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Abstract
Let a sensation magnitude γ be determined by a stimulus magnitude β. The Webers laws states that ∆γ remains constant when
the relative stimulus increment ∆β remains constant. It has been found that this law is actually a derivation of Bernoullis law
were ∆γ ∝ log ∆β

β . Recently, such psychophysical laws have been observed in the behaviour of certain intra/extracellular factors
working in the Wnt pathway and this manuscript tests the veracity of the prevalence of such laws, albeit at a coarse level, using
sensitivity analysis on biologically inspired computational causal models. Sensitivity analysis plays a crucial role in observing
the behaviour of output of a variable given variations in the input. Recently, it has been found that some factors of the Wnt
signaling pathway show a natural behaviour that can often be characterized by psychophysical laws. In this work, the variation in
the effect of the predictive behaviour of the transcription complex (TRCMPLX) conditional on the evidences of regulated gene
expressions in normal and tumor samples is observed by varying the initially assigned values of conditional probability tables
(cpt) for TRCMPLX. Preliminary analysis shows that the variation in predictive behaviour of TRCMPLX conditional on gene
evidences follows power and logarithmic psychophysical law crudely, implying deviations in output are proportional to increasing
function of deviations in input and shows constancy for higher values of input. This points towards stability in the behaviour of
TRCMPLX and is reflected in the preserved gene gene interactions of the Wnt pathway inferred from conditional probabilities
of individual gene activation given the status of another gene activation derived using biologically inspired Bayesian Network.
The deviation in the predictive behaviour of gene activation conditional on the evidence of another regulated gene expression in
normal and tumor samples was also observed by varying the initially assigned values of conditional probability tables (cpt) for
β-catenin based transcription complex. Analysis shows that the deviation in predictive behaviour of gene activation conditional
on another gene expression as evidence, follows power-logarithmic psychophysical law crudely. Finally, the computational
observations indicate that not only individual factors but the gene-gene interactions in the interaction network might also exhibit
psychophysical laws at some stage. Dynamic models of Bayesian networks might reveal the phenomena in a better way.

1 Introduction

1.1 Problem statement

In Sinha1, it has been hypothesized that the activation state
of TRCMPLX in the Wnt signaling pathway is not always
the same as the state of the test sample (normal/tumorous) un-
der consideration. For this, Sinha1 shows various results on
the predicted state of TRCMPLX conditional on the given
gene evidences, while varying the assigned probability values
of conditional probability tables of TRCMPLX during ini-
tialization of the Bayesian Network (BN). It was found that the
predicted values often increase with an increasing value in the
effect of the TRCMPLX on the genes. In a recent develop-
ment, Goentoro and Kirschner2 point to two findings namely,
• the robust fold changes of β-catenin and • the transcriptional
machinery of the Wnt pathway depends on the fold changes in
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β-catenin instead of absolute levels of the same and some gene
transcription networks must respond to fold changes in signals
according to the Weber’s law in sensory physiology.

In accordance with the aforementioned phenomena noted
in Sinha1, it would be important to test the veracity of the ob-
served logarithmic laws and their derivations (like the Weber’s
law) employed in Goentoro and Kirschner2. In the current
manuscript, preliminary analysis of results in Sinha1 shows
that the variation in predictive behaviour of TRCMPLX
conditional on gene evidences follows power and logarithmic
psychophysical law crudely, implying deviations in output are
proportional to increasing function of deviations in input and
showing constancy for higher values of input. This relates to
the work of Adler et al.3 on power and logarithmic law albeit
at a coarse level. Note that Goentoro and Kirschner2 shows
results for the behaviour of fold change of β-catenin with
respect to single parameter values. The current work, takes
into account the behaviour of TRCMPLX conditional on
affects of multiple parameters in the form of evidences of var-
ious intra/extracelluar gene expression values working in the
pathway. Bayesian networks help in integrating such multiple
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paramater affects via various causal arcs and sensitivity anal-
ysis aids in the study of the such natural behaviour.

As a second observation, the forgoing result points towards
stability in the behaviour of TRCMPLX and is reflected in
the preserved gene gene interactions of the Wnt pathway in-
ferred from conditional probabilities of individual gene activa-
tion given the status of another gene activation derived using
biologically inspired Bayesian Network. Note that Weber’s
law has been found to be a special case of Bernoulli’s loga-
rithmic law Masin et al.4. Finally, as a third observation, it
would be interesting to note if these behaviours characterized
by psychophysical laws are prevalent among the dual gene-
gene interactions or not. If the results are affirmative then the
following important speculations might hold true • Not just
one factor (as pointed out by Goentoro and Kirschner2) but the
entire network might be involved in such a behavior at some
stage or the other. • The psychophysical law might not only
be restricted to the intra/extracellular components but also to
the interactions among the the intra/extracellular components
in the pathway.

It is important to be aware of the fact that the presented
results are derived from a static Bayesian network model. It
is speculated that dynamic models might give much better and
more realistic results.

1.2 The logarithmic psychophysical law

Masin et al.4 states the Weber’s law as follows -

Consider a sensation magnitude γ determined
by a stimulus magnitude β. Fechner5 (vol 2, p. 9)
used the symbol ∆γ to denote a just noticeable sen-
sation increment, from γ to γ + ∆γ, and the sym-
bol ∆β to denote the corresponding stimulus incre-
ment, from β to β + ∆β. Fechner5 (vol 1, p. 65)
attributed to the German physiologist Ernst Hein-
rich Weber the empirical finding Weber6 that ∆γ
remains constant when the relative stimulus incre-
ment ∆β

β remains constant, and named this finding
Weber’s law. Fechner5 (vol 2, p. 10) underlined that
Weber’s law was empirical.

It has been found that Bernoulli’s principle (Bernoulli7) is dif-
ferent from Weber’s law (Weber6) in that it refers to ∆γ as any
possible increment in γ, while the Weber’s law refers only to
just noticeable increment in γ. Masin et al.4 shows that We-
ber’s law is a special case of Bernoulli’s principle and can be
derived as follows - Equation 1 depicts the Bernoulli’s princi-
ple and increment in sensation represented by ∆γ is propor-
tional to change in stimulus represented by ∆β.

γ = b× log
β

α
(1)

were b is a constant and α is a threshold. To evaluate the incre-
ment, the following equation 2 and the ensuing simplification
gives -

∆γ = b× log
β + ∆β

α
− b× log

β

α

= b× log(
β + ∆β

β
)

= b× log(1 +
∆β

β
) (2)

Since b is a constant, equation 2 reduces to

∆γ ◦ ∆β

β
(3)

were ◦ means ”is constant when there is constancy of” from
Masin et al.4. The final equation 3 is a formulation of We-
ber’s laws in wordings and thus Bernoulli’s principles imply
Weber’s law as a special case. Using Fechner5 derivation, it
is possible to show the relation between Bernoulli’s principles
and Weber’s law. Starting from the last line of equation 2, the
following yields the relation.

∆γ = b× log(1 +
∆β

β
)

e∆γ = eb×log(1+ ∆β
β )

kp = elog(1+ ∆β
β )b ; were kp = e∆γ

kp = (1 +
∆β

β
)b; since elog(x) = x

b
√
kp = 1 +

∆β

β

kq − 1 =
∆β

β
; were b

√
kp = kq

kr =
∆β

β
; the weber’s law s.t. kr =

b
√
e∆γ − 1

(4)

Equation 3 holds true given the last line of equation 4. In the
current study, observation of deviation recorded in predicted
values of state of TRCMPLX conditional on gene evidences
show crude logarithmic behaviour which might bolster We-
ber’s law and Bernoulli’s principles. But it must be noted that
these observations are made on static causal models and ob-
servation of the same behaviour in dynamical setting would
add more value.

