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Abstract 

Prostate cancer exhibits high mathematical complexity due to the disruption of tissue 

architecture. An important part of the diagnostic of prostate tumor samples is the 

histological evaluation of cellular and glandular organization. The Gleason grade and score, 

a commonly used prognostic indicator of patient outcome, is based on the match of 

glandular architectural patterns with standard patterns. Unfortunately, the subjective nature 

of visual grading leads to variations in scoring by different pathologists. We proposed the 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 8, 2015. ; https://doi.org/10.1101/015016doi: bioRxiv preprint 

https://doi.org/10.1101/015016


 

fractal dimension of the lumen and the Lempel-Zip complexity of the histopathological 

patterns as useful descriptors aiding pathologist to standardize histological classification 

and thus prognosis and therapy planning. 
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1. Introduction 
 

Cancer is a generic name given to a group of malignant cells which have lost their 

tissue-specific specialization and control over normal growth. These groups of malignant 

cells are nonlinear dynamic systems which self-organize in time and space, far from 

thermodynamic equilibrium [1], and exhibit high complexity [2,3], robustness [4,5] and 

adaptability [6]. 

 

As reported by the WHO in its bulletin No. 297, 2013, cancer is the leading cause of 

death worldwide. According to the American Cancer Society in 2013 of those diagnosed 

from with prostate cancer the 12% die due to cancer, and 1 in 6 men are diagnosed with this 

disease. [7]. 

 

When signs of prostate cancer appear, although there are many specific features [8], the 

clinical aggressiveness of this tumor type is diagnosed through Gleason grade and score, 

which is based on the observation of different sections of the biopsy or the surgical 

specimen. Each histopathological picture is assigned a Gleason grade (from 0 to 5 

increasingly different from normal), which depends on the architecture of tumor glands and 

the relationship of the gland with the surrounding stroma (Fig. 1). As the prostate gland and 

prostate tumors are morphologically heterogeneous, the Gleason score is obtained by the 

sum of the most predominant Gleason grade and the second most predominant one in 

frequency [10,11]. In this regard, it has been observed that the architecture of the prostate 

gland becomes irregular and complicated with increasing grade of agressiveness of the 

same. [10, 11]. 
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Figure 1. Gleason classification in which the gland structure corresponds to different 

Gleason grades of  prostate cancer. Adapted from [11]. 

 

Due to the complexity of the histopathological images, the use of the theory of complex 

systems, in particular fractal geometry has been proved useful to discern objectively 

between these complex patterns [12, 13, 14, 15]. The complexity analysis enables to 

understand the phenomena that determines the evolution of the tumor and can be used as a 

tool to develop strategies for therapies [12, 16, 17]. In previous studies we have used the 

fractal dimension to characterize patterns in cervical cancer [18] and found a mathematical 

relationship between the rate of proliferation of the tumor and its fractal dimension. 
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Although over the last decade various methods for the analysis of histopathological 

images of prostate have been developed [15, 17, 19, 20, 21], yet the issue of the complexity 

of these images and their quantification remains a topical issue and a necessity for the 

clinical analysis of the same. 

 

The aim of this work is the application of complex systems theory to quantify the 

agressiveness of prostate cancer, in particular the determination of the capacity fractal 

dimension ( fD ) and the complexity of Lempel-Ziv ( LZ ) of histopathological images this 

tumor, which can be used as a complement in the diagnosis and prognosis. 

 

2. Materials and methods 
 

2.1 Prostate tissue specimen procurement 

Data were obtained from the archives of the Pathology Services Prince of Asturias 

Hospital, Alcala de Henares, Madrid, Spain. All pathological, clinical or personal data were 

anonymized and separated from any personal identifiers. This study was made with the 

consent of the patients’ relatives or their family in autopsy cases and from surgical biopsies 

used for diagnosis. All the procedures were examined and approved by the University of 

Alcalá and Principe de Asturias Hospital Ethics Committees (reference number SAF2007-

61928) and were in accordance with the ethical standards of the Committee for Human 

Experimentation, with the Helsinki Declaration of 1975 (as revised in Tokyo 2004) and the 

Committee on Publication Ethics (COPE) guidelines. 

