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A method for de novo assembly of data from the Oxford Nanopore MinION instrument is

presented which is able to reconstruct the sequence of an entire bacterial chromosome in a

single contig. Initially, overlaps between nanopore reads are detected. Reads are then sub-

jected to one or more rounds of error correction by a multiple alignment process employing

partial order graphs. After correction, reads are assembled using the Celera assembler. Fi-

nally, the assembly is polished using signal-level data from the nanopore employing a novel

hidden Markov model. We show that this method is able to assemble nanopore reads from

Escherichia coli K-12 MG1655 into a single contig of length 4.6Mb permitting a full recon-

struction of gene order. The resulting draft assembly has 98.4% nucleotide identity compared

to the finished reference genome. After polishing the assembly with our signal-level HMM,

the nucleotide identity is improved to 99.4%. We show that MinION sequencing data can be

used to reconstruct genomes without the need for a reference sequence or data from other

sequencing platforms.

The Oxford Nanopore MinION is a portable, single molecule genome sequencing instrument

no larger than a typical smartphone. As this instrument directly senses native, individual DNA
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fragments without the need for amplification, it is able to sequence extremely long fragments (>10

kilobases) of DNA without a reduction in sequence quality 1.

The availability of very long reads is important when assembling genomes as they span

repetitive elements and anchor repeat copies within uniquely occurring parts of the genome. Many

bacterial genomes can be assembled into single contigs if reads greater than eight kilobases are

available, as these reads span the conserved ribosomal RNA operon which is typically the longest

repeat sequence in a bacterial genome 2.

The accuracy of the sequence reads is another potentially limiting step for genome assem-

bly; at launch, data from the Pacific Biosciences sequencing instrument was hard to use for de

novo assembly due to the lack of bioinformatics tools designed for long reads with a high error

rate. Several algorithmic improvements have led to this platform becoming the gold standard for

genome assembly; Koren et al. demonstrated that hybrid techniques could generate contiguous

assemblies3. This method uses accurate short-read data, or Pacific Biosciences circular consensus

reads, to correct error-prone long reads sufficiently for assembly 4. Non-hybrid de novo assemblies

of PacBio data in absence of short-read data remained an open problem until Chin et al. developed

the HGAP (Hierarchical Genome-Assembly Process) assembler 5. HGAP typically uses a subset

of the longest reads in the sequencing data set to use as the input for the assembly process. This

subset of long reads is corrected using the entire data set, and this corrected set of reads is assem-

bled with the Celera Assembler. The final assembly is ’polished’ using a signal-level consensus

algorithm to high accuracy. This assembly strategy has revolutionized genome assembly of small
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genomes and is now being applied to large genomes 6, 7.

Nanopore sequencing data has clear similarities to Pacific Biosciences data, with reads suf-

ficiently long to be of great use in de novo assembly 7, 8. Recently, a hybrid approach to assembly

which used Illumina short reads to correct nanopore reads prior to assembly was shown to give

good results a bacterial and a yeast genome 9. However, non-hybrid assemblies have not yet been

described. Recent versions of nanopore chemistry (R7.3) coupled with the latest base caller (Met-

richor ≥ 1.9) permits read-level accuracies of between 78-85% 1, 8. While this is slightly lower

than the latest version of Pacific Biosciences chemistry6, we hypothesised that a similar assembly

approach where nanopore data reads are self-corrected may result in highly contiguous assemblies.

Overlaps can be detected more easily with higher accuracy data. Therefore for this study we

exclusively used high-quality ”passing filter” two-direction (2D) reads. DNA strands which have

been read in both directions by the MinION and combined during base-calling are higher quality

than the individual template and complement strands 8. All 2D reads from four separate MinION

runs using R7.3 chemistry were combined. Each run was made using a freshly prepared sequencing

library using library protocol SQK-MAP-003 (first run) or SQK-MAP-004 (three further runs). In

total, 22,270 2D reads were used comprising 133.6Mb of read data, representing ˜29x theoretical

coverage of the 4.6 megabase E. coli K-12 MG1655 reference genome (Supplementary Table 3).

The FASTA sequences for reads were extracted using poretools10. Potential overlaps

between the reads were detected using the DALIGNER software11. Each read and the reads it

overlaps were used as input to the partial order aligner (POA) software 12. POA uses a directed
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acyclic graph to compute a multiple alignment, which we use to determine a consensus sequence.