Before delving into the details of the experimental setup the
following two subsections from Sinha1 help build the back-
ground on Wnt pathway and the computational model used to
infer the results in this paper.
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Fig. 1 A cartoon of wnt signaling pathway contributed by Verhaegh
et al. 8. Part (A) represents the destruction of β-catenin leading to
the inactivation of the wnt target gene. Part (B) represents activation
of wnt target gene.

1.3 Canonical Wnt signaling pathway

The canonical Wnt signaling pathway is a transduction mech-
anism that contributes to embryo development and controls
homeostatic self renewal in several tissues (Clevers9). So-
matic mutations in the pathway are known to be associated
with cancer in different parts of the human body. Promi-
nent among them is the colorectal cancer case (Gregorieff
and Clevers10). In a succinct overview, the Wnt signaling
pathway works when the Wnt ligand gets attached to the
Frizzled(fzd)/LRP coreceptor complex. Fzd may interact
with the Dishevelled (Dvl) causing phosphorylation. It is also
thought that Wnts cause phosphorylation of the LRP via ca-
sein kinase 1 (CK1) and kinase GSK3. These developments
further lead to attraction of Axin which causes inhibition of the
formation of the degradation complex. The degradation com-
plex constitutes of Axin, the β-catenin transportation com-
plex APC, CK1 and GSK3. When the pathway is active
the dissolution of the degradation complex leads to stabiliza-
tion in the concentration of β-catenin in the cytoplasm. As
β-catenin enters into the nucleus it displaces the Groucho
and binds with transcription cell factor TCF thus instigat-
ing transcription of Wnt target genes. Groucho acts as lock
on TCF and prevents the transcription of target genes which
may induce cancer. In cases when the Wnt ligands are not cap-
tured by the coreceptor at the cell membrane, Axin helps in
formation of the degradation complex. The degradation com-
plex phosphorylates β-catenin which is then recognized by
Fbox/WD repeat protein β−TrCP . β−TrCP is a compo-
nent of ubiquitin ligase complex that helps in ubiquitination of
β-catenin thus marking it for degradation via the proteasome.
Cartoons depicting the phenomena of Wnt being inactive and

active are shown in figures 1(A) and 1(B), respectively.

1.4 Epigenetic factors

One of the widely studied epigenetic factors is methylation
(Costello and Plass11, Das and Singal12, Issa13). Its occur-
rence leads to decrease in the gene expression which affects
the working of Wnt signaling pathways. Such characteristic
trends of gene silencing like that of secreted frizzled-related
proteins (SFRP ) family in nearly all human colorectal tu-
mor samples have been found at extracellular level (Suzuki
et al.14). Similarly, methylation of genes in the Dickkopf
(DKKxNiehrs15, Sato et al.16), Dapper antagonist of catenin
(DACTx Jiang et al.17) and Wnt inhibitory factor-1 (WIF1
Taniguchi et al.18) family are known to have significant ef-
fect on the Wnt pathway. Also, histone modifications (a class
of proteins that help in the formation of chromatin which
packs the DNA in a special form Strahl and Allis19) can af-
fect gene expression (Peterson et al.20). In the context of the
Wnt signaling pathway it has been found that DACT gene
family show a peculiar behavior in colorectal cancer (Jiang
et al.17). DACT1 and DACT2 showed repression in tumor
samples due to increased methylation while DACT3 did not
show obvious changes to the interventions. It is indicated that
DACT3 promoter is simultaneously modified by the both re-
pressive and activating (bivalent) histone modifications (Jiang
et al.17).

Information regarding prior biological knowledge in terms
of known influence relations and epigenetic factors have been
depicted in the figure represented by figure 2 from Sinha1.

2 Materials and methods

The models purported by Sinha1 involving the biologi-
cal knowledge as well as epigenetic information depicted
by MPBK+EI and biological knowledge excluding epige-
netic information MPBK were used to predict the state of
TRCMPLX given the gene evidences. Figure 2 depicts the
model MPBK+EI . The predictions were recorded over the
varying effect of TRCMPLX on gene regulations via as-
signment of different values to conditional probability tables
(cpt) of TRCMPLX while initializing the aforementioned
BN models. This varying effect is represented by the term
ETGN in Sinha1.

As a recapitulation, the design of the experiment is a sim-
ple 2-holdout experiment where one sample from the normal
and one sample from the tumorous are paired to form a test
dataset. Excluding the pair formed in an iteration of 2-hold out
experiment the remaining samples are considered for training
of a BN model. Thus in a data set of 24 normal and 24 tu-
morous cases obtained from Jiang et al.17, a training set will
contain 46 samples and a test set will contain 2 samples (one
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Fig. 2 Influence diagram ofMPBK+EI contains partial prior biological knowledge and epigenetic information in the form of methylation
and histone modification. Diagram drawn using Cytoscape Shannon et al. 21. In this model the state of Sample is distinguished from state of
TRCMPLX that constitutes the Wnt pathway.

of normal and one of tumor). This procedure is repeated for
every normal sample which is combined with each of the tu-
morous sample to form a series of test datasets. In total there
will be 576 pairs of test data and 576 instances of training
data. Note that for each test sample in a pair, the expression
value for a gene is discretized using a threshold computed for
that particular gene from the training set. Computation of the
threshold has been elucidated in Sinha1. This computation is
repeated for all genes per test sample. Based on the avail-
able evidence from the state of expression of all genes, which
constitute the test data, inference regarding the state of both
the TRCMPLX and the test sample is made. These infer-
ences reveal information regarding the activation state of the
TRCMPLX and the state of the test sample. Finally, for
each gene gi, the conditional probability Pr(gi = active|gk ev-
idence) ∀k genes. Note that these probabilities are recorded
for both normal and tumor test samples.

Three observations are presented in this manuscript. The
first observation is regarding the logarithmic deviations in
prediction of activation status of TRCMPLX conditional
on gene expression evidences. The second observation is
preservation of gene gene interactions across deviations. To
observe these preservations, first the gene gene interactions
have to be constructed from the predicted conditional proba-
bilities of one gene given the evidence of another gene (for all
gene evidences taken separately). After the construction, fur-
ther preprocessing is required before the gene-gene interaction
network can be inferred. Finally, the third observation is to

check whether these laws are prevalent among the gene-gene
interactions in the network or not.

3 Results and discussion

3.1 Logarithmic-power deviations in predictions of β-
catenin transcription complex

Let γ be Pr(TRCMPLX = active|all gene evidences), β be
the assigned cpt value of TRCMPLX during initialization
of the Bayesian Network models and ∆β be the deviation in
the assigned values of TRCMPLX during initialization. To
compute ∆γ, the 576 predictions of γ observed at β = 90% is
subtracted from the 576 predictions of γ observed at β = 80%
and a mean of the deviations recorded. This mean becomes
∆γ. The procedure is computed again for different value of
β. In this manuscript, the effect of constant and incremental
deviations are observed. Tables 1 and 2 represent the devia-
tions for modelsMPBK+EI andMPBK , respectively.

