
Decoding of human hand actions to handle missing limbs in 1 

Neuroprosthetics   2 

 3 

Jovana J. Belić1,2,3*, Aldo A. Faisal1,4,5 4 

1
 Department of Bioengineering, Imperial College London, London, UK 5 

2
 Faculty of Electrical Engineering, University of Belgrade, Belgrade, Serbia 6 

3
 Department of Computational Biology, Royal Institute of Technology KTH, Stockholm, Sweden 7 

4
 Department of Computing, Imperial College London, London, UK 8 

5 
MRC Clinical Sciences Center, London, UK 9 

* Correspondence: Jovana J. Belić, Royal Institute of Technology KTH, Department of Computational Biology, 100 44 10 
Stockholm, Sweden.  11 
belic@kth.se 12 

Keywords: Neurotechnology, motor control, prosthetic hand, neuroprosthetics, movement variability, Bayesian 13 
classifier, PPCA, activities of daily living, finger movement. 14 
 15 
Abstract 16 

The only way we can interact with the world is through movements, and our primary interactions are 17 
via the hands, thus any loss of hand function has immediate impact on our quality of life. However, 18 

to date it has not been systematically assessed how coordination in the hand's joints affects every day 19 
actions. This is important for two fundamental reasons. Firstly, to understand the representations and 20 
computations underlying motor control “in-the-wild” situations, and secondly to develop smarter 21 
controllers for prosthetic hands that have the same functionality as natural limbs. In this work we 22 
exploit the correlation structure of our hand and finger movements in daily-life. The novelty of our 23 
idea is that instead of averaging variability out, we take the view that the structure of variability may 24 
contain valuable information about the task being performed. We asked seven subjects to interact in 25 
17 daily-life situations, and quantified behaviour in a principled manner using CyberGlove body 26 
sensor networks that, after accurate calibration, track all major joints of the hand. Our key findings 27 
are: 1. We confirmed that hand control in daily-life tasks is very low-dimensional, with four to five 28 
dimensions being sufficient to explain 80-90% of the variability in the natural movement data. 2. We 29 

established a universally applicable measure of manipulative complexity that allowed us to measure 30 
and compare limb movements across tasks. We used Bayesian latent variable models to model the 31 

low-dimensional structure of finger joint angles in natural actions. 3. This allowed us to build a naïve 32 
classifier that within the first 1000ms of action initiation (from a flat hand start configuration) 33 
predicted which of the 17 actions was going to be executed - enabling us to reliably predict the action 34 
intention from very short-time-scale initial data, further revealing the foreseeable nature of hand 35 
movements for control of neuroprosthetics and tele operation purposes. 4. Using the Expectation-36 

Maximization algorithm on our latent variable model permitted us to reconstruct with high accuracy 37 
(<5°-6° MAE) the movement trajectory of missing fingers by simply tracking the remaining fingers. 38 
Overall, our results suggest the hypothesis that specific hand actions are orchestrated by the brain in 39 
such a way that in the natural tasks of daily-life there is sufficient redundancy and predictability to be 40 

directly exploitable for neuroprosthetics. 41 
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 42 

1.  Introduction 43 

The human hand is a highly complex actuator and perhaps the most important and diverse tool we 44 
use to interact with the environment. The hand is capable of both a powerful grip to push, pull, or 45 
twist objects, and a precise grip to twist and turn small objects or handles (Napier, 1980). These are 46 
just a few of the countless gestures we can use and learn. Anatomically, the hand comprises a total of 47 
27 bones, 18 joints, and 39 muscles (Tubiana, 1981), which afford over 20 degrees of freedom (DOF) 48 
(Stockwell, 1981; Soechting and Flanders, 1997; Jones and Lederman, 2006). The number of degrees 49 
of freedom is an important characterization of the human hand because it defines the dimensionality 50 
of the control problem that has to be solved by the motor system. However, previous studies of 51 
human motor control showed that normal hand behaviour uses only a small subset of possible hand 52 

configurations (Todorov and Ghahramani, 2004; Weiss and Flanders, 2004; Ingram et al., 2008; 53 
Valero-Cuevas et al., 2009). It is known that biomechanically, the control of individual joints is 54 
limited by the redundant set of muscles that control single or several joints (Lang and Schieber, 2004; 55 