The use of partial order graphs permits a more sensitive reconstruction of consensus sequences

in the presence of large numbers of insertions or deletions. This step is analogous to the pre-

correction step of the HGAP pipeline, which also uses partial order graphs (implemented in the

pbdagcon software) to compute a consensus sequence. We run this correction process multiple

times, using the corrected reads as the new input. The results of this correction process increased

the mean percentage identity from 80.5% to 95.9% after the first iteration and 97.7% on the second

iteration (Supplementary Figure 7).

The reads resulting from two rounds of correction were used as input to version 8.2 of the

Celera Assembler 13. The Celera Assembler was run with settings specified in Supplementary

Figure 8. The critical parameter for tuning is the overlap minimum identity, which should be

double the raw read error rate, in this case set to 6% (ovlMinIdentity=0.06). This resulted

in a highly contiguous assembly with four contigs, the largest being of length 4.6Mb and covering

the entire E. coli chromosome (Figure 1). The other three contigs were small (6-15kb) and their

sequences were present in the long contig and so we did not include them in further analysis.

The initial draft assembly has 3,949 mismatches (85 per 100kb) and 47,395 indels of ≥1

base (1,021 errors per 100kb), as determined by the QUAST validation tool when compared to the

E. coli K-12 MG1655 reference genome (NC 000913.3) 14.

We computed a new consensus sequence for the assembly using a hidden Markov model

that takes the electric current signals emitted by the MinION as input. This algorithm is described
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in the supplementary methods. After polishing the assembly using this algorithm the base-level

accuracy improved to 99.4%, comprising 1,532 mismatches (33 per 100kb) and 18,387 indels of

≥1 base (396 errors per 100kb).

We explored the sequence context of errors in our assemblies before and after polishing by

comparing 5-mer counts between our assemblies and the reference genome. Our initial draft as-

sembly displayed significant under-representation of poly-nucleotide tracts (Figure 2, top panels).

This error mode is expected as the MinION relies on a change in electric current to detect base-to-

base transitions, which may not occur or may not be detectable as locally repetitive sequence tran-

sits the pore. After polishing the assembly the representation of poly-nucleotide tracts improves

and the 5-mer counts between the reference genome and the polished assembly are well-correlated

(Figure 2, bottom panels).

QUAST reported two misassemblies with respect to the reference sequence. On visual

inspection of an alignment generated by the Mauve software we determined one large (>500

base) region of difference between our assembly and the reference representing an insertion of

a transposase-encoding region into our assembly. This sequence (approximately 750 bases long)

is present nine times in the reference genome. Insertion events involving transposons are common

in bacterial genomes and can affect wild-type strains commonly used in laboratory experiments,

but are difficult to detect using draft assemblies from short-read sequencing technologies.

We conclude that long read data from the Oxford Nanopore MinION can be used to assem-

ble complete bacterial genomes to give an accurate reconstruction of gene order and orientation,
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without the need to use data from other sequencing technologies. Using signal-level algorithms

we are able to improve the per-base accuracy of our assembly further. However, poly-nucleotide

tracts remain error-prone. We have not evaluated the impact of increasing sequencing coverage

above 30x on accuracy. We expect that improved probabilistic models of the data, possibly in-

corporating fragment translocation duration information, may result in higher accuracy. The read

error correction software, nanocorrect, is available at https://github.com/jts/nanocorrect. The

signal-level consensus software, nanopolish is available at https://github.com/jts/nanopolish.

Both programs are freely available under the open-source MIT license.
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Figure 1: Single contig assembly of E. coli K-12 MG1655. Panel A shows a dot-plot comparing the

assembly presented here with the reference genome. Panel B shows read coverage as a histogram

when nanopore reads are aligned against the assembled genome. Panel C shows read coverage and

GC composition across the length of the assembled genome. Panel D shows an illustrative view of

the read coverage for a randomly chosen section of the assembly genome and the underlying reads

used to construct the assembly as viewed in the genome assembly tool Tablet 15.
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Figure 2: The left panels show the correlation between 5-mer counts in the reference (x-axis)

and an assembly (y-axis). The upper left panel is the assembly before signal-level polishing and

the lower left panel is after signal-level polishing. The 5-mer counts are well-correlated between

the reference and polished assembly (Pearson’s r = 0.99). To explore under-representation of 5-

mers, we identified sequences where the reference genome had ≥50% more occurrences than the

unpolished assembly (red points in the left panels, grouped bars in the right panels). This indicated

that the most under-represented 5-mers in our unpolished assembly are those that consist of a single

base (TTTTT, AAAAA, CCCCC, GGGGG) or contain a 4-base stretch of a single base (all others, top

right panel). After polishing the representation of these difficult motifs is improved (bottom right

panel) although TTTTT and AAAAA remain difficult. In the right panels the bars are ordered by

reference occurrence count.
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1 Supplementary Methods

1.1 Assembly Pipeline

All the steps described here are additionally documented as an IPython note-
book at https://github.com/jts/nanopore-paper-analysis along with the addi-
tional scripts to reproduce the analysis presented in this manuscript.

