
Dissection of a complex disease susceptibility region using a Bayesian
stochastic search approach to fine mapping

Chris Wallace1,2,* Antony J Cutler1 Nikolas Pontikos1 Marcin L Pekalski1 Oliver S Burren1 Jason
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Abstract

Identification of candidate causal variants in regions associated with risk of common diseases is

complicated by linkage disequilibrium (LD) and multiple association signals. Nonetheless, accurate

maps of these variants are needed, both to fully exploit detailed cell specific chromatin annotation

data to highlight disease causal mechanisms and cells, and for design of the functional studies that

will ultimately be required to confirm causal mechanisms. We adapted a Bayesian evolutionary

stochastic search algorithm to the fine mapping problem, and demonstrated its improved

performance over conventional stepwise and regularised regression through simulation studies. We

then applied it to fine map the established multiple sclerosis (MS) and type 1 diabetes (T1D)

associations in the IL-2RA (CD25) gene region. For T1D, both stepwise and stochastic search

approaches identified four T1D association signals, with the major effect tagged by the single

nucleotide polymorphism, rs12722496. In contrast, for MS, the stochastic search found two distinct

competing models: a single candidate causal variant, tagged by rs2104286 and reported previously

using stepwise analysis; and a more complex model with two association signals, one of which was

tagged by the major T1D associated rs12722496 and the other by rs56382813. There is low to

moderate LD between rs2104286 and both rs12722496 and rs56382813 (r2 ' 0.3) and our two SNP

model could not be recovered through a forward stepwise search after conditioning on rs2104286.

Both signals in the two variant model for MS affect CD25 expression on distinct subpopulations of

CD4+ T cells, which are key cells in the autoimmune process. The results support a shared causal

variant for T1D and MS. Our study illustrates the benefit of using a purposely designed model

search strategy for fine mapping and the advantage of combining disease and protein expression

data.
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Introduction

Genome-wide association studies have been very successful at identifying disease-associated

variation by exploiting linkage disequilibrium (LD), meaning that only a subset of markers need be

surveyed to detect association. However, this same LD, particularly when combined with the

presence of multiple disease causal variants in relative proximity, makes disentangling the specific

causal variants difficult. Mapping the likely causal variants in regions associated with complex

traits as precisely as possible is becoming increasingly important for two reasons. Firstly, as

detailed chromatin annotations become available, more precise maps of probable causal variants

will allow researchers to fully exploit these resources through integrative analyses targeted at

identifying the specific genes, molecules and cells underlying disease association [1]. Secondly, the

functional studies which are ultimately required to confirm causal mechanisms are laborious and

need to focus, from the outset, on the smallest yet most complete set of plausible causal variants.

It is widely recognised that the most associated single nucleotide polymorphism (SNP) in a

region is not necessarily the causal variant [2], yet attempts at fine mapping disease signals

typically proceed by successive conditioning on the most associated SNPs, a form of stepwise

regression that may produce incorrect results, particularly when causal variants are correlated, i.e.

in linkage disequilibrium (LD) [3]. Bayesian methods have been used for fine mapping association

signals in dense and imputed genotyping data and generating credible sets of variants that are likely

to contain the causal variant, analogous to credible intervals for odds ratios [4]. However, these

approaches typically make the simplifying assumption that exactly one causal variant exists at any

individual region [4] because accounting for multiple causal variants leads to exponential increase in

the number of models that need to be considered with the number of causal variants considered.

Bayesian methods that summarise evidence across SNPs in a region to assess either enrichment of

signals in chromatin states [5] or colocalisation between association signals for different traits [6]

make a similar single causal variant assumption. As stepwise approaches often obtain evidence for

additional, independent association signals in a region [7–10], this assumption is unrealistic. One

exception is BimBam [11] which can fit multi SNP models, but considers all possible models up to a

specified maximum number of causal SNPs. As the number of potential models grows exponentially,

BimBam is limited to regions with relatively few SNPs for computational reasons.

Monte Carlo methods can avoid limitations on the number of causal variants by sampling the

model space rather than visiting all possible models. Here we adapt a Bayesian evolutionary

stochastic search algorithm, GUESS [12,13], to the fine mapping problem. This method, and its

fast computational implementation, is tailored to efficiently explore the multimodal space created

by multiple SNP models. However, the very dense SNP map that is required for fine mapping leads

to extreme LD, which presents two specific challenges for GUESS. The first is that SNPs in

extremely tight LD can cause numerical instability in model fitting, so we use minimal tagging to

explore the model space and then expand all the tag models initially selected by GUESS (Fig. 1).
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Second, posterior support is diluted across SNPs in tight LD, potentially preventing direct inference

on the importance of individual SNPs. We therefore use posterior model probabilities and patterns

of LD to define sets of SNPs which have strong joint posterior support for the hypothesis that one

member of the set is causal for the trait. These are analogous to the credible sets generated in the

Bayesian fine mapping framework which assumes a single causal variant per region [4], but allow for

multiple causal variants.

Our adaptions around GUESS are available in an R package, GUESSFM

(https://github.com/chr1swallace/GUESSFM). We used GUESSFM to fine map the association

of multiple sclerosis (MS) and type 1 diabetes (T1D) to an established susceptibility region for

immune-mediated diseases on chromosome 10p15 (Figure S1), which contains the candidate causal

gene IL2RA. IL2RA encodes a subunit CD25 (IL-2RA) of the interleukin 2 (IL-2) receptor that is

essential for the high affinity binding of IL-2 [14]. The region has provided some prime examples of

evolving genetic research. Initially associated with T1D susceptibility using a candidate gene and

tag SNP approach [15], further studies revealed association to other autoimmune diseases, including

MS [16] and rheumatoid arthritis [17], and demonstrated that multiple genetic markers were needed

to explain the T1D association [18]. Genotype to phenotype studies have demonstrated that

disease-associated variants in the region also associate with IL2RA mRNA expression and CD25

protein expression on the surface of naive and memory CD4+ T cells [19–21] and sensitivity of

memory CD4+ T and activated T regulatory cells to IL-2 [22].

Results

The use of different genotyping panels for different diseases has presented a challenge for

comparative analysis across diseases. Here, we refined the T1D and MS association signals in the

associated region on chromosome 10p15 by taking advantage of a unified dense SNP map provided

by the ImmunoChip, a custom Illumina 200K Infinium High-Density array covering 186 distinct

autoimmune susceptibility risk regions [7, 23]. We used genotypes on a total of 52,637 samples

(Table S1), and supplemented the ImmunoChip variants by imputation from the 1000 Genomes

Project data. This gave a total of 667 SNPs and small indels with minor allele frequency > 0.005 in

controls for analysis after genotype quality control.