Rácz at al., 2012). Studies of neural and neuromuscular architecture of the hand have demonstrated 56 
that these do not support fully isolated joint movements (Lemon, 1997; Poliakov and Schieber, 1999; 57 
Reilly and Schieber, 2003), and biomechanical constraints appear to result in all muscles being 58 
required for full directional control of grip forces (Kutch and Valero-Cuevas, 2011). Additionally, it 59 
has been proposed that motor control of the hand joints is organized in a modular way, where several 60 
degrees of freedom are organized into functional groups to simplify the control problem (Santello et 61 
al., 1998; Tresch et al., 2006).   62 
     In the realm of muscle co-actions so called motor synergies were identified to represent structured 63 

spatio-temporal patterns of muscle interplay in defined movements (Bernstein, 1967; Santello et al., 64 
2002; Daffershofer et al., 2004; d’Avella et al., 2006; Tresch et al., 2006). Also, studies that have 65 
focused on finger joint kinematics of complex hand shapes (Santello et al., 1998; Mason et al., 2001; 66 
Daffertshofer et al., 2004), as well as continuous daily-life-day activity (Ingram et al., 2008) found 67 
that most variability in the data could be explained by just a few (four to six) characteristic 68 
parameters (so called principal components) that indicates a high degree of correlation between the 69 
angles of the fingers. These have also been replicated in studies focusing on the key evolutionary 70 
ability to produce flint-stone tools (Faisal et al., 2010). 71 

The importance of the hand as our means to interact with the world becomes painfully evident 72 
when loss of a hand or hand function occurs. Here neuroprosthetics and robotic hands have rapidly 73 

evolved to imitate an unprecedented level of hand-control (Wolpaw and McFarland, 1994; Taylor et 74 
al., 2002; Wolpaw and McFarland, 2004; Hochberg et al., 2006; Bitzer and van der Smagt, 2006; 75 

Carrozza et al., 2006; Zhou et al., 2007; Kuiken et al., 2007; Steffen et al., 2007; Rothling et al., 76 
2007; Cipriani et al., 2008; Velliste et al, 2008; Lui et al., 2008; Schack and Ritter, 2009; Kuiken et 77 
al., 2009; Hochberg et al., 2012; Schröder et al., 2012; Feix et al., 2013; Thomik et al., 2013). Yet, it 78 
is still very difficult for people with a lost limb to achieve naturalistic mobility and dexterity by 79 
controlling a prosthetic replacement in the same way they would control their own body. This 80 

increases the training time to use such neuroprosthetics (up to two years) and results in a low 81 
adoption rate after training.  82 
     We hypothesize that natural hand movements performed “in-the-wild”, outside artificially 83 
construed and highly controlled laboratory tasks contain correlation information that can be used for 84 
prediction and reconstruction in the context of prosthetics. We asked subjects to perform everyday 85 
tasks such as opening the door, eating, using the phone, etc. The data consists of 15-dimensional time 86 

series representing the angles of all the major joints of all the fingers. Advances in experimental 87 

methods have increased the availability, amount and quality of high-resolution behavioural data for 88 
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both humans and animals that can be collected. However, most behavioural studies lack adequate 89 

quantitative methods to model behaviour and its variability in a natural manner. Here, we take the 90 
view that motor behaviour can be understood by identifying simplicity in the structure of the data, 91 
which may reflect upon the underlying control mechanisms. Yet, the analysis of movements and 92 
specifically hand movements is complicated by the highly variable nature of behaviour (Faisal et al., 93 
2008). To extract the structure of hand configuration variability data stream we used a probabilistic 94 
generative latent variable model (PPCA) of hand configurations for each task.  95 

Part of these results was previously published in the form of abstracts (Belić and Faisal, 2011; 96 
Belić and Faisal, 2014). 97 

 98 

2. Materials and methods 99 

2.1. Subjects  100 

Seven adults (two women and five men, average age 24±2 years) with no known history of 101 
neurological or musculoskeletal problems, participated in this study following approved ethical 102 
guidelines. All subjects were right-handed as determined by the Edinburgh Handedness Inventory 103 
(Oldfield, 1971). The experimental procedure used in this experiment was approved by the local 104 

ethics committee. 105 

 106 

2.2. Experiments and data acquisition  107 

We asked subjects to perform 17 different everyday tasks (Figure 1), while capturing their hand 108 
movements by using resistive sensors embedded in a previously calibrated CyberGlove I 109 
(CyberGlove System LLC, CA, USA). The data glove is made of thin cloth, and its sensors are 110 
correlated with corresponding joints of the human hand (Figure 2A). The CyberGlove we used in this 111 
study is associated with 18 DOF of the hand. We used data from 15 sensors that consisted 112 

of metacarpalphalangeal (MCP) and proximal interphalangeal (PIP) sensors for the four fingers, three 113 
stretch sensors between the four fingers, three sensors for the thumb (the carpometacarpal (CMC), 114 
MCP and interphalangeal (IP) sensors), and the stretch sensor between the thumb and the palm of the 115 
hand. Sensors were sampled continuously at 80 Hz at a resolution of 8 bits per sensor. Subjects 116 

completed 10 repetitions for each of the activities, and they always started trials from the same initial 117 
position (the hand was placed on the interface device attached to the subject’s belt with the fingers 118 

composed together and thumb oriented parallel to the palm). The beginning of each trial was 119 
indicated with a sound. The trials were self-paced and the purpose of activities was explained to 120 
subjects orally, but they were not instructed about any desired movements for the upcoming trials. 121 
After performing the task, the subject then returned his/her hand to the initial position. All programs 122 
for data acquisition, visualization and calibration were purpose-developed in C++. 123 

