC parameters, and lines that don't begin with “#” indicate sample read data. The one 486 

exception to this rule is the sample read data column header line, which is the first line that doesn't begin 487 

with “#”, and contains column names. This line is ignored by ARC, but is expected in the configuration 488 

file. An example ARC configuration file is included in the “test_data” directory that comes with ARC. A 489 

comprehensive list of configuration options are presented in the online manual 490 

(http://ibest.github.io/ARC/). 491 

Folder Structure Outputs and Logging 492 

In order to minimize memory usage and interface with assembly and mapping applications, ARC 493 

relies heavily on temporary files. These files are organized into subdirectories under the path from which 494 
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ARC is launched. During ARC processing a pair of folders is created for each sample. These folders have 495 

the prefixes “working_” and “finished_”. Temporary files used during ARC processing are stored in the 496 

“working_” folders while completed results and statistics are recorded in the “finished_” folders.  497 

The “working_” directories contain the sample contigs assembled during each iteration in a set of 498 

files with file names “I00N_contigs.fasta” (where “N” corresponds to the iteration) and the latest 499 

assembly directory denoted by “t__0000N” (where “N” corresponds to the numeric index of the target). 500 

These directories and files can be informative in determining why an assembly failed or for examining 501 

assembly statistics of a particular sample and target in more depth. Additionally, these folders provide the 502 

option of manually re-running an assembly with a different set of parameters than those chosen within 503 

ARC. In addition to the per iteration contigs and latest assembly directories, the “working_” folders also 504 

contain the sample read indexes, which can be reused when re-running ARC with new parameters, and 505 

the latest mapping log report. The “working_” folders only contain temporary files used by ARC and can 506 

be safely deleted after the ARC run. 507 

The “finished_” directories contain the following files: contigs.fasta, mapping_stats.tsv, 508 

target_summary_table.tsv, and final read files. The contigs.fasta file contains the final set of assembled 509 

contigs for each target. Contigs are named according to the three part naming scheme previously 510 

described (sample_:_original-reference-target_:_contig) in order to facilitate downstream comparisons 511 

between samples. The mapping_stats.tsv and target_summary_table.tsv files are tab-separated values files 512 

that store information on the number of reads mapped to each target at each iteration and per target final 513 

summary statistics respectively. These files can be easily loaded into a spreadsheet, or statistical program 514 

such as R to generate plots or for other downstream analysis. The final read files (PE1.fasta/PE1.fastq, 515 

PE2.fasta/ PE2.fastq, and SE.fasta/ SE.fastq) contain all the reads that were mapped, and consequently 516 

used during assembly, on the final ARC iteration. If only pair-end or single-end files were provided then 517 

only reads of this type will be reported. These files will be formatted in the same manner as the original 518 
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input files (FASTA or FASTQ) and have modified description fields to indicate the sample and target to 519 

which they were assigned. 520 

ARC post processing and contrib scripts 521 

ARC contains a number of add on scripts in the “contrib” folder of the application, for 522 

downstream processing of assembled contigs and visualization of ARC results. These scripts include R 523 

functions to profile and plot memory usage and to plot data from the run log. The contrib folder also 524 

contains number of Python scripts for post-processing ARC contigs for use in downstream applications 525 

such as phylogenomics. Two scripts in particular are “ARC_Add_Cigar_Strings.py” and 526 

“ARC_Call_and_Inject_hets.py”. The first allows users to determine the order and orientation of ARC-527 

generated contigs relative to the original reference, using the program BLAT to align assembled contigs 528 

against sequences from the original reference targets sequence file. The script then generates a CIGAR 529 

string in standard SAM format to describe the alignment. In situations where the contig extends beyond 530 

the 5’ or 3’ ends of the target sequence, those bases are described as soft-clipped. The order of the 531 

CIGAR string depends on the orientation of the contig with respect to the target (as is the case with 532 

similar programs such as Bowtie2). If the contig maps to the forward strand, the CIGAR string reports the 533 

matches, insertions, deletions, and soft-clipped regions of the alignment in the 5’ to 3’ direction. In 534 

contrast, if the contig maps to the reverse strand, the CIGAR string reports components of the alignment 535 

in the 3’ to 5’ direction. The script generates an output file (in FASTA format) that includes the contig 536 

sequence from the original ARC output file, the name of the contig, the name of the target sequence the 537 

contig mapped to, the start and end positions of the contig relative to the target sequence, the contig’s 538 

orientation (i.e., “+” or “-” depending on whether the contig mapped to the forward or reverse strand of 539 

the target), and the CIGAR string. With this information the user can ascertain the order and orientation 540 

of ARC-generated contigs with respect to the reference. 541 

The second script, “ARC_Call_and_Inject_hets.py”, produces both a variant call formatted file 542 