To allow for the effects of LD, traditional conditional regression is often supplemented by

identifying subsets of SNPs with some minimum LD (e.g. r2 > 0.8) with individual SNPs selected by

a forward stepwise procedure, within which it is suggested the causal variant may lie. We compared

our proposed approach to traditional conditional regression by simulating phenotypes conditional

on multiple “causal variants” selected randomly from within these genetic data, and confirmed that

the proposed approach both recovered a higher proportion of the true effects and simultaneously

detected fewer false positive results (Figure 2). GUESSFM requires specification of the a priori

expected number of causal variants in a region, nexp. We considered either setting nexp = 3 or
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nexp = 5, and found the performance decreased when nexp was less than the true value, but not

when it was greater than the true value, suggesting that for recovery of the correct causal variants

it is better to set nexp higher rather than lower. We also considered three regularised regression

approaches: the lasso, the elastic net and the group lasso. The ROC curves of those methods (for

decreasing penalties) are intermediate to the stepwise and stochastic GUESSFM search approaches

(Figure 2). However, at traditional optimization thresholds (minimising the ten fold cross

validation), regularized regression approaches were extremely anti-conservative, with a very high

false discovery rate, compared to stepwise (stopping at p < 10−8 or p < 10−6) or GUESSFM for

suitable thresholds on posterior probabilities (Table S2). Picking a regularisation parameter

according to the number of predictors included (three or five) produced a more competitive false

discovery rate, but discovery rates were still lower than with GUESSFM (Table S2).

We applied our approach to the MS and T1D data sets. Posterior support for the number of

SNPs required to model the association is strongly peaked, favouring a two-SNP model in MS and

a four SNP model in T1D (Figure S2). We summarised inference for SNPs over multiple models by

considering the support for a SNP group according to the sum of posterior probabilities (PP) over

all models containing a SNP from that group. We term this the group marginal posterior

probability of inclusion (gMPPI), which can be understood as the probability that one SNP in the

group is causal for the trait of interest. For T1D, there is high confidence (gMPPI > 0.8) for four

SNP groups that we denote according to their order in Figure S3: A (indexed by rs12722496), C

(rs11594656), E (rs6602437) and F (rs41295159). As the T1D data have previously been analysed

using stepwise regression [23], we compared our results to those found by forward stepwise analysis

of the same data (Table 1). We saw a direct correspondence in terms of LD (r2 > 0.6) between the

SNPs identified by the two approaches (Table 2). However, models found by GUESSFM had larger

log likelihoods for a given number of SNPs, indicating that these models offered a better

explanation of T1D-associated genetic variation in the region.

In contrast, for MS, there were no SNP groups with high gMPPI. We instead saw two distinct

models, which together accounted for >80% of the posterior support amongst the 514,476 visited

models: either model M1, consisting of SNP groups A (indexed by rs12722496) and D (rs56382813),

or model M2 consisting only of SNP group B (rs2104286). SNPs from M1 and M2 were rarely

selected together (total PP=0.039 across the visited models). rs2104286 was reported as the single

associated SNP in the region in the original MS ImmunoChip analysis after forward stepwise

regression [7] (Table 1). rs2104286 is in low to moderate LD with both of the M1 index SNPs

(r2 ' 0.3, Table 3).

Haplotype analysis showed that whilst haplotypes carrying the rs2104286:C allele are protective

for MS, so is a less common haplotype carrying the rs2104286:T allele and the protective allele at

rs56382813 (Table 4). Indeed, the addition of rs2104286 to a model consisting of the haplotypes

formed by M1 was non-significant (p=0.196) whilst the addition of the haplotypes formed by the
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M1 SNPs to a model consisting of only rs2104286 was significant (p = 2.64× 10−6). However, the

posterior support favours model M1 over M2 only by a factor of 1.7 and this is dependent on our

prior expectation for the number of causal variants: had we expected only a single causal variant in

the region, we would have favoured M2 by a factor of 1.7, with M1 being favoured only with a prior

expectation of 1.8 or more causal variants (Figure S4). Under any reasonable prior, the posterior

support for the two models is so close that we cannot choose between them on statistical evidence

alone: we must consider them as plausible alternative explanations for MS association in the region.

Note that the M1 SNPs were not within the credible set created under the single causal variant

assumption, which consists of rs2104286 alone [7].

We selected all high confidence SNP groups for more detailed exploration (Fig. 3). The T1D

signals are located in (1) intron 1 of IL2RA – SNP group A, (2) intergenic between IL2RA and

RBM17 – C, (3) 5’ of RBM17 – E, and (4) 5’ of RBM17 to intron 2 of PFKFB3 – F. Under the

model M1 for MS, SNP group A was also associated with MS, with the same alleles protective for

both (Table 5) whilst the second M1 signal (SNP group D) physically overlapped, but was not in

LD with, SNPs from group C. Under the model M2, the sole-MS associated SNP (B) is located in

intron 1 of IL2RA, neighbouring the T1D-associated SNP group A, but there was only weak LD

between A and B (r2 = 0.3).

Since we were unable to distinguish between the competing M1 and M2 models for MS using

SNP-disease association data alone, we sought corroborating evidence to support SNPs in either

model using CD25 flow cytometric expression data. The M2 SNP rs2104286 has been associated

with the age-dependent proportion of näıve T cells that express CD25 on their cell surface and

rs12722495 (within SNP group A, located in intron 1 of IL2RA) with the total expression of CD25

on memory T cells [19,20]. rs12722495 has also been associated with IL2RA mRNA expression in T

cells, both resting [19] and activated by 48 hour culture with anti-CD3+CD28 [21]. We selected a

single tag SNP from each of the credible sets and examined which could best explain CD25 protein

expression phenotypes using previously published data from 179 samples [19], plus an additional 30

samples. Both phenotypes were best explained by a single SNP: rs12722495 from group A again

showed the strongest association with intensity of CD25 expression on memory T cells

(p = 5.50× 10−10, Figure S5). For the proportion of naive CD4+ cells that express CD25, the M1