Read preprocessing

The DALIGNER program was designed for Pacific Biosciences data and expects
the input reads to be provided in FASTA format with metadata encoded in
the read name. To allow DALIGNER to be run on nanopore data, we wrote a
program preprocess.pl to convert the FASTA output of poretools into the
format expected by DALIGNER.

Error Correction

We ran DALIGNER on the input reads using default parameters and the procedure
described in the documentation to compute read-read overlaps. For each input
read, A, we queried the DALIGNER overlap database to extract the set of reads
overlapping A. For each read overlapping A, we trimmed it to the coordinates
matching A (as reported by DALIGNER) and reverse complemented the sequence
if necessary to make the read match the strand of A. This set of strand-matched
subsequences were written to a FASTA file along with the sequence of A. This
was the input to POA, which was run with parameters -hb -clustal using the
BLOSUM80 sequence similarity matrix.

The consensus sequence was parsed from the clustal-formatted multiple
alignment. We first computed the read depth at each column of the multiple
alignment. We then trimmed the multiple alignment by excluding any leading
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and trailing columns that had depth less than 3. This trimming step is designed
to remove uncorrected or unreliable regions of the multiple alignment, which
may impact the quality of the downstream assembly. We reported the first con-
sensus record calculated by POA (labeled ‘CONSENS0’) over the trimmed region
as the consensus sequence for the read.

Genome Assembly

After two rounds of error correction we assembled the reads using v8.2 of the
Celera Assembly with the parameters file described in Figure 8. The position in
the large contig corresponding to the E. coli origin of replication was determined
through a BLAST homology search for the first 1000 bases of the reference
genome, and the contig was circularised using the minimus2 package in AMOS
[12] by the introduction of an artificial contig break. Minimus2 relies on the
nucmer component of MUMMER [4] to perform the initial overlap alignments.

1.2 Signal-level Consensus Algorithm

The electrical current signal sampled by the MinION inherently contains more
information than the base-called reads. We sought to use this information when
computing the final consensus sequence of our assembly. In this section we
describe our consensus algorithm. We first give a brief overview of the algorithm.
We start with our initial draft assembly, G, and progressively modify it by
making small localized changes. We assess whether the modified sequence, G′,
increases the probability of the electrical current data for a set of reads. If the
probability of the signal data increases we accept G′ and iterate. To make these
calculations computationally feasible, this process is run over short segments of
the genome and seeded by reads aligned to G. At the core of this algorithm is
calculating the probability of the raw signal data emitted by the MinION given
a proposed consensus sequence. We first describe our probabilistic model of the
data, then describe how we use this model to compute the consensus sequence
for the assembly.

Signal-level MinION Data

The MinION continuously samples electrical current flow across the pore. When
DNA is detected in the pore, these current samples are turned into events by a
feature detection algorithm provided by the instrument’s software. The feature
detection algorithm is designed to find stepwise changes in the current signal
that indicate that the DNA sequence has moved through the pore. For each
event the feature detection algorithm records the mean of the current samples
(in picoamps), its standard deviation and the total duration of the event (in
seconds). Simulated idealized data to illustrate these concepts is shown in Figure
1 and Table 1.

We only use the mean current level in our model but remark that the dura-
tion and standard deviation are sources of information that should be considered
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in future work. When we refer to individual events ei below we are referring
to the mean current level component of the event only. For the purpose of our
consensus algorithm, we consider a MinION read to be a sequence of events
(e1, e2, ..., en).
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Supplementary Figure 1: Simulated ideal signal data to illustrate the data that
is input into our model. The black points are sampled current levels at a given
time. The red lines are the events detected by a feature detection algorithm,
which partitions the samples into discrete segments.