(VCF) per sample and a new contigs file with ambiguity bases at heterozygous loci. This script uses 543 
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Bowtie 2 to map the reads recruited for each target to their respective assembled contigs. GATK and 544 

Picard Tools are then used to call heterozygous SNPs and output a VCF file for each sample. Finally, the 545 

script encodes the heterozygous SNP calls using their respective IUPAC ambiguity code and ‘injects’ 546 

those bases into the original contig sequences producing a new contigs file containing heterozygous sites. 547 

Datasets used for testing  548 

 We tested ARC with two datasets. The first dataset is made up of Illumina sequence reads from 549 

two chipmunk (Tamias sp.) exome capture experiments. This combined dataset consists of sequence reads 550 

from 55 specimens, 3 of which were sequenced as part of Bi et al. (2012) while the other 52 were 551 

sequenced as part of a separate study (Sarver et al. in prep). The second dataset consists of Roche 454 552 

FLX sequence reads from a whole-genome shotgun sequencing experiment using ancient DNA extracted 553 

from a mammoth hair shaft sample (Gilbert et al. 2007). 554 

The first chipmunk dataset was used to investigate ARC's sensitivity to divergent references as 555 

well as its utility and performance with large datasets. For all 55 specimens, libraries were captured using 556 

an Agilent SureSelect custom 1M-feature microarray capture platform that contains 13,000 capture 557 

regions representing the mitochondrial genome and 9,716 genes (Bi et al. 2012). Libraries were then 558 

sequenced on the Illumina HiSeq 2000 platform (100bp paired-end). The 55 chipmunks represent seven 559 

different species within the genus Tamias with representatives of T.canipes: 5, T. cinereicollis: 9, T. 560 

dorsalis: 12, T. quadrivittatus: 1, T. rufus: 5, and T. umbrinus: 10, collected and sequenced as part of 561 

Sarver et al. (in prep) and T. striatus: 3 collected and sequenced by Bi et al. (2012).  562 

Prior to ARC analysis, reads were preprocessed through a read cleaning pipeline consisting of the 563 

following steps. PCR duplicates were first removed using a custom Python script. Sequences were then 564 

cleaned to remove sequencing adapters and low quality bases using the software package Seqyclean 565 

(Zhbannikov et al. in prep, https://bitbucket.org/izhbannikov/seqyclean). Finally, because paired-end 566 

sequencing produces two reads sequenced from either end of a single template, it is often possible to 567 

overlap these reads to form a single long read representing the template in its entirety. This overlapping 568 
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was carried out using the Flash software package (Magoc and Salzberg, 2011).  Post-cleaning, the dataset 569 

consisted of 21.9 Gbp (giga base pairs) in 194,597,935 reads. 570 

ARC analysis for the first dataset was carried out using two different sets of references. To 571 

determine how well ARC performs with divergent references, the mitochondrial genome of each 572 

specimen was assembled against eleven different mammalian mitochondrial references (see Figure 3). We 573 

also tested ARC's performance with a large number of targets by using a target set consisting of a 574 

manually assembled Tamias canipes mitochondrial sequence plus 11,976 exon sequences comprising 575 

7,627 genes. These sequences represent the unambiguous subset from the 9,716 genes that the capture 576 

probes were originally designed against. 577 

The second woolly mammoth dataset was used to test ARC's performance on shorter, poor 578 

quality reads that are typical of ancient DNA sequencing projects. Total DNA was extracted from ancient 579 

hair shafts and reads were sequenced on the Roche 454 FLX platform by (Gilbert et al. 2007). Although 580 

these reads represent shotgun sequencing of both the nuclear and mitochondrial genomes, the authors 581 

report a high concentration of mitochondria in hair shaft samples resulting in high levels of mitochondrial 582 

reads relative to nuclear reads.  Sequenced reads for Mammuthus primigenius specimen M1 were 583 

obtained from the Short Read Archive using accession SRX001889 and cleaned with SeqyClean 584 