SNP rs41295055 from group D, whose association with CD25 expression was not previously tested,

was preferred to the M2 SNP rs2104286 (p = 3.45×10−8 versus p = 2.56×10−6, ∆BIC=8.43, which

is interpreted as “strong” evidence in favour of rs41295055 [24]; Fig. 4), supporting the hypothesis

that rs2104286 is not itself functional, but merely tags other functional variants which are causal

for MS. The A and D SNP groups coincide with regions in IL2RA that contain DNase I sensitivity

sites indicating open chromatin available to bind transcription factors under appropriate conditions

(Fig. 3). In addition, the existence of RNA-seq reads from resting and stimulated CD4+ T cells

within intron 1, where group A SNPs lie (Fig. 3), support the regulatory nature of this region [25].
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Discussion

The 10p15 region contains at least five apparently distinct associations to the immune-mediated

diseases, T1D and MS. Our results are the first to support a four SNP model in T1D, which most

likely reflects a combination of increased sample sizes and the increased variant density available

due to ImmunoChip and imputation, as this model was supported by both stepwise regression and

GUESSFM. A previous comparative study of MS and T1D susceptibility in this region using

conditional analysis of tag SNPs identified three groups of SNPs [26]: their group I matches our

group A, their group II our group C, and their group III our group B. The results showed that the

minor allele of SNPs in all these groups was protective for T1D, but that group I (A) was not

associated with MS and that group II (C) was susceptible for MS. Our results, based on larger

sample sizes and more extensive variant coverage, suggest that the minor allele of SNPs in group A,

shared between T1D and MS, are associated with the same protective effect for both diseases. This

emphasises the need for surveying the most complete set of variants possible in order to make cross

disease comparisons.

Variants in this region have previously been linked to several aspects of IL-2R signalling in T1D

and MS patients [27] and the MS-associated variants we identify (whether under the M1 or M2

models) all showed some evidence of association with expression of CD25 on the surface of T cells,

linking IL2RA in a primary way into the etiology of this disease. For T1D, we were only able to

link the IL2RA intron 1 signal, shared with MS under the M1 model, to CD25 expression on

memory T cells. Neither the intergenic T1D SNP group (C), despite physical overlap with the MS

associated SNP group D, indexed by rs41295055, nor the sets near RBM17 and PFKFB3 (E and F)

have yet been linked to IL2RA expression. These signals could relate to CD25 expression on other

cell subsets or under specific conditions. The cell-specific regulation of IL2RA expression and its

role in modulating the immune system are both complex and only partially understood. For

example, in addition to T cells, IL2RA is also expressed on many other cell types, especially under

inflammatory conditions [28]. We have data on only a subset of IL-2R phenotypes that have been

previously reported, and previous studies have genotyped only a subset of the disease associated

SNPs described in this paper. Further genotyping of large samples with IL-2R related phenotypes

is warranted to properly assess any other potential effects of the disease signals we identify on

IL-2R signalling. Alternatively, it may be that other genes in the region, which have not been as

well studied as IL2RA, are also causal for T1D, either directly or through interaction with IL2RA.

For example, PFKFB3, an inducible 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase isoform,

allows rapid responses to energy requirements and insufficiency can lead to apoptosis and an

inability to undergo autophagy in CD4+ T cells in RA [29]. PFKFB3 has also been implicated in

regulating insulin secretion in pancreatic beta cells [30], which could explain the T1D specific

signals across this gene. All three genes, IL2RA, PFKFB3 and RBM17 are upregulated in CD4+ T

cells upon ex vivo activation (Table S3) and two candidate SNPs, from groups E and F, sit between
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two DNase I sites close to the RBM17 promoter. Furthermore, gene regulation can extend over 100

kb [31] and further studies will be needed to confirm the gene(s) through which these other SNPs

influence T1D risk.

Two or more independent signals are commonly observed in fine mapped autoimmune disease

regions using stepwise regression [7–10]. Despite long established doubts regarding the validity of

stepwise regression [3], its use has continued to dominate in GWAS because of the number of SNPs

measured simultaneously. Stepwise regression addresses the questions: ‘which is the single variant

that can best explain the maximum trait variance?’ and, conditional on this single variant, ‘do any

other variants explain additional trait variance?’ This is not equivalent to asking what set of

variants best jointly explain trait variance. Often, as we have observed for T1D, stepwise regression

may be expected to identify the same signals as a stochastic search approach. However, our

analyses demonstrate that different results may be produced by stepwise and full multi-variant

search approaches in some cases. In particular, we highlight and prefer a two SNP model for MS

association to the IL2RA region, one of the SNPs shared with T1D (group A, indexed by

rs12722495) and associated with CD25 expression on memory T cells, the other (group D, indexed

by rs41295055) a better predictor for CD25 expression on the surface of naive CD4+ T cells than

the SNP identified by stepwise regression (group C, rs2104286).

Methods that search the multimodal model space formed by multiple SNPs without conditioning

on univarate association signals can therefore reveal a more accurate picture of the likely disease

causal variants in any region. Other Bayesian [32], stochastic search [33] and penalised regression

approaches such as lasso [34, 35] have been proposed on a GWAS scale, but these aim primarily to

detect association in data sets with relatively sparse genotype coverage. Our focus is the adaptation

of a Bayesian variable selection method to the fine mapping problem, and it is likely that an

alternative method, such as piMASS [36], could have been substituted for GUESS in the model

selection step. A detailed and direct comparison of piMASS with GUESS showed a similar recovery

of models in simulated data, but indicated that GUESS was more computationally efficient [13].

We chose to use GUESS for its computation efficiency, but also because its g-prior formulation is

specifically designed to deal with highly correlated predictors, a beneficial feature for fine mapping.

Applying the regularised regression approaches to our simulated data showed that the ROC

curve for lasso with decreasing penalty out-performed stepwise analysis, but optimising the

regularization parameter by minimising the cross validation error led to very high false discovery

rates, suggesting that in this context this criterion is highly anti-conservative. Previous studies have

also indicated that while regularised regression has strengths in terms of prediction, it may have

weaknesses in terms of model selection [37], particularly for correlated predictors [38]. Elastic

net [39] and the group lasso [40] have been proposed as regularised approaches tailored to

correlated predictors, but in our hands did not outperform the simple lasso plus construction of a

set of plausible SNPs according to r2 > 0.8. We considered that the information supplied to
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GUESSFM as a prior expected number of causal variants could be included equivalently in a

regularised approach by setting the regularisation parameter according to the number of predictors

selected. Although this produced a more competitive false discovery rate, discovery rates remained

lower than with GUESSFM (Table S2).