 124 

2.3. Calibration  125 

The output of each CyberGlove sensor is voltage value (raw value) which is dependent on the 126 
bending applied to that specific sensor. In order to obtain the outputs in degrees (Figure 2B), it is 127 

necessary to determine conversion factor gain and a constant term offset for each of the sensors. This 128 
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process is called calibration of the CyberGlove. Once the gain and offset are set, output in degrees of 129 

the corresponding sensor is given by the following equation: 130 

𝑎𝑛𝑔𝑙𝑒 = 𝑔𝑎𝑖𝑛 ∗ (𝑅𝑎𝑤𝑉𝑎𝑙𝑢𝑒 − 𝑜𝑓𝑓𝑠𝑒𝑡). 

    To calculate the gain and offset we need two different pre-defined angles for each of the sensors 131 
and raw values that correspond to them (RawValue1 and RawValue2). Gain and offset are calculated 132 

by the following formulas: 133 

𝑔𝑎𝑖𝑛 =
(𝑎𝑛𝑔𝑙𝑒1 − 𝑎𝑛𝑔𝑙𝑒2)

(𝑅𝑜𝑤𝑉𝑎𝑙𝑢𝑒1 − 𝑅𝑜𝑤𝑉𝑎𝑙𝑢𝑒2)
, 

𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑅𝑜𝑤𝑉𝑎𝑙𝑢𝑒1 −
𝑎𝑛𝑔𝑙𝑒1

𝑔𝑎𝑖𝑛
. 

    The glove was calibrated for each subject using a five-step procedure that allowed us to determine 134 
two different angles (angle1 and angle2) for each of the sensors (Figure 3): 135 

The first position corresponded to 0° for all glove sensors (Figure 3A).  136 
The second position defined an angle of 90° for all MCP sensors except for the thumb (Figure 3B).  137 
The third position determined the abduction angles of 30° between the middle and index finger and 138 
between the little and ring finger, an angle of 20° between the ring and middle finger, and an angle of 139 
90° between the index and thumb finger. 140 
The fourth position defined an angle of 90° for all PIP sensors except for the thumb. 141 
The fifth position corresponded to the angles for the thumb sensors: CMC (90°), MCP (45°) and IP 142 
(90°) sensor. 143 

    The calibration procedure was further improved using an online visualization system. In our study, 144 
a virtual human hand was rendered in OpenGL. The virtual hand was animated in real-time by data 145 
from the glove (Figure 3F). Visualization of data was of great help during both calibration and data 146 
acquisition processes. In the case of visually observed deviation between the 3D model and the actual 147 
position of the hand, gain and offset were re-determined only for the sensors where deviation was 148 
observed. Calibration parameters for each of the subjects had been stored in a separate file and loaded 149 
before the experiments started. We also asked subjects, after completing the calibration procedure, to 150 
again place their hand in the first position, so we could additionally check eventual discrepancies. 151 

The average error across the sensors was 5±2 degrees. 152 

 153 

2.4. Computational Latent Variable modelling of real-life movements 154 

Collected data from the 15 sensors for each subject and each trial were stored to disk for offline 155 
analysis using MatLab (MathWorks, Natick (MA)). Before further analysis, the data is smoothed 156 
using a second-order Savitzky-Golay filter with a running window of five data points to remove 157 
discontinuities induced by the A/D converter. 158 
    Our data space potentially extends over a 15-dimensional space. We performed Principle 159 

Component Analysis (PCA) on joint angles in order to estimate real dimensionality of the finger 160 
movements during daily activities. PCA reduces the set of correlated variables to a set of non-161 
correlated variables (principle components) (Semmlow, 2001; Bishop 2006).  The first principal 162 
component contains as much of the variability (as quantified by the variance) in the data as possible, 163 
as does each succeeding component for the remaining variability. Therefore, here we used the PCA 164 

method to determine the complexity of the finger movements, by measuring how many principal 165 
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components can explain most of the variability in the data (Faisal et al., 2010). For example, 166 

dimensionality reduction techniques can be illustrated by considering the index finger, which has 167 
three joints controlled by five muscles. Describing the flexing behaviour of this finger requires a 168 
priori three values (“dimensions”). For example, in specific movements like making a fist, as we flex 169 
one joint of the index finger, we flex the other two joints at the same time in a highly coordinated 170 
manner. Thus, we would require in principle a single dimension to describe the configuration of the 171 
finger. PCA ignores the temporal structure of movements (in fact the results of PCA will be the same 172 
if the data in each trial is randomly shuffled in time). Thus, correct classification relies on the sub-173 
space of finger movement variability alone.   174 
    Tipping and Bishop found a probabilistic formulation of PCA by viewing it as a latent variable 175 
problem, in which a d-dimensional observed data vector x can be described in terms of an m 176 

dimensional latent vector, y: 177 

𝒙 = 𝑾𝒚 + 𝝁 + 𝝐, 

where W is d x m matrix, 𝝁 is the data mean and 𝝐 is an independent Gaussian noise with a diagonal 178 
covariance matrix I. The likelihood of observed data vector x is given as: 179 
 180 

𝑝(𝒙) = (2𝜋)−𝑑/2|𝑪|−1/2𝑒(−1/2(𝒙−𝝁)𝑇𝑪−1(𝒙−𝝁)), 

 and Cov is the model covariance matrix given by the following formula:         181 

𝑪𝒐𝒗 = 𝑾𝑾𝑇 + 𝜎2𝑰. 