(Zhbannikov et al. in prep, https://bitbucket.org/izhbannikov/seqyclean) to remove 454 sequencing 585 

adapters and low quality bases. Following cleaning, this datasets contains a total of 19 Mbp in 221,688 586 

reads with an average length of 86.2 bp. Although these reads were sequenced on the Roche 454 platform 587 

which typically produces much longer reads (400-700bp), 75% of cleaned reads were 101bp or less in 588 

length making them extremely short for this platform. ARC analysis was carried out using three 589 

mitochondrial references, the published Mammuthus primigenius sequence from another specimen, M13, 590 

Asian elephant (Elephas maximus) the closest extant relative of the mammoth (Gilbert et al. 2008), and a 591 

divergent reference, mouse (Mus musculus) (accessions: EU153445, AJ428946, NC_005089 respectively). 592 

DATA ACCESS 593 
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The raw data used in this study are available in NCBI Sequence Read Archives under BioProject numbers 594 

SRX001889 (Mammuthus primigenius M1), SRA053502 (Tamias samples S10, S11, S12), and 595 

SRAXXXXX (Remaining Tamias samples). Reference sequences used in this study are available in 596 

NCBI Genbank under accession numbers: NC_000884.1 (guinea pig),  NC_001892.1 (edible dormouse), 597 

HM156679.1 (human),  AJ421451.1, (ring-tailed lemur), NC_015841.1 (cape hare), KF440685.1 (eastern 598 

long-fingured bat), NC_000891.1 (platypus),  NC_018788.1 (tasmanian devil), NC_002369 (red squirrel), 599 

NC_005089 (house mouse), EU153445 (Mammuthus primigenius), AJ428946 (Elephas maxiumus), 600 

NC_005089 (Mus musculus). 601 
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FIGURE LEGENDS 610 
 611 
Figure 1. An example of iteratively assembling homologous sequences using ARC. In iteration 1, a small 612 

number of reads and unmapped pairs are recruited to the more highly conserved regions of the divergent 613 

reference. These reads are assembled and the resulting contigs are used as mapping targets in the next 614 

iteration. This process is iterated until no more reads are recruited. Mapped reads are indicated in yellow, 615 

unmapped reads in orange. Paired reads are indicated with a connector. Both members of a pair are 616 

recruited if only one maps. 617 

Figure 2. ARC processing stages. The ARC algorithm consists of an initialization stage, followed by four 618 

steps: 1) read recruitment, 2) split reads into bins, 3) assemble each bin and 4) finisher. These steps are 619 

iterated until stopping conditions are met, at which point a final set of contigs and statistics are produced. 620 

Figure 3. Set of references used for ARC assembly of chipmunk mitochondrial genomes and their 621 

respective scientific names, genome sizes, and NCBI Genbank accession numbers. Percent identity is 622 

determined with respect to the Gray-Collared chipmunk (Tamias cinereicollis). Boxplots show the 623 

variation around the number of ARC iterations for each reference species across all 55 samples, before 624 

stopping conditions were met.  625 

Figure 4. ARC memory requirements (y-axis) scale as function of the number of CPU cores used (x-axis). 626 

A line of best fit is plotted in red. 627 

 628 
  629 
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FIGURES 630 
 631 

 632 
Figure 1 633 
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Figure 3 639 
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Figure 4. 642 
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 644 
TABLES 645 
 646 
Table 1 ARC results for assembly of ancient mammoth DNA sequences. ARC produces a small number 647 

of contigs in all cases with good coverage and identity between the assembled contigs and published 648 

reference.  649 

Reference Contig 
count 

Total contig 
length (bp) 

Percent 
coverage 

Percent 
identity 

ARC 
iteration 

Reads 
recruited 

Mammuthus primigenius 4 16,620 99.7% 98.1% 3 4633 
Elephas maximus 4 16,603 99.7% 98.2% 5 4631 

Mus musculus 2 15,781 95.9% 99.4% 78 4507 
  650 
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Table 2 ARC assembly of 55 specimens compared to individual Roche Newbler de novo assemblies of 651 

three specimens (S151, S152, and S223). Maximum and average memory usage (RAM) is listed in 652 

gigabytes (GB). Total data processed is reported in millions of base pairs (Mbp).   653 

 ARC Newbler: S151 Newbler: S152 Newbler: S223 

Total running time 77hr, 45min 31 min 1hr 13min 13hr 27min 

Average Memory (GB) 22.78 5.847 8.337 16.36 

Maximum Memory (GB) 31.19 6.71 9.967 17.54 

Total assemblies 
performed 

1,300,076 Not Applicable Not Applicable Not Applicable 

Average assemblies per 
second 

7.03 Not Applicable Not Applicable Not Applicable 

Library Size (Mbp) 21,913 243 367 629 

  654 
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