 

Samples used were sections 5 µm-thick, stained with hematoxylin-eosin and observed 

under an optical microscope (Olympus, Vanox-T, Mod AH-2). In total, 277 images were 

taken (30 Healthy Tissue, 5 Gleason-1 (G1), 12 Gleason-2 (G2), 76 Gleason-3 (G3), 15 

Gleason-4 (G4) and 6 images of Gleason-5). Images were classified by pathologists M. 

Nistal and P. González Peramato, following guidelines of the consensus of the International 

Society of Urological Pathology of 2005 [10] and tha Gleason grade 4 modification of 2010 

[11]. All images were taken at 40X magnification and a resolution of 1296x972 pixels. 
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2.2 Morphological characterization and Mathematical processing 

The morphological characterization of each image was held by software ImageJ 1.43 

[22]. All measurements were performed in a blind manner, and then groups of different 

Gleason grades were made for significance analysis. 

 

For fractal dimension calculation, each image is used as a color channel split for 

distinguishing cells, stroma and lumen. In this case it was found that the blue color filter 

differentiated the stroma, the green channel the lumen, while the red color filter 

differentiated the cell nuclei, as shown in Figure 2. Each filtered image was converted into 

binary and the fractal dimension was determined by the box count method [23].  

 

Original 

 

Red 

 

Green 

 

Blue 

Figure 2. Filtering color process of a image of a prostate cancer histopathological section. 

 

The LZ complexity [24, 25] was implemented as follows: the histopathological images 

are represented by a matrix [I (X, Y)], where each coordinate (X, Y) represents a pixel of 

the image, or more properly a intensity value of one color (Fig. 2). This way discrete series 

in coordinates "X" and "Y" respectively is generated to calculate the LZ complexity 

thereof. It is considered that each row of the image (X1,2,..., width) is a time series and its 

LZ complexity is calculated, (LZ_X) and the same way for each column (Y1,2,..., height) 

(LZ_Y). Accordingly, if the image is (1296x972 pixels) we have 1296 rows and 972 

columns and thus following this idea, we have two time series: one consisting of 1296 
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LZ_X values and other of 972 LZ_Y values. In this way the image is reduced to a time 

series of complexity in X and Y (Fig. 3). To these new time series the LZ complexity is 

calculated once again to reduce to a single value in X (LZ_X_last) and Y (LZ_Y_last). 

 

Figure 3. Procedure to get values of LZ complexity. 

 

 To asses significant differences of the different Gleason results for fractal dimension 

and LZ  complexity, a t-test for two independent populations at a level of significance of 

<0.05. 

 

3. Results 
 

Figure 4 shows histopathological images for increasing Gleason grades, indicative 

of an increase in the tumor agresiveness. Gland morphology progressively modified, 

observed as loss of the auto-organized structure of glands and decrease of the area occupied 

by the lumen (Figure 4). 
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Figure 4. Distribution of tissue pattern in prostate cancer to different Gleason grades. 

 

We determined the fractal dimension on the lumen of each image and the 

LZ complexity of all histopathological images (Table 1). Comparison between groups 

using the t-test (Table 2) shows that  values for 60% of cases is less than 0.05 ( <0.05) 

indicating that there are significant differences in the fractal dimension of the lumen and the 

LZ  complexity of the prostatic tissue between healthy tissue and tumor at the different 

Gleason grades. 
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Histology fD (Lumen) LZ  N 

Normal 1.71±0.02 0.52±0.03 30 

Gleason 1 1.54±0.03 0.77±0.03 5 

Gleason 2 1.64±0.03 0.68±0.03 12 

Gleason 3 1.58±0.01 0.65±0.01 76 

Gleason 4 1.46±0.03 0.67±0.03 15 

Gleason 5 1.48±0.03 0.79±0.02 6 

Differences between grades specimens are statistically significant (p<0.05) 

Table 1. Average values of LZ Complexity and fD  of lumen of healthy tissue and tumor 

prostate of increasing Gleason grade. 