Our multidimensional analysis strategy, tailored to the high genotyping coverage (and, hence,

high LD) required for fine mapping causal variants can provide a more complete picture of the

likely causal variants in a region. Any fine mapping study is limited by the set of variants included

for study. While we attempted to survey the fullest possible set of SNPs and small indels by using

dense genotyping data, plus imputation to the 1000 Genomes Project data, we cannot be sure we

included all variants that might affect gene function without sequencing of cases and controls [41].

Further, larger indels, VNTRs and microsatellites remain particularly difficult to genotype with

accuracy yet may contribute to disease. Therefore, it is important to bear in mind that all claims

that a particular variant is causal are conditional on the true causal variants being accurately

genotyped and included in the study.

It is well known that functional biological interactions may exist between variants [42], and

therefore the possibility of statistical interactions needs to be considered in fine mapping studies.

However, the need to fit interaction terms depends on the evolutionary history of the region. In the

IL2RA region, there has been very little historical recombination (Figure S1) and D′ between

markers is nearly always 1, also indicating a lack of recombination [43]. As a consequence, only

three of the possible four haplotypes that may be formed from any pair of SNPs are observed, and

statistical interaction parameters are inestimable. This also implies that there is a one to one

transformation between a haplotype model and a model expressing the log odds of disease as a

linear function of single SNP effects [44], as we have employed. Thus, for the IL2RA region, we may

neglect statistical interactions without making any assumptions about the existence of biological

interactions. For our method to be applied to regions in which D′ < 1, it would need extension to

include statistical interaction terms. One simple approach, if the number of SNPs is not to large,

would be to generate additional variables representing interactions between SNPs with D′ < 1, but

extending GUESS to fit interaction terms is another direction for further research.

An alternative approach would be to attempt to study disease risk across haplotypes

directly [45], although these need to be inferred probabilistically when recombination has occurred.

Haplotype-based analysis has become less common as marker density has increased. One reason for

this is that haplotypes are particularly useful when marker density is low, because a haplotype may

tag a causal variant better than any single variant, and haplotype studies have thus fallen out of

fashion as denser genotype data have become available. This is exemplified by a study that found

multiple statistical interactions underlying gene expression [46] (statistical interactions may be

thought of as haplotype models) using SNPs on a genomewide array. Subsequent analysis found

that all interactions which replicated in an external dataset with whole genome sequencing, and
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thus with more complete coverage of potential causal variants, could be better explained by a single

SNP [47]. This suggests, perhaps, that statistical interactions between SNPs will prove rare.

However, if biological interactions between variants separated by LD do exist, and the interaction

depends on the phase of the variants, i.e., the diplotype risk differs from the two locus genotype

risk, haplotype methods will again be required to infer likely causal variants.

One way to understand the means through which the effects of a disease-associated variant are

mediated is to perform functional assays to examine its effects on a gene’s function [48] or to

identify potentially intermediate phenotypes with which it is also associated [19]. Improved

identification of likely causal variants should lead to more powerful and reliable follow-up studies,

an important factor when many of these experiments require fresh primary cells and laborious wet

lab protocols. Similarly, comparison with summary results from eQTL studies would be facilitated

by the application of multi modal search strategies to the eQTL data set to ensure the effects of

genetic variation are mapped as accurately as possible [49]. Even with large samples, and careful

fine-mapping analyses, the causal candidacy of SNPs in high LD cannot be resolved through

statistical association alone. Functional studies designed to directly address the confounding

induced by linkage disequilibrium, such as allele-specific expression using rare haplotypes that

distinguish SNPs in the same tag group, may be helpful in refining further the likely causal variants.

Informative approaches to understanding disease etiology have recently been developed based on

looking for enrichment of the cell-specific chromatin marks localising to likely causal variants, and

these are being used to highlight disease relevant cells [23, 50]. Here, again, more accurate

identification of causal variants will lead to more powerful and precise comparisons, and our

approach, which is associated to a more accurate estimation of posterior probabilities for the SNPs

in the considered region, should be readily adaptable to the growing set of methods that aim to

examine enrichment [5] or colocalisation [6] by model averaging over the posterior probabilities that

a SNP is causal.
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Materials and Methods

Definition of target region

For fine mapping, we require dense coverage of genetic polymorphisms in the region. We targeted

the ImmunoChip fine mapping region centred on IL2RA, namely chr10:6030000-6220000 (hg19).

This region is bounded by recombination hot spots (Figure S1).

Genotype data

Genotype data for this region comes from the MS [7] and the T1D [23] ImmunoChip studies.

Quality control measures were applied to SNPs and samples as previously described [7]. As MS

samples were derived from multiple international cohorts and we found allele frequencies for SNPs

in the region varied between cohorts, we manually inspected plots of the first five principal

components formed from ancestry informative markers [7] and additionally excluded samples lying

outside the main cluster in each cohort.

Imputation

We used IMPUTE2 [51] to impute untyped SNPs using the 1000 Genomes Phase I reference panel.

We included a 500 kb window either side of our target region to allow variants in the less densely

genotyped neighbouring regions to contribute information on the untyped SNPs.

Adapted “shotgun” GUESS analysis

Tagging Although GUESS is designed to work with correlated variables, the extreme, and

occasionally perfect, LD in very dense genotyping data can lead to unstable results. We found,

through a process of trial and error, that tagging so that no two SNPs remained with r2 > 0.99

retained good convergence of the stochastic GUESS algorithm. This reduced the number of SNPs

from 667 to 443 (T1D) and 453 (MS). For each SNP that was removed, we noted its index SNP, the

remaining SNP which had the highest r2 with it. We call a set of SNPs sharing a single index SNP

a tagset ; the number and size of tagsets is shown in Figure S6.

GUESS analysis We ran GUESS in parallel on each disease using the index SNPs defined

above. For MS, which included internationally derived samples, we included country of origin as a

categorical covariate. Monitoring plots for each GUESS run, generated by R2GUESS [52]

(http://cran.r-project.org/web/packages/R2GUESS), are shown in Figure S7 and Figure S8.

We saved the top 30,000 models visited for each disease and for each saved model, we generated an

expanded set of models, by adding each model that could be formed by replacing any index SNP

with any of the SNP(s) in its tagset (Fig. 1). This expanded the set of models under consideration,
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M, ten fold, to 514,476. For each trait, we derived a posterior weight for each model in M. To be

precise, we generated approximate Bayes factors for each model, m ∈M, for each trait, using the

Bayesian Information Criterion (BIC) approximation:

BICm = −2 log(BFm)

where

BICm = −2 (log(Lm)− log(L0)) + (km − k0) log(n),

Lm and km represent the logistic likelihood of the data and the number of parameters under model

m, n is the number of samples and 0 represents the null model. Finally we combined these Bayes

factors with priors for each model, πm, to derive a posterior probability for each model

PPm ∝ BFm πm.