Modeling Events

The fundamental principle of nanopore-based sequencing is that the amount of
current flow through the pore depends on the sequence of DNA that resides in
the pore [7, 11]. The MinION model assumes that the current level measured
for each event is drawn from a Gaussian distribution with mean and variance
dependent on the 5-mer sequence that is in the pore when the samples are taken.
Oxford Nanopore provides the parameters for the Gaussians for all 5-mers.
We refer to this collection of parameters as Θ. The probability of observing
event ei given that 5-mer k is the true sequence in the pore is P (ei|k,Θ) =
P (ei|k, µk, σk) = N (µk, σ

2
k).
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Event mean current (pA) current std dev duration (s)
1 60.3 0.7 0.521
2 40.6 1.0 0.112
3 52.2 2.0 0.356
4 54.1 1.2 0.051
5 61.5 1.0 0.291
6 72.7 1.5 0.015
7 49.4 1.5 0.141
8 45.2 1.2 0.301

Supplementary Table 1: Events detected from the idealized example shown in
Figure 1.

A Probabilistic Model of MinION Events

We want to calculate the probability of observing an event sequence given a
known DNA sequence S, P (e1, e2, ..., en|S,Θ). To do this, we represent the
known DNA sequence S as its constituent 5-mers, S = (s1, s2, ..., sm). The
simplest generative model of the data is where the sequencer moves stepwise
from 5-mer to 5-mer, and emits a single event from each 5-mer. This situation
is depicted in Figure 2.

Supplementary Figure 2: A simple model where each 5-mer (grey circles) emits
a single event (blue circles).

In this situation, where there is a perfect one-to-one match between events
and 5-mers, calculating the probability of the data is straightforward if we as-
sume independence between events:

P (e1, e2, ..., en|s1, s2, ..., sn,Θ) =
n∏
i=1

P (ei|si, µsi , σsi) (1)

In reality however, we need to account for two types of event detection
errors: skipped 5-mers, where the system does not detect an event for a 5-mer
that transited the pore, and split events, where the signal for a single 5-mer is
emitted multiple times, presumably because of transient noise that exceeds the
event detection threshold.

In this situation, we no longer know which 5-mer emitted each event. To
provide motivation for our model we will describe an example from the more
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complex generative process. Let S = (ACGTA, CGTAA, GTAAC, TAACT) be the 5-
mers of the known DNA sequence. The process starts at the first 5-mer of S,
ACGTA, and emits an event drawn from N (µACGTA, σ

2
ACGTA). We then choose to

stay at ACGTA, move to the next 5-mer, CGTAA, or skip CGTAA and move directly
to GTAAC. Once a move has been made we can emit another event drawn from
the appropriate Gaussian and repeat until we reach the end of the sequence. We
can model this process using a hidden Markov model with the structure shown
in Figure 3.

Supplementary Figure 3: A hidden Markov model allowing self-transitions and
jumps over states. This allows us to model split and skipped events.

We will treat the path through the model as the hidden state of the sys-
tem, π, where each entry is a pair πi = (i, sj) which denotes that at step i
the system emitted event i from 5-mer sj . We denote the transition probabili-
ties with P (πi|πi−1, S) and for convenience define an initial transition P (π1 =
(1, s1)|π0, S) = 1. We can then calculate the joint probability of a path and the
data:

P (π, e1, e2, ..., en|S,Θ) =
n∏
i=1

P (ei|πi, µsi , σsi)P (πi|πi−1, S) (2)

We can calculate the probability of the data given S by summing over all
possible paths using the Forward algorithm:

P (e1, e2, ..., en|S,Θ) =
∑
π

P (π, e1, e2, ..., en|S,Θ) (3)

The structure of the model and transition probabilities are implied by the
5-mer sequence S as described later.

Profile HMM of Events and 5-mer in the Pore

The model drawn above only allows single 5-mers to be skipped. We could add
transitions between more distant 5-mers to allow longer jumps but this increases
the computational cost to compute P (e1, e2, ..., en|S,Θ) [5]. To allow a similar
description of the data in a more computationally convienent structure we can
convert this model into a standard Profile HMM. The Profile HMM we use is
shown in Figure 4.
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The Profile HMM expands the state space to include explicit states for extra
events emitted by any 5-mer (E states) and silent states that allow 5-mers to
be visited without observing an event (K states). This model has a repeating
block structure with 3 states for every 5-mer in S. Each state in a block is
indexed by the block’s corresponding 5-mer.