Figures 3, 4, 5 and 6 show the deviations represented in
tables 1 and 2. Note that the number depicted in the tables
are scaled in a nonuniform manner for observational purpose
in the figures. Before reading the graphs, note that red in-
dicates deviation of mean of Pr(TRCMPLX = active|∀gei
evidences) in normal test samples, blue indicates deviation of
mean of Pr(TRCMPLX = active|∀gei evidences) in tumor
case, green indicates deviations in Weber’s law and cyan indi-
cates deviations in Bernoulli’s law.
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Deviation study for modelMPBK+EI

β ∆β ∆β
β log(1 + ∆β

β ) Pr in Normal Pr in Tumor
0.8 0.1 0.125 0.117783 0.03055427 0.09151151
0.7 0.1 0.1428571 0.1335314 0.01423754 0.09086427
0.6 0.1 0.1666667 0.1541507 0.004384244 0.08052346
0.5 0.1 0.2 0.1823216 0.0005872203 0.07294716
0.8 0.1 0.125 0.117783 0.03055427 0.09151151
0.7 0.2 0.2857143 0.2513144 0.04479181 0.1823758
0.6 0.3 0.5 0.4054651 0.04917605 0.2628992
0.5 0.4 0.8 0.5877867 0.04976327 0.3358464

Table 1 Deviation study for modelMPBK+EI . Pr = mean value of
Pr(TRCMPLX = active|∀gei evidences) over all runs.

Deviation study for modelMPBK

β ∆β ∆β
β log(1 + ∆β

β )Pr in NormalPr in Tumor
0.8 0.1 0.125 0.117783 0.1400355 0.1097089
0.7 0.1 0.1428571 0.1335314 0.06442086 0.1877266
0.6 0.1 0.1666667 0.1541507 0.01762791 0.06204044
0.5 0.1 0.2 0.1823216 0.01393517 0.1718198
0.8 0.1 0.125 0.117783 0.1400355 0.1097089
0.7 0.2 0.2857143 0.2513144 0.2044564 0.2974356
0.6 0.3 0.5 0.4054651 0.2220843 0.359476
0.5 0.4 0.8 0.5877867 0.2360195 0.5312958

Table 2 Deviation study for modelMPBK . Pr = mean value of
Pr(TRCMPLX = active|∀gei evidences) over all runs.

For the case of contant deviations (figure 3) in model
MPBK+EI , it was observed that deviations in activation of
TRCMPLX conditional on gene evidences for the tumor
test samples showed a logarithmic behaviour and were di-
rectly proportional to the negative of both the Weber’s and
Bernoulli’s law. This can be seen by the blue curve almost
following the green and cyan curves. For the case of devia-
tions in activation of TRCMPLX conditional on gene ev-
idences for the normal test samples showed an exponential
behaviour and were proportional to negative of both the We-
ber’s and Bernoulli’s law. Similar behaviour was observed for
all the coloured curves in case of incremental deviations as
shown in figure 4. The exponential behaviour for activation
of TRCMPLX being active conditional on gene evidences
correctly supports to the last line of equation 4 which is the
derivation of Weber’s law from Bernoulli’s equation. It actu-
ally point to Fechner’s derivation of Weber’s law from loga-
rithmic formulation.

For model MPBK , the above observations do not yield
consistent behaviour. In figure 5, for the case of constant devi-

0.50 0.55 0.60 0.65 0.70 0.75 0.80

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

Stimulus beta

N
on

−u
ni

fo
rm

 s
ca

le
d 

de
vi

at
io

ns

Constant deviations for model with PBK+EI

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

cDevNormal
cDevTumor
cDevWeber
cDevBernoulli

Fig. 3 Constant deviations in β i.e ETGN and corresponding
deviations in Pr(TRCMPLX = active|∀gei evidences) for both
normal and tumor test samples. Corresponding Weber and Bernoulli
deviations are also recorded. Note that the plots and the y-axis
depict scaled deviations to visually analyse the observations. The
model used isMPBK+EI . Red - constant deviation in Normal,
constant deviation in Tumor, Green - constant deviation in Weber’s
law, Cyan - constant deviation in Bernoulli’s law.

ations, only the deviations in activation of TRCMPLX con-
ditional on gene evidences for normal test samples exponen-
tial in nature and were found to be directly proportional to the
negative of both the Weber’s and Bernoulli’s law. But the de-
viations in activation of TRCMPLX conditional on gene ev-
idences in tumor test samples show noisy behaviour. But this
observation is not the case in incremental deviations for the
same model. For the case of incremental deviations as repre-
sented in figure 6, the deviations in activation of TRCMPLX
conditional on gene evidences is directly proportional to both
the Weber’s and Bernoulli’s law. The figure actually represent
the plots with inverted values i.e negative values. A primary
reason for this behaviour might be thatMPBK does not cap-
ture and constrain the network as much asMPBK+EI which
include epigenetic information. This inclusion of heteroge-
neous information adds more value to the biologically inspired
network and reveals the hidden natural laws occurring in the
signaling pathway in both normal and tumor cases.

Lastly, the intiutive idea behind the behaviour of the curves
generated from constant deviation in table 1 is as follows. It
is expected that Pr(TRCMPLX = active|all gene evidences)
is low (high) in the case of Normal (Tumor) samples. The
change ∆Pr(TRCMPLX = active|all gene evidences) jumps
by power of 10 as the β values change from 50% to 90%. It is
can be observed from the table that there are low deviations in
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Fig. 4 Incremental deviations in β i.e ETGN and corresponding
deviations in Pr(TRCMPLX = active|∀gei evidences) for both
normal and tumor test samples. Corresponding Weber and Bernoulli
deviations are also recorded. Note that the plots and the y-axis
depict scaled deviations to visually analyse the observations. The
model used isMPBK+EI . Red - incremental deviation in Normal,
incremental deviation in Tumor, Green - incremental deviation in
Weber’s law, Cyan - incremental deviation in Bernoulli’s law.

Pr(TRCMPLX = active|all gene evidences) when β is low
i.e the effect of transcription complex is low and high devia-
tions in Pr(TRCMPLX = active|all gene evidences) when β
is high i.e the effect of transcription complex is high. But is
should be noted that the deviations still tend to be small. This
implies that the TRCMPLX is switched off at a constant
rate. Thus changes in β leads to exponential curves as in the
formulation ∆β

β , ∆β → 0 and β →∞.

In tumor cases, ∆Pr(TRCMPLX = active|all gene evi-
dences) behaves near to logarithmic curve as β increases from
50% to 90%. The deviations increase in a slow monotonic way
as β increases. Finally, the ratio ∆β

β shows monotonically in-
creasing behaviour ∆β increases proportionally with β. This
means that in tumor samples the rate of transcription increases
or the effect of rate of transcription complex increases mono-
tonically as β increases. This points to effect of fold change in
β-catenin concentration that might be affecting the transcrip-
tion rate of the transcription complex. In normal case, the
β-catenin concentration remains constant, thus changes in the
rate if transcription complex being involved in transcription
remains constant and near to zero. Change in β values that is
the change in initialization of cpt values of transcription com-
plex causes the exponential curve in deviations of prediction
of transcription complex.

Finally, these observations present a crude yet important
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Fig. 5 Constant deviations in β i.e ETGN and corresponding
deviations in Pr(TRCMPLX = active|∀gei evidences) for both
normal and tumor test samples. Corresponding Weber and Bernoulli
deviations are also recorded. Note that the plots and the y-axis
depict scaled deviations to visually analyse the observations. The
model used isMPBK . Red - constant deviation in Normal, constant
deviation in Tumor, Green - constant deviation in Weber’s law, Cyan
- constant deviation in Bernoulli’s law.

picture regarding the downstream transcriptional behaviour of
signaling pathway in case of colorectal cancer. Psychophysi-
cal laws might not be constrained to a particular domain and
as can be seen here, they might play an important role in shed-
ding light on behaviour of the pathway. In context of Goen-
toro and Kirschner2, the presented results might be crude in
terms of static observations, yet they show corresponding be-
haviour of transcriptional activity in terms of psychophysical
laws. Further investigations using dynamic models might re-
veal more information in comparison to the static models used
in Sinha1. The observations presented here might bolster the
existence of behavioural phenomena in terms of logarithmic
laws and its special cases.