Choice of priors

Priors could conceivably be generated on the basis of individual SNP content, for example, to

prioritise those overlapping genomic annotations of particular interest. Such an approach has been

adopted in a hierarchical framework, albeit with the single causal variant assumption [5]. For

simplicity, and because we were interested to discover likely causal variants without predefining

their likely mechanism, our model priors were determined only by the number of SNPs contained in

a model, Nm. A natural prior is then binomial or beta binomial. Given that, for a fixed expected

value, a beta binomial puts larger weight on implausibly large models, we chose to use a binomial

model, and, given published data on T1D, set the expected number of SNPs at three. For N SNPs

in the target region, this means the prior for a model containing Nm SNPs is

πm =

(
N

Nm

)
qn(1− q)N−Nm

where q is set so the expected value of the binomial distribution was 3, ie q = 3
N .

Priors and posteriors for the number of causal SNPs are shown in Figure S2.

SNP groups for candidate causal variants. We do not expect that we will be able to

discriminate, statistically, between highly correlated variants. Instead, the posterior support is

likely to be diluted across such sets of variants. To group such SNPs, we used the marginal

posterior probabilities of inclusion (MPPI) for each SNP, and applied the following algorithm:

1. Pick the index SNP with maximum MPPI

2. Order remaining SNPs by decreasing r2 with index SNP
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3. Exclude SNPs which co-occur in models with the index SNP (joint MPPI > 0.02)

4. Step away from the index SNP in order of decreasing r2, adding SNPs to its group until

MPPI < 0.001 for two SNPs in a row (NB, these SNPs will not be added to the SNP group),

or until r2 < 0.5

5. Remove this set of SNPs and return to step 1 until no SNP remains with MPPI > 0.01.

We summarize the support for any group of SNPs by the gMPPI, the sum of the posterior

probabilities over all models containing a SNP in that group. The complete algorithm is available

in the function snp.picker from the R package GUESSFM

(https://github.com/chr1swallace/GUESSFM).

Model averaged effect estimates. We produced effect estimates for each SNP i as

βi =
∑
m∈M

I(i ∈ m)β
(m)
i P (m)

where β
(m)
i is the estimated effect of SNP i in model m, I(i ∈ m) is an indicator function taking

the value 1 if SNP i is included in model m, and 0 otherwise, and P (m) is the posterior probability

of m ∈M.

Simulation analysis

We used simulated data to compare the performance of our proposed method, traditional stepwise

regression, the lasso [53] and the elastic net [39]. For each simulation, we selected a random subset

of 2,000 T1D control samples genotyped in the IL2RA region and a random set of between two and

five “causal variants” from amongst the SNPs with MAF> 0.01. We simulated a Gaussian

phenotype for which the causal variants acted in an additive manner to jointly explain 10% of the

phenotypic variance. We conducted a total of 1,000 simulations for each scenario.

The data were analysed in parallel using the four different methods. We performed forward

stepwise regression, and selected index SNPs at a given p value threshold, α, as those SNPs selected

at any stage of the stepwise process with p < α. For each index SNP, we created pseudo “credible

sets” as the set of SNPs with r2 > 0.8 with the selected index SNPs. Note, by this definition,

simulated causal SNPs may appear in more than one SNP group. We calculated the false discovery

rate as the proportion of SNP groups which did not contain a causal variant, and we calculated the

discovery rate as the proportion of causal variants found in at least one selected SNP group.

We used the snp.picker function from GUESSFM

(http://github.com/chr1swallace/GUESSFM) with default settings to define credible sets for

causal SNPs. By definition of the algorithm, SNPs may only be members of at most one SNP

13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 10, 2015. ; https://doi.org/10.1101/015164doi: bioRxiv preprint 

https://github.com/chr1swallace/GUESSFM
http://github.com/chr1swallace/GUESSFM
https://doi.org/10.1101/015164
http://creativecommons.org/licenses/by/4.0/


group. We selected SNP groups according to varying thresholds for the gMPPI, and calculated false

discovery and discovery rates as above.

For lasso and elastic net, we used the R package glmnet [54], and optimised the regularisation

parameter λ by minimising the ten fold cross validation error using the cv.glmnet() function. For

elastic net, we kept the folds constant across different values of α ∈ [0.1, 1] and chose the pair of

values (α, λ) which minimised the ten fold cross validation error overall. To examine the path of

elastic net solutions, we fixed α at this value and varied λ. We used the R package gglasso [55] to

implement the grouped lasso, predefining groups of variables as those with r2 > 0.8 with each other

using heirarchical clustering. We also considered the discovery and false discovery rates with the

first three or first five predictors selected, as something analagous to the prior information given to

GUESSFM about our expectation of the number of causal variants.

Association with cell surface expression of CD25

Naive CD4+ T cells from 209 donors were gated as previously described [19,56]. Association with

index SNPs from disease-associated groups was assessed through linear regression. All possible one,

two and three SNP models were considered, and the model with the minimum BIC reported.

Expression was log transformed to reduce right skew of the phenotype.

DNase hypersensitivity data

We downloaded DNase I hypersensitivity for CD4+ T cells from the Roadmap Consortium [57]

from http://vizhub.wustl.edu/VizHub/hg19, accessed 19 September.

RNA seq gene expression data

We measured gene expression in the studied region in two pooled samples (n=3 and n=4

individuals / pool) comparing unstimulated and stimulated CD4+ T cells. For each individual,

250,000 CD4+ T cells (93-99% pure, RosetteSep Human CD4+ T Cell Enrichment Cocktail,

StemCell Technologies) were stimulated with anti-CD3/CD28 T-activator beads (Dynabeads Life

Technologies) at a ratio of 0.3 beads / cell for four hours at 37◦C in X-VIVO-15 (Lonza) + 1% AB

serum (Lonza) and penicillin/ streptomycin (Life Technologies). Unstimulated CD4+ T cells were

cultured in medium alone for four hours. Cells were harvested directly into Qiagen lysis buffer

(Qiagen) and stored at -80◦C until RNA isolation.