 

 

LZ       

 Healthy G1 G2 G3 G4 

G1 0.00     

G2 0.00 0.09    

G3 0.00 0.02 0.34   

G4 0.00 0.09 0.73 0.59  

G5 0.00 0.45 0.02 0.00 0.02 

      

fD       

 Healthy G1 G2 G3 G4 

G1 0.00     

G2 0.05 0.06    

G3 0.00 0.34 0.09   

G4 0.00 0.15 0.00 0.00  

G5 0.00 0.21 0.00 0.01 0.70 

Table 2. t-Test at significance level  =0.05 obtained for LZ Complexity and fD  of lumen 

of healthy tissue and tumor prostate of increasing Gleason grade. 
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As expected, the fractal dimension ( fD  ) of lumen of healthy tissue and tumor 

prostate of increasing Gleason grade was progressively decreasing, exhibiting an acceptable 

correlation (Figure 5). 
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Figure 5. Average and SE values of  fD   for each Gleason grade. Healthy tissue is 

considered as grade 0. 

 

  Interestingly, LZ complexity allows to istinguish between healthy and prostate 

cancer images (Figure 6). In addition, LZ  complexity first decreases and later increases 

with increasing agressiveness of prostate cancer.  This shift in the curve tendency occurs at 

Gleason grade 3 (Figure 6). 
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Figure 6. Average and SE values of LZ   for each Gleason grade. Healthy tissue is 
considered as grade 0. 

 

4. Discussion  
 

Recent studies [20, 21], set  the fractal dimension as an additional histopathological 

analysis method for prostate cancer, but these authors only set guidelines to separate 

malignant and benign prostate tissue, without deepen in the real problem of the 

standardization of  malignancy grades classified according to the Gleason grade. 

 

As shown in Figure 5, there is an acceptable correlation between the fractal 

dimension of the lumen and the tumor degree. The experimental results obtained show the 

loss of a gland self-organized structure of the histopathological patterns from Gleason 1 

onwards, suggesting an increase in the tumor aggressiveness with the decrease of the fractal 

dimension. This is a mathematical validation of the value of the score that Gleason 

established more than 50 years ago [9].  

 

The dynamic of LZ  shown in Figure 6 exhibits an abrupt change in slope in the 

vicinity of grade 3. Mathematically it behaves like a phase transition of the first order [26]. 
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This is an important indicator of the changes observed by pathologists in this grade in this 

particular type of cancer. In fact, up until Gleason grade 3, the glandular-like structure is 

conserved, and at grades 4 and 5 is lost. This mathematical data provides validation for the 

consensus of the ISUP considering the poorly formed glands and cribiform pattern to be 

higher than the original Gleason 3 (poorly formed glands and cribiform pattern are now 

considered Gleason 4) [10, 11].  

  

Moreover, the determination of the LZ  complexity of the histological pattern, has 

the advantage that, unlike the fractal dimension, the determination is done considering the 

histopathological image as a whole.  

  

The results show that it is possible to characterize the complexity of the tissues of 

prostate cancer through the values of fractal dimension of the lumen fD  and LZ  

complexity. Thereby the results obtained are a quantitative complement to diagnosis and 

consequently could contribute to the development of new strategies and improved 

prognosis with future potential automation of the method. This method allows the 

pathologist to suggest the therapeutic strategy more adequate for each patient considering 

the tumor aggressiveness, allowing for a more accurate personalized medicine treatment.  

 

In conclusion, we propose to quantify the prostate tumor agressiveness through the 

fractal dimension of the lumen and the LZ  complexity of the image as a whole. The fractal 

dimension and LZ  complexity provide a complementary quantitative characterization of 

the different grades of the tumor, which is a nominal variable, and able to differentiate 

healthy tissue. 
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