3.2 Preservation of gene gene interactions

The second part of this study was to find interactions between
two genes by observing the conditional probability of activa-
tion status of one gene given the evidence of another gene. Let
g be a gene. To obtain the results, two steps need to be exe-
cuted in a serial manner. The first step is to construct gene
gene interactions based on the available conditional proba-
bilities denoted by Pr(gi = active/repressed|gk evidence) ∀k
genes. The second step is to infer gene gene interaction net-
work based purely on reversible interactions. Note that net-
works are inferred for gene evidences using normal and tumor
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SFRP5 activation status apropos gene evidences in Normal and Tumor samples using θ = 0.5

ge aaN arN raN rrN aaT arT raT rrT ggIN ggIT
1 DKK1 0 360 216 0 360 0 0 216 DKK1 |− <> SFRP5 DKK1 <> − <> SFRP5
2 DKK2 360 216 0 0 0 0 216 360 DKK2 <> − <> SFRP5 DKK2 | − | SFRP5
3 DKK3-1 360 216 0 0 0 0 216 360 DKK3-1 <> − <> SFRP5 DKK3-1 | − | SFRP5
4 DKK3-2 240 336 0 0 0 0 336 240 DKK3-2 |− <> SFRP5 DKK3-2 <> −| SFRP5
5 DKK4 0 480 96 0 460 0 0 116 DKK4 |− <> SFRP5 DKK4 <> − <> SFRP5
6 DACT1 346 230 0 0 0 0 216 360 DACT1 <> − <> SFRP5 DACT1 | − | SFRP5
7 DACT2 312 264 0 0 0 0 264 312 DACT2 <> − <> SFRP5 DACT2 | − | SFRP5
8 DACT3 504 0 0 72 0 507 69 0 DACT3 <> − <> SFRP5 DACT3 |− <> SFRP5
9 SFRP1 552 4 0 20 0 69 46 461 SFRP1 <> − <> SFRP5 SFRP1 | − | SFRP5
10 SFRP2 480 0 0 96 0 480 96 0 SFRP2 <> − <> SFRP5 SFRP2 |− <> SFRP5
11 SFRP3 484 0 0 92 0 480 96 0 SFRP3 <> − <> SFRP5 SFRP3 |− <> SFRP5
12 SFRP4 264 312 0 0 312 264 0 0 SFRP4 |− <> SFRP5 SFRP4 <> − <> SFRP5
13 WIF1 0 408 168 0 398 0 0 178 WIF1 |− <> SFRP5 WIF1 <> − <> SFRP5
14 LEF1 0 480 96 0 484 0 0 92 LEF1 |− <> SFRP5 LEF1 <> − <> SFRP5
15 MYC 0 456 120 0 442 0 0 134 MYC |− <> SFRP5 MYC <> − <> SFRP5
16 CCND1 0 480 96 0 480 0 0 96 CCND1 |− <> SFRP5 CCND1 <> − <> SFRP5
17 CD44 0 376 200 0 384 0 0 192 CD44 |− <> SFRP5 CD44 <> − <> SFRP5

SFRP5 activation status apropos gene evidences in Normal and Tumor samples using θ = θN and θ = θT
1 DKK1 0 322 216 38 0 0 360 216 DKK1 |− <> SFRP5 DKK1 <> −| SFRP5
2 DKK2 4 0 356 216 0 0 216 360 DKK2 <> −| SFRP5 DKK2 | − | SFRP5
3 DKK3-1 4 0 356 216 0 0 216 360 DKK3-1 <> −| SFRP5 DKK3-1 | − | SFRP5
4 DKK3-2 0 9 240 327 0 0 336 240 DKK3-2 | − | SFRP5 DKK3-2 <> −| SFRP5
5 DKK4 0 434 96 46 327 0 133 116 DKK4 |− <> SFRP5 DKK4 <> − <> SFRP5
6 DACT1 4 230 342 0 0 0 216 360 DACT1 <> −| SFRP5 DACT1 | − | SFRP5
7 DACT2 0 0 312 264 0 0 264 312 DACT2 <> −| SFRP5 DACT2 | − | SFRP5
8 DACT3 504 0 0 72 0 507 69 0 DACT3 <> − <> SFRP5 DACT3 |− <> SFRP5
9 SFRP1 13 0 539 24 0 0 46 530 SFRP1 <> −| SFRP5 SFRP1 | − | SFRP5
10 SFRP2 480 0 0 96 0 363 96 117 SFRP2 <> − <> SFRP5 SFRP2 |− <> SFRP5
11 SFRP3 484 0 0 92 0 350 96 130 SFRP3 <> − <> SFRP5 SFRP3 |− <> SFRP5
12 SFRP4 0 0 264 312 312 264 0 0 SFRP4 | − | SFRP5 SFRP4 <> − <> SFRP5
13 WIF1 0 408 168 0 0 0 398 178 WIF1 |− <> SFRP5 WIF1 <> −| SFRP5
14 LEF1 0 450 96 30 394 0 90 92 LEF1 |− <> SFRP5 LEF1 <> − <> SFRP5
15 MYC 0 402 120 54 325 0 117 134 MYC |− <> SFRP5 MYC <> − <> SFRP5
16 CCND1 0 418 96 62 350 0 130 96 CCND1 |− <> SFRP5 CCND1 <> − <> SFRP5
17 CD44 0 65 200 311 0 0 384 192 CD44 | − | SFRP5 CD44 <> −| SFRP5

Table 3 SFRP5 activation status in test samples conditional on status of individual gene activation (represented by evidence in test data) in
Normal and Tumor samples. Measurements are taken over summation of all predicted values across the different runs of the 2-Hold out
experiment. Here the notations denote the following: a - active, p - passive, N - Normal, T - Tumor, ggIN - gene-gene interaction with
Normal, ggIT - gene-gene interaction with Tumor, <> - active and | - repressed.

test samples separately. The following sections elucidate the
steps before explaining the implications.

3.2.1 Constructing gene-gene interactionsBefore start-
ing the construction of interactions from the conditional prob-
abilities, assign a variable ggI as an empty list (say in R lan-
guage). Then ∀i genes, execute the following -

1. ∀ 576 runs iterated by a counter j

(a) append xN with the vector whose elements are
Pr(gi = active|gk evidence) ∀k genes in the jth run

for Normal test sample. This creates a matrix at the
end of the runs.

(b) append xT with the vector whose elements are Pr(gi
= active|gk evidence) ∀k genes in the jth run for
Tumor test sample. This creates a matrix at the end
of the runs.

(c) append geN with the vector whose elements are gek
evidence ∀k genes in the jth run for Normal test
sample. This creates a matrix at the end of the runs.

(d) append geT with the vector whose elements are gek
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Fig. 7 Gene gene interactions for normal case while usingMPBK+EI with θ = 0.5. Note that the effect of initialized cpt for TRCMPLX
is 90% in tumorous case and 10% in normal case. Diamond <> means activation and straight bar | means repression.

evidence ∀k genes in the jth run for Tumor test
sample. This creates a matrix at the end of the runs.

2. assign variables ge, aaN , arN , raN , rrN , aaT , arT ,
raT , rrT , PggN , PggT to an empty vector c() (say in
R language). Note - a (r) means activation (repression).

3. compute mean across columns of xN and xT to obtain
averaged P̂rN (gi|gk) and P̂rT (gi|gk) ∀k gene evidences
and ∀i genes. Note k, i ∈ 1, ..., n if n is the total number
of genes.