RNA was isolated using RNeasy micro kit including gDNA depletion (Qiagen). RNA integrity

and concentration was evaluated using the Bioanalyzer platform (Agilent), with all samples showing

an RNA integrity score (RIN) > 9.8. 750 ng of total RNA were used for the preparation of cDNA

libraries using the Illumina TruSeq (Illumina) platform with a low-cycle-number PCR protocol, and
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was followed by transcriptome sequencing on an Illumina HiSeq 2000. This yielded four libraries

with ∼38 million 100 bp paired-end reads each.

We trimmed raw reads to remove primer and adapter contamination, which affected 2% of our

sequences, using HTSeq [58]. Reads were aligned to the reference genome Ensembl GRCh37.p13

using STAR [59]. Removal of low quality and unpaired reads, indexing, IL2RA region extraction,

and depth counting were performed using SAMtools [60]. We employed HTSeq and DESeq2 [61] to

carry out a differential expression analysis between the two conditions based on normalised read

counts. We only considered paired-end reads that featured a total and unambiguous overlap with

genomic sequence assigned to genes, around 73% of the initial raw sequences. Mapped read counts

at each position in each sample are in Table S4.

This study was approved by local Institutional Review Boards (IRBs) and written informed

consents were obtained from all participants in the study. For JDRF/Wellcome Trust Diabetes and

Inflammation Laboratory the IRBs are: NRES Committee East of England - Cambridge Central

(ref: 08/H0308/153), statistical analysis; and NRES Committee East of England - Norfolk (ref:

05/Q0106/20), for gene expression work. This study was approved by the University of Virginia

Institutional Review Board (IRB number 17457); the Type 1 Diabetes Genetics Consortium

collection sites obtained approvals for all subject collections and written consent and/or assent was

obtained from all participants or their surrogates in the study.
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Figure 1. Overview of the fine mapping tailored stochastic search strategy in GUESSFM. 1. SNPs
are clustered based on genotype data. Tagging is used to remove cases of extreme LD (r2 > 0.99)
by selecting one SNP from each cluster (“tag set”), that which is in highest average r2 with all
other SNPs. 2. All possible models that can be formed from the tag SNPs may be considered by
GUESS. Here, all seven possible models are considered but, in practice, with larger numbers of tags
than shown here, GUESS employs a stochastic search strategy to consider only a subset of models,
prioritising those with greatest statistical support. 3. GUESS selects the most likely models
amongst those it has visited. Here, it selects two of the seven, but in larger data sets we retain the
30,000 most likely. 4. Each of these selected models is expanded by considering all possible
substitutions of tags by other members of their tag set. Each expanded model is then assessed
again individually, using an approximate Bayes factor [24].

4. Each selected model is expanded by 
considering the SNPs in each tagset.  

Each expanded model is assessed 
individually using approximate 
Bayes factors

2. Rapidly search the model space 
of tag SNPs using GUESS.

1 Hierarchical clustering identifies 
groups of SNPs in tight LD.  

Select one representive tag SNP 
per tag set. 

3. Most likely tag SNP models are 
selected by GUESS.  
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Figure 2. Comparison of of several multivariate methods for fine mapping using simulated data.
We simulated quantitative phenotype data with between two and five causal variants using
genotype data from the T1D dataset for the IL2RA region. The simulated data sets were analysed
using forward stepwise regression, GUESSFM, the lasso, the group lasso and the elastic net.
GUESSFM produces credible sets for each variant chosen using the snp.picker algorithm described
in Materials and Methods. We defined pseudo “credible sets” for the other approaches as the set of
SNPs with r2 > 0.8 with a selected SNP. We calculated the discovery rate (the proportion of causal
variants within at least one credible set, y axis) and false discovery rate (proportion of detected
variants whose credible sets did not contain any causal variant, x axis) at different thresholds for
the stepwise p value, the group marginal posterior probability of inclusion (gMPPI) for GUESSFM
and the regularization parameter(s) across simulated datasets (see Methods for details).
GUESSFM-3 and GUESSFM-5 refer to GUESSFM run with a prior expectation of three or five
causal variants per region, respectively. Results are averaged over 1000 replicates.
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Figure 3. Six sets of SNPs can best explain the association of T1D and MS in the chromosome
10p15 region. LD: a heatmap indicating the r2 between SNPs. Assoc: MPPI for MS and T1D the
SNPs in a group, with total MPPI across a SNP group, gMPPI, indicated by the height of the
shaded rectangle (see Table 5 for numerical details). SNP groups are labelled by the letters A-F for
reference. SNPs in this track are ordered by SNP group for ease of visualisation. Genes: SNPs are
mapped back to physical position and shown in relation to genes in the region. RNAseq: read
counts in two pooled replicates of resting (“rest1” and “rest2”) and anti-CD3/CD28 stimulated
(“stim1” and “stim2”) CD4+ T cells; y axes were truncated to allow visualization of intronic read
counts. Note the different limits for resting and stimulated cells, which show greater transcription
of all protein coding genes in the region. DNase: DNase hypersensitivity measured in CD4 cells by
the Roadmap consortium. Replicate 1 (“rest1”) is RO 01689; replicate 2 (“rest2”) is RO 01736; y
axes were truncated again to improve visualization.
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Figure 4. The proportion of naive CD4+ T cells that express CD25 (log scale) increases with age.
The MS protective allele for the M2 SNP rs41295055:C>T associates with fewer CD4+ T cells
expressing CD25 across all ages (p = 3.45× 10−8), and is statistically preferred to the previously
reported M1 SNP, rs2104286:T>C (p = 2.56× 10−6; ∆ BIC=8.43). S and P are used to represent
the (common) MS-susceptible and (rare) MS-protective alleles respectively at each SNP. These
SNPs are in limited LD (r2 = 0.3).
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Table 1. Comparison of results from stochastic GUESSFM and stepwise searches. p values are
shown for the stepwise search and compare the listed model to the model above (or the null model,
for single SNPs). Bayesian Information Criterion (BIC) is shown for stepwise models and index
models found through GUESSFM search.