W and σ are obtained by iterative maximization of log-likelihood of p: 182 

𝜎2 =
1

𝑑 − 𝑚
∑ 𝛾𝑘

𝑑

𝑘=𝑚+1

, 

𝑾 = 𝑼𝑚(𝑨𝑚 − 𝜎2𝑰)
1
2𝑹, 

where γk are eigenvalues, Um is d x m matrix of eigenvectors, Am is diagonal matrix (m x m) of 183 
eigenvalues, and R is an arbitrary m x m orthogonal rotation matrix (for simplicity R is usually equal 184 
to I). 185 

 186 

2.5 Measure of manipulative complexity 187 

As a way to quantify manipulative complexity for a given number of PCs, we proposed a universally 188 
applicable measure that allowed us to calculate and compare limb movements across different tasks. 189 

We refer to it as manipulative complexity C, and define the measure by the following formula: 190 

𝐶 = 1 −
2

𝑁 − 1
∑ ∑(𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑏𝑦𝑃𝐶𝑖 −

𝑗

𝑖=1

𝑁

𝑗=1

1/𝑁), 

where N is the total number of PCs we consider. Our data space extends over a 15-dimensional 191 
space, so if all PCs contribute equally that implies C=1, and C=0 if one PC explains all data 192 

variability. Our complexity measure compares well with intuitive complexity estimates and it can be 193 
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thought of as a new assessment measure that is calculated after an objective mathematical analysis. 194 

For example, a simple behaviour, e.g. curling and uncurling a hand into a fist, would reveal a single 195 
dominant principal component as all 5 fingers (and each finger’s joint) move in a highly correlated 196 
manner and therefore C would be close to 0. In contrast, a complex behaviour, such as expert typing 197 
on a keyboard would reflect more uniform distribution of variances explained by principal 198 
components, as each finger moves independently from the others, and so C would have a high value. 199 

 200 

2.6 Task recognition from movement data (Bayesian classification) 201 
 202 
    Next, we simply predicted a task based on the one with the highest PPCA likelihood by employing 203 
Bayesian classifier. In Bayesian statistics there are two important quantities: unobserved parameters 204 

Ωj (j=1,…,17 different activities in our study) and observed data x (movement data). They are related 205 
in the following way: 206 

𝑃(𝛺𝑗|𝒙) =
𝑃(𝒙|𝛺𝑗)𝑃(𝛺𝑗)

𝑃(𝒙)
, 

    207 
where P(Ωj|x), which is termed posterior, represents probability that testing data x belong to activity 208 
Ωj. Prior, P(Ωj), is simply given by the relative frequency of occurrence of each class in the training 209 
set and we can ignore it here. Therefore probability of each class, given testing data, is equal to 210 
likelihood P(x|Ωj) (probability of seeing the data given the task) that is thoroughly explained in 211 
section 2.4. 212 
    For training and testing the classifier we used leave-one-repetition (across all actions and all 213 

subjects)-out cross-validation. 214 

 215 

2.7 Missing limb movement reconstruction (Latent variable decoding) 216 
 217 
    For data reconstruction, firstly we used linear regression to fit the data of missing joints as a 218 
function of other joints and expressed results as the average difference between actual and predicted 219 
values. Then, we employed the Expectation-Maximization (EM) algorithm for PPCA in order to 220 
estimate missing values and at the same time to determine the right subspace dimension.  In the EM 221 
approach for PPCA, we considered the latent variables yn to be ‘missing’ data and the ‘complete’ 222 
data to encompass the observations together with these latent variables (Tipping and Bishop, 1999). 223 

The corresponding complete-data log-likelihood is given as: 224 

𝐿𝑐 = ∑ ln(𝑝(𝒙𝑛, 𝒚𝑛))

𝑁

𝑛=1

, 

𝑝(𝒙𝑛, 𝒚𝑛) = (2𝜋ϭ2)−𝑑/2𝑒
(−

||𝒙𝑛−𝑾𝒚𝑛−µ||2

2ϭ2 )(2𝜋)−𝑚/2

𝑒−
||𝒚𝑛||2

2 . 