4. assign a vector of P̂rN (gi|gk) ∀k genes to PggN and a
vector of P̂rT (gi|gk) ∀k genes to PggT

5. ∀k genes except the ith one

(a) if(k 6= i)

i. assign variables tmpaaN , tmparN , tmpraN ,
tmprrN , tmpaaT , tmparT , tmpraT and
tmprrT to 0.

ii. assign threshold values θ to either a fixed value
(say 0.5) or a weighted mean.

iii. if assigning a weighted mean, compute the
threshold θN as the weighted mean of the la-
bels of the test data i.e evidences for the ith

gene, in the case of Normal samples (top for-
mula in equation 5). Similarly, compute the
threshold θT as the weighted mean of the la-
bels of the test data i.e evidences for the ith

gene, in the case of Tumor samples (bottom
formula in equation 5).

iv. ∀ 576 runs iterated by a counter l

A. if(geN [l,k] == 1 and xN [l,k] < θ) incre-
ment tmprrN by 1

B. else if(geN [l,k] == 1 and xN [l,k] >= θ)
increment tmparN by 1

C. else if(geN [l,k] == 2 and xN [l,k] < θ)
increment tmpraN by 1
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Fig. 8 Gene gene interactions for normal case while usingMPBK+EI with θ = θN . Note that the effect of initialized cpt for TRCMPLX
is 90% in tumorous case and 10% in normal case. Diamond <> means activation and straight bar | means repression.

D. else if(geN [l,k] == 2 and xN [l,k] >= θ)
increment tmpaaN by 1

E. if(geT [l,k] == 1 and xT [l,k] < θ) incre-
ment tmprrT by 1

F. else if(geT [l,k] == 1 and xT [l,k] >= θ)
increment tmparT by 1

G. else if(geT [l,k] == 2 and xT [l,k] < θ) in-
crement tmpraT by 1

H. else if(geT [l,k] == 2 and xT [l,k] >= θ)
increment tmpaaT by 1

v. Comment - store results
vi. append ge with gk, rrN with tmprrN ,

arN with tmparN , raN with tmpraN , aaN
with tmpaaN , rrT with tmprrT , arT with
tmparT , raT with tmpraT and aaT with
tmpaaT

(b) store the variables in the previous step to a data
frame (say in R language) to a variable stats.

(c) Comment - 1 means aa, 2 means ar, 3 means ra, 4
means rr

(d) assign variables ggIN and ggIT as empty vector []
(e) ∀j gene except the ith one under consideration

i. find the index idxN in stats that corresponds to
1 or 2 or 3 or 4

ii. if(idxN == 1) append ggIN with interaction
string stats§gj <> − <> gi

iii. else if(idxN == 2) append ggIN with interac-
tion string stats§gej |− <> gi

iv. else if(idxN == 3) append ggIN with interac-
tion string stats§gj <> −|gi

v. else if(idxN == 4) append ggIN with interac-
tion string stats§gj | − |gi

vi. find the index idxN in stats that corresponds to
1 or 2 or 3 or 4

vii. if(idxT == 1) append ggIT with interaction
string stats§gj <> − <> gi
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Fig. 6 Incremental deviations in β i.e ETGN and corresponding
deviations in Pr(TRCMPLX = active|∀gei evidences) for both
normal and tumor test samples. Corresponding Weber and Bernoulli
deviations are also recorded. Note that the plots and the y-axis
depict scaled deviations to visually analyse the observations. The
model used isMPBK . Red - incremental deviation in Normal,
incremental deviation in Tumor, Green - incremental deviation in
Weber’s law, Cyan - incremental deviation in Bernoulli’s law.

viii. else if(idxT == 2) append ggIT with interac-
tion string stats§gj |− <> gi

ix. else if(idxT == 3) append ggIT with interac-
tion string stats§gj <> −|gi

x. else if(idxT == 4) append ggIT with interac-
tion string stats§gj | − |gi

(f) assign stats§ggIN with ggIN
(g) assign stats§ggIT with ggIT
(h) Comment - ith gene influenced

(i) ggI [[i]] < − list(ig = gi, stats = stats, PggN =
PggN , PggT = PggT )

The network obtained by using an arbitrary value like 0.5 for
labeling the gene interactions is different from those obtained
using a weighted mean. There are advantages of choosing the
weighted mean of the training labels for each gene - • Each
gene has an individual threshold that is different from the other
as the expression values are different and the discretization
used to estimate a particluar threshold is based on the median
value of the training data for that particular gene under con-
sideration. • The weighted mean assigns appropriate weights
to the labels under consideration rather than assigning equal
weights which might not represent the actual threshold. • Due
to the properties mentioned in the second point, it might be ex-
pected that the weighted mean generates a sparse network in

comparison to that generated using an arbitrary value of 0.5. •
Finally, the weighted mean could reveal interactions between
two genes that might be happening at different stages of time.
Even though using a static model, capturing such intricate in-
teractions is possible as will be seen later.

θN =
1× n1,N + 2× n2,N

(1 + 2)× (n1,N + n2,N )

θT =
1× n1,T + 2× n2,T

(1 + 2)× (n1,T + n2,T )

(5)

were, n1,N is the number of Normal training samples with la-
bel 1, n2,N is the number of Normal training samples with
label 2, n1,T is the number of Tumor training samples with la-
bel 1 and n1,N is the number of Tumor training samples with
label 2. Note that the sample labels (i,e evidence of gene ex-
pression) were discretized to passive or 1 (active or 2).

Based on the above execution, for each gene a matrix is
obtained that shows the statistics of how the status of gene
is affected conditional on the individual evidences of the re-
maining genes. Also, for each of the ith gene the averaged
P̂rN (gi|gk) is also stored in vector PggN . Same is done for
tumor cases. These two vectors are later used to test the verac-
ity of existence of psychophysical laws in gene-gene interac-
tion network. Table 3 represents one such tabulation for gene
SFRP5. For all runs and all test samples, the following was
tabulated in table 3 : aaN - SFRP5 is active (a) when a gene
is active (a) in Normal (N) sample, arN - SFRP5 is active
(a) when a gene is repressed (r) in Normal (N) sample, raN
- SFRP5 is repressed (r) when a gene is active (a) in Nor-
mal (N) sample, rrN - SFRP5 is repressed (r) when a gene
is repressed (r) in Normal (N) sample, aaT - SFRP5 is ac-
tive (a) when a gene is active (a) in Tumor (T) sample, arT -
SFRP5 is active (a) when a gene is repressed (r) in Tumor (T)
sample, paT - SFRP5 is repressed (r) when a gene is active
(a) in Tumor (T) sample, ggIN - interaction of SFRP5 given
the gene evidence based on majority voting among aaN , arN ,
raN and rrN and finally, ggIT - interaction of SFRP5 given
the gene evidence based on majority voting among aaT , arT ,
raT and rrT . The highest score among aaN , arN , raN and
rrN (aaT , arT , raT and rrT ) confirms the relation between
genes using Normal (Tumor) samples. Active (repressed) for
SFRP5 is based on discretization the predicted conditional
probability Pr(SFRP5 = active|gj evidence) as ≥ θ (< θ).
Active (repressed) for a particular gene evidence gj is done
using discrete evidence. In table 3, under the columns ggIN
and ggIT ,<> implies the gene is active and | implies the gene
is repressed or passive.