A path π through this model consists of states that emit events (incrementing
the event index, states M and E) and states that move from 5-mer to 5-mer
(incrementing the 5-mer index, states M and K). Each entry in the path π
is again represented as a pair πk = (i,X) where i is the index of the last
event emitted by the path and X ∈ {Ms1 , Es1 ,Ks1 , ...,Msm , Esm ,Ksm}. When
describing transition probabilities we will use the notation t(Msj−1

→Msj ) to
mean P (πk = (i,Msj )|πk−1 = (i− 1,Msj−1)) and so on.

To calculate the probability P (e1, e2, ..., en|S,Θ) we again use the Forward
algorithm which fills in a dynamic programming matrix of size 3mn to sum over
all paths through the model. We refer the reader to section 5.4 of Durbin et al.
[5] for the recursive definition of the dynamic programming matrix for a Profile
HMM.

Supplementary Figure 4: The state structure of the Profile Hidden Markov
Model we use to calculate the probability of a sequence of events given a known
sequence.

Transition Probabilities

The transition probabilities of the model are crucial to capturing the behaviour
of the pore. Most importantly, we must accurately model the probability
of not observing a signal for a particular 5-mer. If the signals for two ad-
jacent 5-mers, si−1 and si, are similar the feature detection algorithm may
not register a change in current. To make this explicit, consider the situation
where the sequenced DNA is GAAAAAAC. There is no chance to register the
AAAAA → AAAAA transition as the current signals for these 5-mers are identical
by definition. Therefore the probability of an event sequence generated by S
given two candidate sequences S1 = GAAAAAAC and S2 = GAAAAAC, which only
differ by the undetectable length of the poly-A run, should be very similar,
P (e1, e2, ..., en|S1,Θ) ≈ P (e1, e2, ..., en|S2,Θ).
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We model this by making the transition probability to K states a function
of the absolute difference between expected current for the adjacent 5-mers
t(Msi−1

→ Ksi) = t(Ksi−1
→ Ksi) = f(|µsi−1

− µsi |). We use a lookup table
for f that was calculated from a sample of reads matched to an earlier draft
assembly. The lookup table stores probabilities in bins of 0.5 pA.

While the majority of skipped 5-mers are due to signal similarity, we also
observe skips of 5-mers whose signal differs substantially from the preceding
5-mer. These occurrences are presumably due to events that were too short to
reliably detect and hence discarded by the feature detection algorithm.

The probability of transitioning to an E state is independent of the 5-mer.
Similar to the f table, we learned the probability of emitting an additional event
pme from a sample of reads. We calculate t(Msi−1 → Esi−1) using pme and the
probability of not transitioning to the K state:

t(Msi−1
→ Esi−1

) = pme(1− t(Msi−1
→ Ksi))

We also estimated the probability of staying in the E state, pee, from the
same sample of reads and set t(Esi−1

→ Esi−1
) = pee. Later we describe

how these transition probabilities are trained to capture the characteristics of
individual MinION reads. The complete set of transition probabilities for our
model is as follows:

t(Msi−1 → Ksi) = f(|µsi−1 − µsi |)
t(Msi−1 → Esi−1) = pme(1− t(Msi−1 → Ksi))

t(Msi−1 →Msi) = 1− t(Msi−1 → Ksi)− t(Msi−1 → Esi−1)

t(Esi−1 → Esi−1) = pee

t(Esi−1 →Msi) = 1− t(Esi−1 → Esi−1)

t(Ksi−1 → Ksi) = f(|µsi−1 − µsi |)
t(Ksi−1 →Msi) = 1− t(Ksi−1 → Ksi)

Emission Distributions

To complete the model we need emission distributions for each state. The
emission distribution for the M state are the Gaussians described above. The
emission distribution for the E states are nearly the same however we noted
higher variance for the duplicated events so we scale the standard deviation by
a factor of v = 1.75. As described above, no events are emitted from the K
states.

P (ei|πk = (i,Msj )) = N (µsj , σ
2
sj ) (4)

P (ei|πk = (i, Esj )) = N (µsj , (vσsj )2) (5)

This completes the description of our HMM.
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A1 A2

(2D read 1, template, 1872) (2D read 1, template, 1896)
(2D read 1, complement, 7076) (2D read 1, complement, 7063)
(2D read 2, template, 3011) (2D read 1, template, 3040)

(2D read 2, complement, 12072) (2D read 1, complement, 12051)

Supplementary Table 2: An example of the first two reads for the first two
anchors shown in Figure 5.