Then we calculated the expectation (E-step) of LC: 225 
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〈𝐿𝑐〉 = − ∑ {
𝑑

2
ln(ϭ2) +

1

2
𝑡𝑟(〈𝒚𝑛𝒚𝑛

𝑡 〉) +
1

2ϭ2
(𝒙𝑛 − µ)𝑡(𝒙𝑛 − µ) −

1

ϭ2
〈𝒚𝑛〉𝑡𝑾𝑡(𝒙𝑛 − µ)

𝑁

𝑛=1

+
𝟏

𝟐ϭ𝟐
𝑡𝑟(𝑾𝑡𝑾〈𝒚𝑛𝒚𝑛

𝑡 〉)} , 𝑤ℎ𝑒𝑟𝑒 

〈𝒚𝑛〉 = 𝑪−1𝑾𝑡(𝒙𝑛 − µ), 

〈𝒚𝑛𝒚𝑛
𝑡 〉 = ϭ2𝑪−1 + 〈𝒚𝑛〉〈𝒚𝑛〉𝑡 . 

In the M-step, LC was maximized with respect to W and ϭ
2
: 226 

𝑾̃ = [∑(𝒙𝑛 − µ

𝑛

)〈𝒚𝑛〉𝑡] [∑〈𝒚𝑛𝒚𝑛
𝑡 〉

𝑛

]

−1

 

ϭ̃2 =
1

𝑁𝑑
∑{‖𝒙𝑛 − µ‖2 − 2〈𝒚𝑛〉𝑡𝑾̃𝑡(𝒙𝑛 − µ) + 𝑡𝑟(〈𝒚𝑛𝒚𝑛

𝑡 〉𝑾̃𝑡𝑾̃)}

𝑁

𝑛=1

 

These equations were iterated until the algorithm was judged to have converged. 227 

 228 

3. Results 229 

3.1 Natural hand and finger joint kinematics have a low-dimensional embedding 230 
 231 

The structure of natural hand and finger movements in daily-life is characterized by a highly variable 232 

nature. Even in the case of handshaking (Figure 1G), which represents one of the most stereotypic 233 

actions, basic statistical analysis has revealed vast diversity in angular data for MCP and PIP joints 234 

across different subjects (Figure 4A). In this work we first exploited the correlations between MCP 235 

and PIP joints for each of the four fingers and we found that correlation coefficients were stronger for 236 

little and ring fingers and weaker for middle and index fingers (Figure 4B). Further, correlations 237 

between each of the four fingers were highest for the neighbouring fingers and gradually decreased 238 

for more distant fingers (Figure 4C). We also used Principal Component Analysis in order to estimate 239 

dimensionality of the finger movements across different complex manipulation tasks. Therefore, we 240 

used PCA as a measure for the complexity of hand configuration, by measuring the amount of 241 

variance in the data displayed by each of the principal components. For example, a simple behaviour 242 

such as curling and uncurling the hand would reveal a single dominant PC component, as all finger 243 

joints move in a highly correlated manner. In Figure 5A we show the percentage of explained 244 

variance versus the number of used principal components for each of the 17 activities.  PCA revealed 245 

for all tasks that hand motor control restricted hand configurations on a low dimensional subspace of 246 

four to five dimensions (which explained 83-96% of the variance in the data), in line with previous 247 

data on evolutionary relevant hand behaviour (crafting of flint stone tools, Faisal et al., 2010) and 248 

non-annotated long-term statistics of joint velocities (Ingram et al., 2008). These results imply a 249 

substantial reduction from the 15 degrees of freedom that were recorded. Some of the activities 250 
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required more principal components than others to reconstruct the data. For example in Figure 5A we 251 

can see that opening a lid on a bottle or manipulating a fork are far more complex activities than hand 252 

dialling numbers on a phone. Single PC component explained around 30% less variance in the first 253 

case (opening a lid) than in the second (dialling numbers), while that discrepancy was around 10% in 254 

the case when we used only the first four PCs to explain variance.  255 

 256 

3.2 Measuring the manipulative complexity of activities in daily life 257 
 258 

We can visually observe some differences and similarities in the manipulative complexity between 259 

the most simple hand movements, during which the individual joints move in a highly correlated 260 

manner, and the most complex, where each finger moves independently from the others. Here we 261 

proposed a universally applicable measure of manipulative complexity (C) that allows us to measure 262 

this quantity across vastly different tasks. Our complexity measure implies that C=1 if all DOF 263 

contribute equally (the most complex activities), and C=0 if one DOF explains all DOF (the most 264 

simple activities). Results produced are in line with intuitive expectations (opening a lid on a bottle is 265 

more complex than operating a door handle) (Figure 5B). Some of the activities in our study also 266 

included “grasp like motions” (e.g. operating a door handle, grabbing a bottle or grabbing a bag) that 267 

visually would look very similar. Our established complexity measure appeared sensitive enough and 268 

was able to differentiate between even those similar looking grasps.  269 

 270 

3.3 Prediction of hand movements from initial movement data 271 
 272 
Further, we wanted to see how different subspaces influence success of classification for different 273 

tasks. To deal with this, we used Bayesian PPCA. PPCA has been considered as a mechanism for 274 

probabilistic dimension reduction or as a variable-complexity predictive density model (Tipping and 275 