Case of θ = 0.5 - It was found that DKK1, DKK3 − 2,
DKK4 expressed similar repression behaviour as the stan-
dard genes LEF1, MYC, CCND1 and CD44 in Nor-
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Gene-gene interactions using θ = 0.5

DACT2 <> −| DKK1, SFRP4 | − | DKK1, DACT1 <> − <> DKK2, SFRP1 <> − <> DKK2, LEF1 |− <> DKK2,
DKK4 |− <> DKK3-1, DACT3 <> − <> DKK3-1, SFRP2 <> − <> DKK3-1, SFRP3 <> − <> DKK3-1, SFRP5
<> − <> DKK3-1, WIF1 |− <> DKK3-1, LEF1 |− <> DKK3-1, MYC |− <> DKK3-1, CCND1 |− <> DKK3-1, CD44
|− <> DKK3-1, DKK1 | − | DKK3-2, DKK2 <> −| DKK3-2, DKK3-1 <> −| DKK3-2, DACT1 <> −| DKK3-2, DACT2
<> −| DKK3-2, SFRP1 <> −| DKK3-2, SFRP4 | − | DKK3-2, DKK3-2 | − | DKK4, DACT3 <> −| DKK4, SFRP2 <> −|
DKK4, SFRP3 <> −| DKK4, SFRP5 <> −| DKK4, WIF1 | − | DKK4, LEF1 | − | DKK4, MYC | − | DKK4, CCND1 | − |
DKK4, CD44 | − | DKK4, DKK4 | − | DACT1, DACT3 <> −| DACT1, MYC | − | DACT1, CCND1 | − | DACT1, DKK2
<> − <> DACT2, DKK3-1 <> − <> DACT2, DKK4 |− <> DACT2, DACT3 <> − <> DACT2, SFRP1 <> − <>
DACT2, SFRP2 <> − <> DACT2, SFRP3 <> − <> DACT2, SFRP4 |− <> DACT2, SFRP5 <> − <> DACT2, WIF1
|− <> DACT2, LEF1 |− <> DACT2, MYC |− <> DACT2, CCND1 |− <> DACT2, CD44 |− <> DACT2, DACT1 <> −|
DACT3, DKK3-1 <> − <> SFRP1, DKK4 |− <> SFRP1, SFRP2 <> − <> SFRP1, SFRP3 <> − <> SFRP1, SFRP4
|− <> SFRP1, SFRP5 <> − <> SFRP1, MYC |− <> SFRP1, CCND1 |− <> SFRP1, CD44 |− <> SFRP1, DACT3
<> − <> SFRP2, SFRP3 <> − <> SFRP2, LEF1 |− <> SFRP2, DKK1 |− <> SFRP3, DACT3 <> − <> SFRP3,
SFRP5 <> − <> SFRP3, WIF1 |− <> SFRP3, LEF1 |− <> SFRP3, MYC |− <> SFRP3, CCND1 |− <> SFRP3, CD44
|− <> SFRP3, DKK2 <> −| SFRP4, DKK3-1 <> −| SFRP4, DACT1 <> −| SFRP4, SFRP3 <> −| SFRP4, DKK1 |− <>
SFRP5, DKK2 <> − <> SFRP5, DKK3-2 |− <> SFRP5, DACT1 <> − <> SFRP5, DACT3 <> − <> SFRP5, SFRP2
<> − <> SFRP5, WIF1 |− <> SFRP5, LEF1 |− <> SFRP5, MYC |− <> SFRP5, CCND1 |− <> SFRP5, CD44 |− <>
SFRP5, DKK3-2 | − |WIF1, DACT1 <> −|WIF1, SFRP1 <> − <> WIF1, DKK1 | − | LEF1, DACT3 <> −| LEF1, WIF1
| − | LEF1, MYC | − | LEF1, CCND1 | − | LEF1, CD44 | − | LEF1, DACT3 <> −|MYC, CCND1 | − |MYC, DACT3 <> −|
CCND1, DACT3 <> −| CD44, MYC | − | CD44, CCND1 | − | CD44
Gene interaction using θ = θN
DKK3-1 | − | DKK1, DKK3-2 <> −| DKK1, DACT2 | − | DKK1, SFRP4 <> −| DKK1, DACT1 | − | DKK2, SFRP1 | − |
DKK2, DKK4 <> −| DKK3-1, DACT2 |− <> DKK3-1, DACT3 | − | DKK3-1, LEF1 <> −| DKK3-1, MYC <> −| DKK3-
1, CCND1 <> −| DKK3-1, SFRP1 | − | DKK3-2, DKK3-2 <> − <> DKK4, DKK4 <> − <> DACT1, DACT3 |− <>
DACT1, MYC <> − <> DACT1, CCND1 <> − <> DACT1, DKK1 <> −| DACT2, DKK2 | − | DACT2, DKK3-1 | − |
DACT2, DKK3-2 <> −| DACT2, DKK4 <> −| DACT2, SFRP1 | − | DACT2, SFRP2 | − | DACT2, SFRP3 | − | DACT2,
SFRP4 <> −| DACT2, SFRP5 | − | DACT2, WIF1 <> −| DACT2, LEF1 <> −| DACT2, MYC <> −| DACT2, CCND1
<> −| DACT2, CD44 <> −| DACT2, DKK1 <> − <> DACT3, DKK2 |− <> DACT3, DKK3-1 |− <> DACT3, DKK3-2
<> − <> DACT3, DKK4 <> − <> DACT3, DACT1 |− <> DACT3, DACT2 |− <> DACT3, SFRP2 |− <> DACT3,
SFRP3 |− <> DACT3, SFRP4 <> − <> DACT3, SFRP5 |− <> DACT3, WIF1 <> − <> DACT3, LEF1 <> − <>
DACT3, MYC <> − <> DACT3, CCND1 <> − <> DACT3, CD44 <> − <> DACT3, DKK1 <> − <> SFRP1, DKK2
|− <> SFRP1, DKK3-1 |− <> SFRP1, DKK3-2 <> − <> SFRP1, DACT1 |− <> SFRP1, DACT2 |− <> SFRP1, DACT3
|− <> SFRP1, SFRP4<> − <> SFRP1, WIF1<> − <> SFRP1, CD44<> − <> SFRP1, DKK2 |− <> SFRP2, DKK3-1
|− <> SFRP2, DKK3-2 <> − <> SFRP2, DACT1 |− <> SFRP2, DACT2 |− <> SFRP2, SFRP1 |− <> SFRP2, SFRP4
<> − <> SFRP2, LEF1 <> −| SFRP2, CD44 <> − <> SFRP2, DKK4 <> −| SFRP3, DACT2 |− <> SFRP3, DACT3
| − | SFRP3, LEF1 <> −| SFRP3, MYC <> −| SFRP3, CCND1 <> −| SFRP3, DKK2 |− <> SFRP4, DKK3-1 |− <>
SFRP4, DKK3-2 <> − <> SFRP4, DACT1 |− <> SFRP4, SFRP1 |− <> SFRP4, SFRP3 |− <> SFRP4, DKK1 <> −|
SFRP5, SFRP4 <> − <> SFRP5, DKK3-2 <> −| WIF1, DACT2 | − | WIF1, SFRP1 | − | WIF1, SFRP4 <> −| WIF1,
SFRP5 |− <> WIF1, DKK1 <> − <> LEF1, DKK4 <> − <> LEF1, DACT3 |− <> LEF1, WIF1 <> − <> LEF1,
CCND1 <> − <> LEF1, CD44 <> − <> LEF1, LEF1 <> − <> MYC, MYC <> − <> CCND1, CCND1 <> − <>
CD44

Table 4 Tabulated gene gene interactions of figure 7 and 8 usingMPBK+EI obtained in case of Normal samples. Here, the symbols
represent the following - <> activation and | repression/suppression. Note that for Tumor cases, the interaction roles were found to be
reversed, ie. <> −| in normal became |− <> in tumor, |− <> in normal became <> −| in tumor, <> − <> in normal became | − | in
tumor and | − | in normal became <> − <> in tumor.

mal test samples (and vice versa for Tumor test samples).
Also, DKK2 and DKK3 − 1 show similar activated be-
haviour as DACT − 1/2/3 and SFRP − 1/2/3 in Nor-
mal test samples (and vice versa for Tumor test samples). In

comparison to DKK2, DKK3 − 1, DACT − 1/2/3 and
SFRP − 1/2/3, which are activated along with SRFP5 in
Normal test samples (repressed in Tumor test samples), genes
DKK1, DKK3− 2, DKK4, LEF1, MYC, CCND1 and
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Missing gene-gene interactions for different values of ETGN using θ = 0.5