1.3 Computing the Consensus Sequence

Our consensus pipeline begins by mapping the uncorrected 2D MinION reads
to the draft assembly, G. To do this we use bwa mem with option -x ont2d [8].
After the read mapping step, we segment the genome into 10 kilobase segments
which overlap by 200bp. For each 10kb segment we extract the subsequence of
each read that maps to the segment and create a multiple alignment using POA
as in our error correction algorithm. The multiple alignment for the segment is
the input into our consensus algorithm.

The first row of the multiple alignment is the sequence of the draft assembly
for the segment and the remaining rows are the 2D reads mapped to the segment.
We iterate over the columns of the multiple alignment and select an anchor
every 50bp of the draft assembly’s sequence. These anchor points define a
mapping between bases in the draft assembly and the current signal events
for each strand (template and complement) of the aligned 2D MinION reads.
Later, when evaluating the probability of the data in our HMM we treat each
strand of a 2D read independently. An anchor Ai is a set of tuples specifying a
MinION read identifier, a strand identifier and the index of the nearest event for
the base aligned to the draft assembly. We use the anchor positions to extract
subsequences of the draft assembly, the 2D MinION reads and their template
and complement events to input into the HMM. An example is in Figure 5 and
Table 2.

draft_assembly  A-ACCCATAGCAAT--TTAGGCG-CAGTAAATCCGGGCATCATC--AGGTTGC-CGGT-AATCACC--GC

2d_read_1       -GACTGTCAGCAATAGTCAGGCG-CA-TATAACCTAG-ATTGCC--A---TGC-TG-T-AATAACC--GA

2d_read_2       A-ACCGACCTGAAT--CCTAG-G-CGGTTAATCCGGGCATCATC--AGGTTGC-CGGTCAATCACC-CGC

2d_read_3       A-ACCCATAGCA-T--TTAGGCGTAAGTCAATCCGGGCATCATCTAA---TGC-CG--CATTAGTCGCGC

2d_read_4       A-ACCCA--GCA-T--TTAGGCG-CAGTAAATCCGGGCATCATC--AGGTTGATCGGT-AA-GGCC--GT

Supplementary Figure 5: Anchor positions are selected from the multiple align-
ment which store mappings between bases and MinION events for every 2D read
mapped to a segment. In this example, anchors are selected every 20bp along
the draft assembly row.
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Training the HMM Transitions

Prior to computing the consenseus sequence of a segment, we adjust the transi-
tion probabilities for both strands of the MinION reads. We do this by aligning
the events for each read strand to the draft assembly sequence using the Viterbi
algorithm, guided by the anchor positions. For each read, we count the number
of transitions between the states of the Profile HMM and update the f table,
pme and pee accordingly. As a read may not have have enough events to esti-
mate the f table across the full range of values we use pseudocounts from the
original f table to initialize this update.

Consensus Algorithm

The consensus algorithm recomputes the sequence of the draft assembly between
anchors Ai and Ai+2. After the new consensus sequence is computed, we update
the sequence of the assembly and the event-to-assembly mappings for Ai+1. This
update step uses the Viterbi algorithm to align events to the new consensus
sequence. The purpose of this pattern - jumping over an anchor and realigning
- is to progressively improve the quality of the event-to-assembly alignments
recorded in the anchors.

Let D = {(ei,1, ei+1,1, ..., ej,1), ..., (ei,r, ei+1,r, ..., ej,r)} be the set of event
subsequences for the r strands of the 2D MinION reads that are anchored at both
Ai and Ai+2. Our goal is to compute a consensus sequence C that maximizes
the probability of the data D. We do this by initializing C to the sequence of
the draft assembly between the two anchors. We then propose a set of candidate
sequences C which are derived from the current consensus C. We use our HMM
to select the sequence that maximizes the probability of the data:

C ′ = argmax
S∈C

P (D|S) (6)

where

P (D|S) =
r∏

k=1

P (ei,k, ei+1,k, ..., ej,k|S,Θ) (7)

The current consensus sequence is always included in the set of candidates.
If the current consensus sequence is selected by equation 6, the process stops.