Bishop, 1999) and correct classification relies on the subspace of finger movement variability alone. 276 

Figure 6A illustrates the success of classification with reference to the number of PPCA components.  277 

Therefore, by using only the first few PPCA components in the classification process we can get very 278 

high classification success. For example, using the first four PPCA components the success of 279 

classification was 89.91% (across all tasks, classification performance was 96.63% using all 15 280 

PPCA components). Importantly, in Figure 5 one could see that extracted subspaces appeared to be 281 

task-dependant, which suggests that besides simplification, synergies might have a role in a task-282 

optimal control as well. If specific tasks can engage specific motor control strategies, then we should 283 

be able to make a conclusion regarding the task by observing some early portions of finger data. 284 

Indeed, the classification performance, presented in Figure 6B, was a few times higher than the 285 

chance performance (marked with red line) for only an initial portion of the finger configuration 286 

samples of each task. Within the first 1000ms from the initial hand position, which was identical for 287 

every action, it appeared that hand shape already configures itself to a specific task and we were able 288 

to quickly predict intended action. Vertical lines represent average duration for each of 17 activities.  289 
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 290 

3.4 Reconstruction of missing limbs’ movements by decoding movements of remaining limbs 291 
 292 
Next, we investigated the predictability of a subset of joint movements in respect of the movements 293 

of other joints. Or in other words, if part of a limb is missing, how well can we predict what those 294 

missing parts should be doing by only observing the intact, remaining limb parts. This is of 295 

fundamental interest in prosthetic control. We focused particularly on cases where data had been 296 

acquired with sensors that measure the bending around the MCP or the PIP joints of the four missing 297 

fingers. First, we applied linear regression in the case of missing values from the MCP joints (Figure 298 

7A) and the PIP joints (Figure 7B) for each of the four fingers separately. The error we got, measured 299 

as absolute difference between predicted and actual joint values and averaged across all tasks, 300 

showed the best linear predictability for the middle and ring fingers in both examined cases. Overall 301 

predictability rate was high regarding movement range (90 °) for each of the considered joints and 302 

variability of tasks. Then, we applied an EM algorithm for PPCA to infer the un-observed, invisible 303 

joints in the case of missing data from the MCP sensors. Figure 7C shows obtained results with 304 

reference to the number of PPCA components. Here the best results were also acquired for the middle 305 

and ring fingers. The error was the highest in the case when just one PPCA component was used and 306 

then started to decrease (up to a number around 8 PPCA). Generally, these results could help us to 307 

improve the method of designing prosthetic controllers that are driven by intact limb parts and 308 

support neuroprosthetic controllers in refining the decoding of action intention of users.  309 

   310 

4. Discussion 311 
 312 

We analysed natural movements from the seven subjects who were behaving spontaneously while 313 

performing 17 different everyday activities. We have four key findings that we will discuss 314 

individually in more detail as follows: 1. Regarding activities of daily living, we confirmed that hand 315 

control is low-dimensional, i.e. four to five PCs explained 80-90% of the variability in the movement 316 

data. 2. We established a universally applicable measure of manipulative complexity that allowed us 317 

to measure this quantity across vastly different tasks. Our findings are in line with intuitive 318 

expectations (opening a lid on a bottle is more complex than hand dialling numbers) and are sensitive 319 

enough to differentiate between similar looking interactions (e.g. operating a door handle is less 320 

complex than grabbing a bottle). 3. We discovered that within the first 1000ms of an action the hand 321 

shape already configures itself to vastly different tasks, enabling us to reliably predict the action 322 

intention. 4. We suggest how the statistics of natural finger movements paired with Bayesian latent 323 

variable model can be used to infer the movements of missing limbs from the movements of the 324 

existing limbs to control for example, a prosthetic device.  325 

In many everyday activities we move our fingers in a highly correlated manner. Therefore, it has 326 

been proposed that control of human hand movements is organized in a way that comprises coupling 327 

of several DOF into functional groups. The opinion that motor synergies lie behind manual actions 328 

has been supported by several studies (Santello et al., 1998; Santello et al., 2002; Daffershofer et al., 329 
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2004; d’Avella et al., 2006; Tresch et al., 2006; Ingram et al., 2008; Faisal et al., 2010; Jarrasse et al., 330 