90N-T1 80N-T1 (in 90N-T1) MYC | − | DACT1, CCND1 | − | DACT1, SFRP2 <> − <> SFRP5, CCND1 | − | MYC,
DACT3 <> −| CCND1, MYC | − | CD44 (in 80N-T1) SFRP5 <> − <> SFRP2, MYC | − | CCND1

70N-T1 (in 90N-T1) DACT3<> −|DACT1, MYC |−|DACT1, CCND1 |−|DACT1, SFRP2<> − <> SFRP5,
CCND1 |− |MYC, DACT3 <> −| CCND1, DACT3 <> −| CD44, MYC |− | CD44 (in 70N-T1) SFRP5
<> − <> SFRP2, MYC | − | CCND1

60N-T1 (in 90N-T1) DACT3<> −|DACT1, MYC |−|DACT1, CCND1 |−|DACT1, SFRP2<> − <> SFRP5,
CCND1 |− |MYC, DACT3 <> −| CCND1, DACT3 <> −| CD44, MYC |− | CD44 (in 60N-T1) SFRP5
<> − <> SFRP2, MYC | − | CCND1

50N-T1 (in 90N-T1) CD44 |− <> DKK3-1, SFRP1 <> −| DKK3-2, CD44 | − | DKK4, DACT3 <> −| DACT1,
MYC | − | DACT1, CCND1 | − | DACT1, DKK3-1 <> − <> SFRP1, DKK4 |− <> SFRP1, SFRP2
<> − <> SFRP5, DACT1 <> −|WIF1, CCND1 | − |MYC, DACT3 <> −| CCND1, DACT3 <> −|
CD44, MYC | − | CD44 (in 50N-T1) SFRP1 <> − <> DKK3-1, CD44 | − | DKK3-2, SFRP1 <> −|
DKK4, DKK3-2 |− <> SFRP1, SFRP5<> − <> SFRP2, MYC |− <> SFRP2, CCND1 |− <> SFRP2,
CD44 | − | SFRP4, MYC | − | CCND1

Missing gene-gene interactions for different values of ETGN using θ = θN
90N-T1 80N-T1 (in 90N-T1) MYC |− <> DKK3-1, SFRP1 <> − <> DKK3-2, MYC | − | DACT1 (in 80N-T1) MYC

| − | SFRP5
70N-T1 (in 90N-T1) DKK4 |− <> DKK3-1, MYC |− <> DKK3-1, SFRP1 <> − <> DKK3-2, MYC | − |

DACT1, CCND1 | − | DACT1, SFRP1 <> −| SFRP2, SFRP1 <> −| SFRP4, CD44 | − | LEF1 (in
70N-T1) DKK4 | − | SFRP5, MYC | − | SFRP5, CCND1 | − | SFRP5, DKK2 <> − <> WIF1, DKK3-1
<> − <> WIF1

60N-T1 (in 90N-T1) DKK4 |− <>DKK3-1, MYC |− <>DKK3-1, CCND1 |− <>DKK3-1, SFRP1<> − <>
DKK3-2, DACT3 <> −| DACT1, MYC | − | DACT1, CCND1 | − | DACT1, DACT3 <> −| SFRP1,
SFRP1 <> −| SFRP2 MYC |− <> SFRP3, SFRP1 <> −| SFRP4, CD44 | − | LEF1(in 60N-T1) MYC
| − | SFRP1, MYC | − | SFRP2, DKK4 | − | SFRP5, MYC | − | SFRP5, CCND1 | − | SFRP5, DKK2
<> − <> WIF1, DKK3-1 <> − <> WIF1, CD44 |− <> WIF1

50N-T1 (in 90N-T1) DKK4 |− <>DKK3-1, MYC |− <>DKK3-1, CCND1 |− <>DKK3-1, SFRP1<> − <>
DKK3-2, DACT3<> −|DACT1, MYC |−|DACT1, CCND1 |−|DACT1, DACT3<> −| SFRP1, SFRP1
<> −| SFRP2, MYC |− <> SFRP3, SFRP1<> −| SFRP4, DKK4 |−| LEF1, CCND1 |−| LEF1, CD44
|− | LEF1 (in 50N-T1) DKK4 |− <> DKK1, MYC |− <> DKK1, CCND1 |− <> DKK1, CD44 |− <>
DKK1, CD44 |− <> DKK3-2, MYC | − | SFRP1, DKK4 | − | SFRP2, DACT3 <> − <> SFRP2, MYC
| − | SFRP2, CCND1 | − | SFRP2, MYC | − | SFRP5, CCND1 | − | SFRP5, DKK2 <> − <> WIF1,
DKK3-1 <> − <> WIF1, DKK4 |− <> WIF1, MYC |− <> WIF1, CCND1 |− <> WIF1, CD44
|− <> WIF1

Table 5 Tabulated missing gene gene interactions of figure 7 and 8 usingMPBK+EI obtained in case of Normal samples. Interactions found
in Normal samples with 80%, 70%, 60% and 50% effect that are not found with 90% and vice versa have been recorded. Here, the symbols
represent the following - <> activation and | repression/suppression. Note that for Tumor cases, the interaction roles were found to be
reversed, ie. <> −| in normal became |− <> in tumor, |− <> in normal became <> −| in tumor, <> − <> in normal became | − | in
tumor and | − | in normal became <> − <> in tumor.
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CD44 were reversed while SFRP3 is activated in Normal
test sample (roles reversed in Tumor cases). Genes which
showed similar behaviour to SFRP5 might be affected by
epigenetic factors, i.e these factors might play a role in sup-
pressing the gene expression in Normal test samples. The
reverse might be the case for genes that were suppressed in
Tumor test samples.

It can also be seen that most of the interactions are re-
versible except for SFRP4|− <> SFRP5 in Normal test
sample and SFRP4 <> − <> SFRP5 in Tumor test sam-
ple. This kind of interaction is deleted the existing set of inter-
actions as they do not provide concrete information regarding
the functional roles of the genes in normal and tumor cases.
This attributes to one of the following facts (1) noise that
might corrupt prediction values as can be seen in the columns
of aaN (aaT ), arN (arT ), raN (raT ) and rrN (rrT ) or (2)
other multiple genes might be interacting along with SFRP5
in a combined manner and it is not possible to decipher the re-
lation between SFRP5 and other genes. This calls for inves-
tigation of prediction of SFRP5 status conditional on joint
evidences of two or more genes (a combinatorial problem with
a search space order of 217 − 17, which excludes 17 cases of
individual gene evidences which have already been considered
here). Incorporating multiple gene evidences might not be a
problem using Bayesian network models as they are designed
to compute conditional probabilities given joint evidences also
(except at the cost of high computational time).

Case of θ = θSFRP5
N - While employing the weighted

mean as the threshold to discretize Pr(SFRP5 = active|gj ev-
idence), the SFRP5 gene evidences that constitutes the test
data are used. Note that the test evidences for SFRP5 are
used for two purpose (1) to discretize Pr(SFRP5 = active|gj
evidence) as discussed above and (2) to compute the probabil-
ity of activation status of another gene conditional on evidence
for SRFP5, i.e Pr(gj = active|SFRP5 evidence). Since
the test evidence for the gene (i.e the discretized label) has
been derived using the median computed on the correspond-
ing training data for the same gene, it absolutely fine to use the
disrectized test labels to further compute the weighted mean.
This is because the median is an expression value which is
much higher than the probability value of 1 and cannot be
used to discretize a predicted conditional probability value.
Also, estimating the density estimates from a small popula-
tion of gene expression values has its own weakness. To con-
verge on a plausible realistic value the discretized test sam-
ples can be used to estimate a weighted mean which repre-
sents the summary of the distribution of the discretized val-
ues. This weighted mean of SFRP5 test samples then dis-
cretizes Pr(SFRP5 = active|gj evidence) according to the in-
herently represented summary. More realistic estimates like
kernel density estimates could also be used.