Model p BIC

T1D Stepwise
rs61839660 < 2× 10−16 -140.10
rs61839660+rs11594656 7.64× 10−12 -177.61
rs61839660+rs11594656+rs12220852 1.40× 10−9 -204.35
rs61839660+rs11594656+rs12220852+rs41295159 1.39× 10−7 -218.83

T1D GUESSFM
rs12722496+rs11594656+rs6602437 – -207.00
rs12722496+rs11594656+rs6602437+rs41295159 – -234.95

MS Stepwise
rs2104286 < 2× 10−16 -97.25
rs2104286+rs11256593 0.00001437106213 -105.85

MS GUESSFM
rs2104286 (“M2”) – -97.25
rs12722496+rs56382813 (“M1”) – -111.18
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Table 2. LD (r2) between SNPs in selected models for T1D using stochastic GUESSFM and
stepwise searches. Each GUESSFM search signal has a correspondng SNP found by conditional
stepwise regression in moderate to strong LD.

GUESSFM Stepwise
rs61839660 rs11594656 rs12220852 rs41295159

rs12722496 0.88 0.02 0.02 0.00
rs11594656 0.02 1.00 0.26 0.02
rs6602437 0.05 0.25 0.62 0.01
rs41295159 0.00 0.02 0.00 1.00
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Table 3. LD (r2) between SNPs in selected models for MS using stochastic GUESSFM and
stepwise searches. For the preferred M1 model for MS, there is only weak to moderate LD between
SNPs chosen by GUESSFM and conditional approaches.

GUESSFM Stepwise
rs2104286 rs11256593

M2: rs2104286 1.00 0.33

M1: rs12722496 0.33 0.08
M1: rs56382813 0.31 0.29
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Table 4. Haplotype analysis of MS association using the index SNPs for the one and two SNP
models selected. Minor alleles are indicated by bold font. Fq=haplotype frequency.

rs12722496 rs56382813 rs2104286 Fq (%) OR 95%–CI p

A G T 69.135 1.000 – –
A A C 15.053 0.804 0.769–0.840 < 2× 10−16

G G C 9.996 0.823 0.781–0.868 4.66× 10−13

A A T 5.594 0.854 0.797–0.915 8.06× 10−06

29

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 10, 2015. ; https://doi.org/10.1101/015164doi: bioRxiv preprint 

https://doi.org/10.1101/015164
http://creativecommons.org/licenses/by/4.0/


Table 5. SNPs selected by GUESSFM mapping of MS and T1D associations. SNP groups are
labelled A-F for reference. Position is according to hg19; MAF=minor allele frequency in UK
controls, OR=odds ratio for minor allele, MPPI=marginal posterior probability of inclusion. SNP
groups are divided by horizontal lines, and the group MPPI (gMPPI) is the posterior probability of
inclusion of any SNP in the group. We highlight in bold the SNP sets with some support for
association with either MS or T1D. The MS model ”M1” consists of groups A and D, the model
”M2” consists of group B.

MS T1D

Group SNP Position Alleles MAF Total MPPI MPPI OR Total MMPI MMPI OR

A rs12722563 6069561 G>A 0.107 0.544 0.019 0.858 1.000 0.000 1.000
rs12722522 6078553 G>A 0.098 0.059 0.848 0.000 0.636
rs12722508 6088743 A>T 0.098 0.134 0.845 0.012 0.644
rs7909519 6089841 T>G 0.098 0.000 1.000 0.037 0.641
rs61839660 6094697 C>T 0.089 0.002 0.860 0.005 0.619
rs12722496 6096667 A>G 0.099 0.139 0.845 0.645 0.626
rs12722495 6097283 T>C 0.099 0.163 0.844 0.300 0.628
rs41295049 6109676 G>A 0.087 0.003 0.855 0.001 0.617

B rs2104286 6099045 T>C 0.262 0.408 0.408 0.839 0.000 0.000 0.929

C rs11597367 6107534 A>G 0.239 0.000 0.000 1.040 0.859 0.259 0.769
rs35285258 6118770 C>T 0.237 0.000 1.039 0.214 0.769
rs11594656 6122009 T>A 0.237 0.000 1.038 0.386 0.767

D rs3118475 6107265 T>C 0.191 0.628 0.040 0.811 0.000 0.000 0.941
rs62626317 6110925 A>G 0.191 0.102 0.807 0.000 0.938
rs41295055 6111622 C>T 0.191 0.075 0.808 0.000 0.937
rs41295079 6119154 C>T 0.190 0.053 0.809 0.000 0.942
rs62626325 6121285 G>A 0.176 0.082 0.808 0.000 0.907
rs41295105 6122674 T>G 0.190 0.033 0.812 0.000 0.942
rs56382813 6124262 G>A 0.207 0.242 0.825 0.000 0.907

E rs6602437 6130077 T>C 0.433 0.000 0.000 1.018 0.956 0.956 1.187

F rs41295121 6129643 C>T 0.009 0.000 0.000 1.000 0.857 0.082 0.541
rs41295159 6148535 C>G 0.009 0.000 0.937 0.083 0.541
rs80250062 6191884 T>C 0.008 0.000 0.941 0.063 0.540
rs78938174 6193815 T>C 0.009 0.000 0.941 0.063 0.540
rs142414821 6194739 G>A 0.008 0.000 0.941 0.063 0.540
rs189193613 6197361 G>C 0.009 0.000 0.941 0.063 0.540
rs74765647 6197496 G>A 0.007 0.000 0.941 0.063 0.540
rs146135969 6200643 A>T 0.008 0.000 0.941 0.063 0.540
rs117678801 6201774 C>T 0.008 0.000 0.941 0.063 0.540
rs78815004 6210827 G>A 0.008 0.000 0.941 0.063 0.540
rs189961326 6213265 G>A 0.008 0.000 0.941 0.063 0.540
rs76585197 6214560 G>A 0.007 0.000 0.941 0.063 0.540
rs75252425 6217022 G>A 0.008 0.000 0.941 0.063 0.540
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Supporting Information

Figure S1

Manhattan plots for MS and T1D on chromosome 10:6,000,000-6,300,000 (hg19).

Bottom track shows HapMap recombination rates and the blue bar indicates the region targeted for

fine mapping.
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Figure S2

Prior and posterior probabilities across number of SNPs in underlying candidate

causal models. For posteriors, this is the sum of posterior probabilities over all models visited by

GUESS which contain the number of SNPs shown.
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Figure S3

Patterns of inclusion of SNP groups in T1D and MS. Total filled bar height is proportional

to gMPPI for the group indexed by the SNP shown on the x axis. Only the most probable SNP

groups (gMPPI > 0.1) are labelled; ”other” denotes SNPs outside these more probable SNP groups.

Black fill indicates high confidence SNP groups (A-F) that were taken forward for further analysis.