2014). The most common interpretation is in terms of simplifying the strategy that the central 331 

nervous system might undertake. Studies that have investigated hand configurations during reaching 332 

and grasping movements (Santelo et al., 1998; Mason et al., 2001) reported that 90% of the variance 333 

in hand configurations could be explained by only three principal components. In our study PCA 334 

analysis revealed that in 17 daily activities hand configurations operated on low-dimensional 335 

subspace (four to five dimensions) as well, which is also in line with previous data on evolutionary 336 

relevant hand behaviour (crafting of flintstone tools) (Faisal et al., 2010) and non-annotated long-337 

term statistics of joint velocities (Ingram et al., 2008). These finding supports the view that the motor 338 

cortex organizes behaviour in a low-dimensional manner to avoid the curse of dimensionality in 339 

terms of computational complexity. We also found numerical differences in the number of principle 340 

components required to explain a given amount of variability in hand configurations across each of 341 

the tasks.  Similar conclusions were obtained in the case of a small number of much simpler 342 

manipulation tasks (Todorov and Ghahramani, 2004; Bläsing et al., 2013). 343 

Our manipulative complexity measure, established for the first time, gave us a chance to quantify 344 

the complexity of the movements across a high number of different activities. This was very 345 

important in that some of the activities that look highly similar (grasp like motions such as operating 346 

a door handle, grabbing a bottle or grabbing a bag) apparently had different values of complexity. 347 

Those findings demonstrated also that our complexity measure is sensitive enough to differentiate 348 

between similar looking interactions. The highest value of complexity had tasks of opening a lid on a 349 

bottle or manipulating a fork, and the lowest had tasks of dialling numbers on a phone or opening a 350 

door using the door knob. Results produced are in line with intuitive expectations regarding the fact 351 

that in the first two cases one is expected to have high engagement of the thumb that is the most 352 

individuated (Häger-Ross and Schieber, 2000). In the case of typing numbers, most of the subjects 353 

used their index finger while their other fingers created some form of fist, and in case of opening the 354 

door our fingers move in a highly correlated manner. Here we compare structures of complex 355 

dynamic hand manipulations, while some other studies (Feix et al., 2009; Feix et al., 2013) have 356 

presented a successful methodology for measuring and evaluating the capability of artificial hands to 357 

produce 31 different human-like grasp postures. 358 

Further we employed Bayesian PPCA on the behavioural data in order to analyse the structure of 359 

variability within it. Variability is ubiquitous in the nervous system and it has been observed in 360 

actions even when external conditions are kept constant (Faisal et al., 2008). In this paper we take the 361 

view that the hand configuration variability may contain significant information about the task being 362 

performed. Our approach yields an effective assessment of the tasks that subjects were involved with. 363 

The Bayesian PPCA reveals that the finger movement correlations are so structured that we can 364 

obtain very high classification success by taking only first few principal components. Regarding 365 

motor control, it has been suggested that structural learning (Braun et al., 2009) may reduce the 366 

dimensionality of the control problem that the learning organism has to search in order to adapt to a 367 

new task. Our results are in line with this concept and suggest the hypothesis that the brain can 368 

engage many sets of motor controllers, which are selected based on specific tasks, and which also 369 

orchestrate resulting actions in overall behaviour and produce movement variability in characteristic 370 

sub-spaces. Next we thought that, if the hypothesis is true, we should be able to infer the task the 371 
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hand is engaged in by observing some initial portion of the finger movement data. Crucially, 372 

observing only the initial portion of hand configurations (from our identical starting position) was 373 

sufficient to characterize the entire hand task, and the classification performance we obtained was a 374 

few times higher than chance performance.     375 

     A common approach in design of Neuroprosthetics is to construct body parts that can be 376 

controlled with the same functionality as natural limbs. Using a reduced set of basic functions to 377 

construct internal neural representation could be essential from an optimal control perspective 378 

(Poggio and Bizzi, 2004) and applied to Neuroprosthetics control (Thomik, et al., 2013). Our linear 379 

predictability of the missing joints based on movements of other finger joints gave good results. The 380 

best results were achieved for middle and ring fingers showing that they are the least individuated. 381 

This is in line with the previous research (Häger-Ross and Schieber, 2000). Further, the PPCA 382 

algorithm for missing data revealed that using more than eight PPCA components does not lead to 383 

any significant improvement. In this study we perform action recognition and reconstruction of 384 

missing finger trajectories using the current positions of other functional finger joints by simply 385 

requiring – in principle – the user to act out with his functional fingers an intended task. Such finger 386 

motion can be realized with cheap wearable wireless sensors (Gavriel and Faisal, 2013) and we can 387 

reconstruct the natural behaviour of users without the need for expensive, training intensive, non-388 

invasive or invasive electrophysiological interfaces. Consequently, unlike common approaches that 389 

require the user to learn to use the technology, the technology interprets the natural behaviour of 390 

users (Abbott and Faisal, 2011). Thus, the neuronal and biomechanically imposed correlation 391 

structure of hand-finger can be exploited to build smart, sensitive Neuroprosthetics controllers that 392 

infer the task “at hand” based on the movements of the remaining joints. 393 

    Dexterous object manipulation is conditioned by the continuous interactions between the body and 394 

the environment and engages multiple sensory systems. Vison can provide essential information for 395 

controlling hand kinematics in the cases when object are fully visible.  Human manipulation involves 396 

also tactile signals from different types of mechanoreceptors in the hand that allows humans to easily 397 

hold a very wide range of objects with different properties without crushing or dropping them 398 