The set of all possible candidate sequences between Ai and Ai+2 is too
large to test every possibility. Instead, we use two methods to propose small
sets of candidate sequences derived from the current consensus sequence C.
The first method makes edits to C based on sampling alternative substrings
from the reads. The second method, inspired by the Quiver algorithm [1],
generates all strings within edit distance of one of C. This pair of methods,
the first allowing large changes that must be observed by at least one read, the
second exhaustively trying all one base edits, balances between compute time
and thoroughly exploring the space of candidate consensus sequences.
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The first method, which we call the block replacement algorithm, com-
putes the longest common subsequence of 5-mers between C and an aligned
2D read, R. This algorithm partitions C and R into contiguous regions where
they share matching 5-mers and regions where they do not. For each pair of
consecutive matching regions, we replace the sequence in C with the sequence
in R and add this derived sequence to the set C. This algorithm generates a
new candidate sequence for each pair of matching regions between C and R and
is run for all 2D reads that are aligned between the anchors.

The second method, which we call the mutation algorithm, simply makes
all one base substitutions, one base insertions and one base deletions to C to
generate the candidate set C.

These algorithms are run iteratively. We initialize the current consensus C
to the draft genome sequence between the pair of anchors. We then generate
candidate set C using the block replacement algorithm. We select the best
sequence C ′ using equation 6. If C ′ is not C, we set C ← C ′ and repeat
the process. Once no more improvements to the consensus sequence are made,
we run this procedure again except using the mutation algorithm to generate
C. Once this procedure converges we update the assembly to contain the final
consensus sequence. We then update the event alignments for Ai+1 and move
on to the next pair of anchors. This process continues until the entire 10kbp
sequence has been processed. Once all 10kbp segments have been processed,
which occurs in parallel, we merge the segments together at the overlapping
200bp ends.

Culling Unlikely Candidate Sequences

While we restrict our candidate sequences to those that are close to the current
consensus C, we still generate many sequence that are unlikely to be the true
sequence of the genome between a pair of anchors. To avoid spending compu-
tation time fully evaluating equation 6 for these sequences we periodically cull
unlikely sequences from C. We do this by progressively evaluating equation 6
using subsets of k elements of the full data D. We will refer to these subsets as
Dk.

To retain a sequence S in C, we require that either k/5 event sequences in
Dk have greater probability given S than the current consensus sequence C or
that P (Dk|S)/P (Dk|C) > e−30. If both of these conditions fail, we remove S
from C.

These checks are performed after processing 5 event sequences, eg for sub-
sets D5,D10, .... The conservative threshold that we set on the ratio between
probabilities is to avoid culling the true sequence from C at the cost of retaining
some unlikely sequences.

Event Preprocessing

The events recorded for a read may differ from the reference pore model that
Oxford Nanopore has provided. To account for this the MinION’s software

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 11, 2015. ; https://doi.org/10.1101/015552doi: bioRxiv preprint 

https://doi.org/10.1101/015552
http://creativecommons.org/licenses/by/4.0/


calculates parameters to globally shift and scale the mean and variance of the
provided 5-mer model to better match the observed data. Additionally a cor-
rection is applied to the event signals to correct for a tendency of the signal to
drift over time. We apply these corrections, shifts and scales to the pore model
and events prior to input into our HMM.

Read Filtering

During development we noticed that some MinION reads contained observations
that were outside of the expected range of signals. To discard these reads rather
than having the erroneous observations dominate the probability in equation 6,
we filtered the input events by computing the probability of the data given the
original draft reference sequence and discarding any strands whose log-scaled
probability divided by the number of events is greater than 3.5. Better quality
control of the input data is an area of future improvement.

Source Code and Commands Run

The source code for our consensus algorithm is freely available and open source
under the MIT license at https://github.com/jts/nanopolish. A description
of how we generated the consensus sequence for the assembly in this paper is
documented on github:

https://github.com/jts/nanopore-paper-analysis/blob/master/polishing commands.txt

1.4 Assembly Analysis

Analysis of read accuracy

For the analysis of nanopore sequence read accuracy, reads were mapped to the
E. coli K-12 MG1655 reference genome using BWA-MEM 0.7.10-r960-dirty [8].
The resulting BAM files were processed with the expand-cigar.py script and
mismatches, insertions and deletions counted using the count-errors.py script
from Aaron Quinlan’s nanopore-scripts package (https://github.com/arq5x/nanopore-
scripts).

Dotplot analysis

The circularised contig was analysed through the nucmer component of MUM-
MER [10] and the delta file visualised using mummerplot.