Groups indexed by rs17173494 and rs11256593 were considered to have too little support for either

disease for association to be declared with confidence. For MS, we see two competing models: M1

indexed by A (rs12722496) and D (rs56382813), and M2, indexed by B (rs2104286).
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Figure S4

Sensitivity analysis showing the effect of varying the prior expectation of the number

of causal variants on the relative posterior support for model M1 over M2 for MS.

The relative posterior support is calculated as the posterior probability of all models within the M1

group divided by the posterior probability of all models within the M2 group for a given prior

expectation. For a prior expectation of three, this is the ratio of bar heights for M1 over M2 from

Figure S3.
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Figure S5

Normalised mean fluorescence intensity of CD25 dye on memory CD4+ T cells

increases with copies of the (minor) T1D-protective (P) allele at rs12722495:T>C

compared to the susceptible (S) allele, p = 5.50× 10−10.
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Figure S6

Size of SNP groups after tagging at r2 > 0.99.
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Figure S7

GUESS monitoring plots for T1D. The three chains are indicated by different colours.
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Figure S8

GUESS monitoring plots for MS. The three chains are indicated by different colours.
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Table S1

Samples with ImmunoChip genotyping data used in the fine mapping analysis.

Trait Country Patients Controls

T1D UK 6693 12205

MS Belgium 322 313

MS Denmark 748 890

MS Finland 466 345

MS France 354 387

MS Germany 1893 2621

MS Italy 962 962

MS Norway 701 911

MS Sweden 1970 2121

MS UK 9359 4542

MS USA 2035 1837

MS (all countries combined) 18810 14929
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Table S2

Discovery and false discovery rates in simulated data using different model selection

methods and specified optimisation criteria, as described in Methods. Briefly, we ran

GUESSFM setting the mean expected number of causal variants per region to either three

(GUESSFM-3) or five (GUESSFM-5). We calculated the discovery rate (the proportion of causal

variants within at least one credible set, y axis) and false discovery rate (proportion of detected

variants whose credible sets did not contain any causal variant, x axis) at different thresholds for

the stepwise p value (< 10−6 or < 10−8), the group marginal posterior probability of inclusion

(gMPPI> 0.5 or > 0.9) for GUESSFM and the regularization parameter λ (chosen to minimise the

ten-fold cross validation error, or at the largest value that selected exactly three or five predictors)

across simulated datasets.

Causal variants Method Criteria Discovery rate False discovery rate

2 GUESSFM-5 gMPPI> 0.5 0.966 0.009

2 GUESSFM-5 gMPPI> 0.9 0.939 0.003

2 GUESSFM-3 gMPPI> 0.5 0.970 0.015

2 GUESSFM-3 gMPPI> 0.9 0.943 0.004

2 Lasso min CV error 0.994 0.982

2 Lasso first 3 predictors 0.720 0.006

2 Lasso first 5 predictors 0.880 0.015

2 Stepwise p < 10−6 0.719 0.004

2 Stepwise p < 10−8 0.644 0.003

2 Elastic net min CV error 0.997 0.982

2 Elastic net first 3 predictors 0.728 0.007

2 Elastic net first 5 predictors 0.891 0.017

2 Grouped lasso min CV error 0.986 0.947

2 Grouped lasso first 3 predictors 0.671 0.021

2 Grouped lasso first 5 predictors 0.846 0.044

3 GUESSFM-5 gMPPI> 0.5 0.900 0.011

3 GUESSFM-5 gMPPI> 0.9 0.797 0.002

3 GUESSFM-3 gMPPI> 0.5 0.900 0.021

3 GUESSFM-3 gMPPI> 0.9 0.833 0.005

3 Lasso min CV error 0.992 0.974

3 Lasso first 3 predictors 0.534 0.005

3 Lasso first 5 predictors 0.692 0.013

3 Stepwise p < 10−6 0.552 0.009

3 Stepwise p < 10−8 0.458 0.005
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Causal variants Method Criteria Discovery rate False discovery rate

3 Elastic net min CV error 0.991 0.974

3 Elastic net first 3 predictors 0.548 0.008

3 Elastic net first 5 predictors 0.715 0.016

3 Grouped lasso min CV error 0.964 0.937

3 Grouped lasso first 3 predictors 0.481 0.019

3 Grouped lasso first 5 predictors 0.648 0.040

4 GUESSFM-5 gMPPI> 0.5 0.856 0.023

4 GUESSFM-5 gMPPI> 0.9 0.747 0.008

4 GUESSFM-3 gMPPI> 0.5 0.801 0.033

4 GUESSFM-3 gMPPI> 0.9 0.690 0.014

4 Lasso min CV error 0.995 0.967

4 Lasso first 3 predictors 0.424 0.005

4 Lasso first 5 predictors 0.567 0.011

4 Stepwise p < 10−6 0.440 0.011

4 Stepwise p < 10−8 0.340 0.007

4 Elastic net min CV error 0.995 0.966

4 Elastic net first 3 predictors 0.438 0.008

4 Elastic net first 5 predictors 0.588 0.016

4 Grouped lasso min CV error 0.928 0.931

4 Grouped lasso first 3 predictors 0.385 0.018

4 Grouped lasso first 5 predictors 0.530 0.037

5 GUESSFM-5 gMPPI> 0.5 0.755 0.033

5 GUESSFM-5 gMPPI> 0.9 0.635 0.008

5 GUESSFM-3 gMPPI> 0.5 0.715 0.038

5 GUESSFM-3 gMPPI> 0.9 0.589 0.014

5 Lasso min CV error 0.993 0.958

5 Lasso first 3 predictors 0.360 0.005

5 Lasso first 5 predictors 0.494 0.011

5 Stepwise p < 10−6 0.346 0.014

5 Stepwise p < 10−8 0.252 0.007

5 Elastic net min CV error 0.993 0.958

5 Elastic net first 3 predictors 0.389 0.010

5 Elastic net first 5 predictors 0.518 0.016

5 Grouped lasso min CV error 0.911 0.918

5 Grouped lasso first 3 predictors 0.326 0.017
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Causal variants Method Criteria Discovery rate False discovery rate

5 Grouped lasso first 5 predictors 0.455 0.036
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Table S3

Differential expression analysis of genes in the region considered in this paper. All

genes with measurable expression (reads > 20) in the studied samples are shown. Normalized read

counts are shown for the two replicates of resting and stimulated CD4+ T cells.
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Table S4

Mapped read counts in each sample in the target region from four RNA seq samples,

as described in Methods.

separate file
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