(Johansson and Flanagan, 2009). Tactile sensing provides also critical information in avoiding 399 

slipping as crucial precondition to successfully manipulate an object, what is most apparent in people 400 

with impaired tactile signals. When finger contact with the desired object is made, we start to 401 

increase the grasp force to the optimal level, using both our prior knowledge about the object and 402 

information from the tactile sensors of the fingers gathered during the interaction (Johansson and 403 

Flanagan, 2008; Romano et al., 2011). Corrective actions are applied to different frictional conditions 404 

in order to provide an optimal grip force that is normally 10–40% greater than the minimum required 405 

to prevent slips (Johansson and Flanagan, 2008). Consequently, future Neuroprosthetics should 406 

provide reliable user’s intention decoding as well as optimal sensory feedback (Berg et al., 2013; 407 

Raspopovic et al., 2014). Therefore, looking into hand kinematics as an important aspect of the hand 408 

capabilities represents just one approach that forms the basis for future studies. Further inclusion of 409 

other parameters that are of relevance and investigating their influence on manipulative complexity 410 

will provide a more complete analysis. 411 

 412 
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7. Figure legends 566 

 567 

Figure 1 Subjects were involved in 17 different everyday activities. (A) Opening and closing a 568 
drawer. (B) Removing a bottle cap (unwinding and winding). (C) Turning the pages of a newspaper 569 
(one page in each trial). (D) Picking up a plate, putting it on the marked location, and returning it to 570 

the starting position. (E) Eating an apple (subject takes one bite of the apple) and returning the apple 571 
to the starting position. (F) Manipulating a mouse in a pre-defined way. (G) Handshaking for a 572 
duration of five seconds. (H) Dialling pre-defined numbers on telephone. (I) Typing pre-defined text 573 
on a keyboard. (J) Manipulating a plug and returning it to the starting position. (K) Opening a door 574 
using a key and returning the key to the starting position. (L) Picking up and putting down an object 575 
using a fork. (M) Opening and closing a door using the knob. (N) Picking up a telephone handle. (O) 576 

Picking up a plastic bottle, simulating drinking, and returning the bottle to the starting position. (P) 577 
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Picking up and putting down a bag. (Q) Picking up a glass with a handle, simulating drinking, and 578 

returning the glass to the starting position.  579 

Figure 2 Data acquisition. (A) CyberGlove sensor locations. (B)  Calibrated output signals from the 580 

CyberGlove for one of the activities. 581 

Figure 3 CyberGlove calibration procedures. (A) The position defines angle1 for all CyberGlove 582 

sensors. (B) The position defines angle2 for sensors that correspond to MCP joints of the four fingers. 583 

(C) The position defines angle2 for abduction sensors. (D) The position defines angle2 for sensors that 584 

correspond to PIP joints of the four fingers. (E) The position defines angle2 for sensors that were used 585 

to measure the position of the thumb. (F) Examples for real time capturing of finger movements by 586 

using a 3D hand model that was developed to further improve accuracy of the calibration procedure. 587 

Figure 4 Basic statistics for one of the most stereotypic actions across all subjects and analysis 588 

of correlations across all data. (A)  Mean and standard error of angular data for MCP and PIP joints 589 

in the case of handshaking activity for a duration of five seconds.  (B) Correlations between MCP 590 

and PIP joints for each of the four fingers. (C) Correlations between each of the four fingers. I index 591 

finger, M middle finger, R ring finger, L little finger, MCP metacarpalphalangeal joint, PIP proximal 592 

interphalangeal joint. 593 

Figure 5 Principal component analysis (PCA) and quantitative measure of manipulative 594 

complexity. (A) Curves show the cumulative sum of variance (expressed in percentage) explained by 595 

increasing the numbers of principal components separately for each of the 17 daily-life activities. The 596 

x-axis corresponds to the number of PCs; the y-axis shows the percentage of the variance of the 597 

finger movements explained by the respective number of PCs. (B) Our proposed quantitative 598 

measure of manipulative complexity (manipulative complexity is maximal   (equal to 1) if all DOF 599 

contribute equally, and minimal (equal to 0) if one DOF explains all DOF).   600 

Figure 6 Data classification. (A) Classification performance with reference to the number of PPCA 601 

components. (B) Classification performance with reference to the number of data samples taken 602 

(duration of activity). Performance by chance is marked with the red line and vertical lines represent 603 

the average number of data samples (duration) for each of 17 activities.  604 

Figure 7 Data reconstruction. (A) Average error after linear reconstruction in the case when data 605 

from MCP sensors of the four fingers were missing.  (B) Average error after linear reconstruction in 606 

the case when data from PIP sensors of the four fingers were missing. (C) Results of data 607 

reconstruction by using PPCA with reference to the different number of PC components used.  608 
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