Coverage analysis

The sorted, aligned BAM file of raw reads against the assembly was analysed
using the genomeCoverageBed module of bedtools [10]. Per-base coverage was
averaged over 1000 base segments and plotted in R using ggplot2.
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GC analysis

The GC plot was constructed from the assembly using a Python script using
Biopython averaging GC-content over 1000 base segments [2].

QUAST Analysis

The circularised contig, both before and after polishing was analysed by QUAST
2.3 [6] which was run with default parameters and supplying the NC 000913.3

reference genome as the comparator.

Mauve Analysis

The circularised contig was analysed by running the progressiveMauve package
on the command-line with option --collinear and visualised in the Mauve
Genome Viewer. [3].

5-mer Analysis

To explore over and under-representation of 5-mers, we wrote a program to count
the number of occurrences of the 1024 different 5-mers in a set of sequences.
This program counts 5-mers on the forward and reverse strands independently.
The analysis used the counts for the forward strand of the reference and the
forward strand of the largest contig of our assemblies. We plotted the results
using R and the ggplot2 library.
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2 Supplementary Figures and Tables

Supplementary Figure 6: Kernel density plot showing the accuracy of reads
from the four individual MinION runs used to generate the de novo assembly.
The mean accuracy varies from 78.2% (run 3) to 82.2% (run 1).
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Supplementary Figure 7: Kernel density plot demonstrating the raw nanopore
read accuracy and effect of two rounds of error correction on accuracy. The
mauve area represents uncorrected sequencing reads, where the green area shows
the improvement in accuracy after the first round of correction and the yellow
shows improvement from the second round of correction. Further rounds of
correction did not improve the accuracy further.
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Supplementary Figure 8: Spec file for Celera Assembler.
merSize = 14

cgwErrorRate = 0.25

ovlCorrBatchSize = 100000

ovlHashBlockLength = 50000000

frgCorrThreads = 4

frgMinLen = 1000

merylMemory = 16384

cnsMinFrags = 7500

ovlStoreMemory = 16384

ovlMinLen = 40

merylThreads = 96

ovlErrorRate = 0.06

ovlThreads = 16

ovlRefBlockSize = 100000000

frgCorrBatchSize = 100000

unitigger = bogart

ovlHashBits = 25

ovlConcurrency = 48

cnsConcurrency = 24

cnsErrorRate = 0.25
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Supplementary Table 3: Oxford Nanopore MinION datasets used in this study.

Description Pass 2D Mean length Accession
R7.3 chemistry, Metrichor 1.9, SQK-MAP-003 8451 6183 ERX708228 [9]
R7.3 chemistry, Metrichor 1.9, SQK-MAP-004 2855 5604 ERX708229
R7.3 chemistry, Metrichor 1.9, SQK-MAP-004 5639 3885 ERX708230
R7.3 chemistry, Metrichor 1.9, SQK-MAP-004 5325 8158 ERX708231
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Supplementary Table 4: Results from QUAST when comparing the draft cir-
cular contig (”circular”) and the polished circular contig (”circular polished”)
against the E. coli K12 MG1655 reference genome (accession NC 000913.3).

Assembly circular circular polished
# contigs (≥ 0 bp) 1 1
# contigs (≥ 1000 bp) 1 1
Total length (≥ 0 bp) 4593653 4639191
Total length (≥ 1000 bp) 4593653 4639191
# contigs 1 1
Largest contig 4593653 4639191
Total length 4593653 4639191
Reference length 4641652 4641652
GC (%) 51.07 50.94
Reference GC (%) 50.79 50.79
N50 4593653 4639191
NG50 4593653 4639191
N75 4593653 4639191
NG75 4593653 4639191
L50 1 1
LG50 1 1
L75 1 1
LG75 1 1
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# misassemblies 2 2
# misassembled contigs 1 1
Misassembled contigs length 4593653 4639191
# local misassemblies 2 4
# unaligned contigs 0 + 0 part 0 + 0 part
Unaligned length 0 0
Genome fraction (%) 100.000 99.995
Duplication ratio 0.990 1.000
# N’s per 100 kbp 0.30 0.00
# mismatches per 100 kbp 85.08 33.01
# indels per 100 kbp 1021.08 396.15
Largest alignment 2739950 2766640
NA50 2739950 2766640
NGA50 2739950 2766640
NA75 1852939 1871782
NGA75 1852939 1871782
LA50 1 1
LGA50 1 1
LA75 2 2
LGA75 2 2
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