In this preliminary work, the focus is on observing the psy-
cholphysical phenomena that might be prevalent at interac-
tion level also. To this end, while using the weighted mean,
it was found that DKK1, SFRP4 and WIF1 showed re-
versible behaviour with SFRP5. This reduction in the re-
versible reactions is attributed to the use of weighted mean
that carries an idiosyncracy of the test data distribution and
is more restricted in comparison to the use of 0.5 value that
was arbitrarily choosen. Finally, using the proposed weighted
mean reveals more than one interaction between two genes.
These interactions might point to important hidden biologi-
cal phenomena that require further investigation in the form
of wet lab experiments and the ensuing in silico analysis. It
also points to the fact that a particular gene may be showing
different behaviour at different times in the network while in-
teracting with multiple genes. Again, dynamic models might
bring more clarity to the picture.

Table 3 shows these interactions using θ ∈ {0.5, θN , θT }.

3.2.2 Inferring gene-gene interaction networkNext, af-
ter the construction of gene-gene interactions, it is necessary
to infer the network. The inference of the estimated gene-gene
interactions network is based on explicitly reversible roles in
Normal and Tumor test samples. This means that only those
interactions are selected which show the following property -
gj <> − <> gi in Normal if and only if gj | − |gi in Tumor,
gj <> −|gi in Normal if and only if gj |− <> gi in Tumor,
gj |− <> gi in Normal if and only if gj <> −|gi in Tumor
and finally, gj |−|gi in Normal if and only if gj <> − <> gi.
This restricts the network to only reversible gene-gene inter-
actions in Normal and Tumor cases. Note that an interaction
gjIRgi (giIRgj) is depicted by Pr(gi|gj) (Pr(gj |gi)).

Lastly, duplicate interactions are removed from the network
for Normal samples. This is repeated for the network based on
tumor samples also. This removal is done by removing one of
the interactions from the following pairs (gj <> − <> gi
and gi <> − <> gj), (gj <> −|gi and gi|− <> gj),
(gj |− <> gi and gi <> −|gj) and (gj | − |gi and gi| − |gj).
Figure 7 shows one such network after complete interac-
tion construction, inference and removal of duplicate inter-
actions in using Normal test samples with ETGN of 90% in
MPBK+EI . For the case of Tumor test samples with ETGN
90% inMPBK+EI , only the reversal of interactions need to
be done. Table 4 represents these interactions in tabulated
form.

Finally, different networks were generated by varying the
effect of TRCMPLX (ETGN) and compared for the nor-
mal test samples. Table 5 represents the different interactions
that were preserved in network from ETGN 90% with respect
to networks obtained from ETGN with values of 80%, 70%,
60% and 50%. It was found that most of the genetic interac-
tions depicted in figure 7 were found to be preserved across
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Deviation study for SFRP5 and MYC for normal case
β ∆β ∆β

β log(1 + ∆β
β )Pr(SFPR5|MYC)Pr(MYC|SFPR5)

0.8 0.1 0.125 0.117783 0.002803756 0.003196908
0.7 0.1 0.1428571 0.1335314 0.002574599 0.003196908
0.6 0.1 0.1666667 0.1541507 0.002333440 0.003196908
0.5 0.1 0.2 0.1823216 0.002078026 0.003196908
0.8 0.1 0.125 0.117783 0.009789821 0.012787632
0.7 0.2 0.2857143 0.2513144 0.006986065 0.009590724
0.6 0.3 0.5 0.4054651 0.004411466 0.006393816
0.5 0.4 0.8 0.5877867 0.002078026 0.003196908

Table 6 Deviation study for Pr(SFRP5|MYC) and
Pr(MYC|SFRP5) for normal case

Deviation study for SFRP5 and MYC for tumor case
β ∆β ∆β

β log(1 + ∆β
β )Pr(SFPR5|MYC)Pr(MYC|SFPR5)

0.8 0.1 0.125 0.117783 0.001049836 0.000000e+00
0.7 0.1 0.1428571 0.1335314 0.001129522 0.000000e+00
0.6 0.1 0.1666667 0.1541507 0.001216178 -5.551115e-17
0.5 0.1 0.2 0.1823216 0.001310739 5.551115e-17
0.8 0.1 0.125 0.117783 0.004706275 0.000000e+00
0.7 0.2 0.2857143 0.2513144 0.003656439 0.000000e+00
0.6 0.3 0.5 0.4054651 0.002526918 0.000000e+00
0.5 0.4 0.8 0.5877867 0.001310739 5.551115e-17

Table 7 Deviation study for Pr(SFRP5|MYC) and
Pr(MYC|SFRP5) for tumor case

the different variations in ETGN as shown in table 5. Out of
the total n genes which construct a fully connected graph of
n×(n−1)

2 , it was observed that lesser number of interconnec-
tions were preserved. This preservation indicates towards the
robustness of the genetic contributions in the Wnt signaling
pathway in both normal and tumor test samples. Note that
these observations are made from static models and dynamic
models might reveal greater information.

3.3 Logarithmic-power deviations in prediction of gene-
gene interactions

In the penultimate section on preservation of gene-gene in-
teraction, it was found that some of the interactions remain
preserved as there was change of the effect transcription com-
plex. The transcription complex itself was found to follow
a logarithmic-power psychophysical law. It would be interest-
ing to observe if these laws are prevalent among the gene-gene
interactions in the network.

3.3.1 Case: <> −| or |− <>with θ = 0.5In Sinha1, the
unknown behaviour of SFRP5 in the Wnt pathway has been
revealed slightly using computational causal inference. In fig-
ure 7, SFRP5 shows preservation in the network and it’s in-
teraction with other genetic factors involved in the model pro-

posed in Sinha1 has been depicted. In one such paired interac-
tion between SFRP5 andMYC, SFRP5 showed activation
(repression) and MYC showed repression (activation) in nor-
mal (tumor) samples. As the change in the effect of transcrip-
tion complex was induced via sensitizing the initially assigned
cpt values, the deviations in the prediction of the gene-gene
interaction network was observed to follow the logarithmic-
power law crudely.

Table 6 and 7 show these deviations in the prediction of the
interactions for both the normal and the tumor cases. The ta-
bles show how deviations are affected when the changes in
the effect of the transcription complex are done at constant
and incremental level. To summarize the results in these ta-
bles, graphs were plotted in figures 9 for Pr(SFRP5|MYC)
(constant deviations), 10 for Pr(MYC|SFRP5) (constant de-
viations), 11 for Pr(SFRP5|MYC) (incremental deviations)
and 10 for Pr(MYC|SFRP5) (incremental deviations).

Considering figure 9, when deviations are constant in both
Weber and Bernoulli formulation, the deviations in the pre-
diction of Pr(SFRP5|MYC) is observed to be logarithmic
in the normal samples (apropos the Weber and Bernoulli de-
viations represented by green and cyan curves). Deviation
in predictions are depicted by the red (blue) curves for nor-
mal (tumor) samples. Such a behaviour is not observed for
Pr(MYC|SFRP5) as is depicted in figure 10. Note that the
interaction for SFRP5 given MYC was observed to be re-
versible in normal and tumor cases. But this is not so with
the interaction for MYC given SFRP5. It might be ex-
pected that the non conformance of logarithmic-power law
for Pr(MYC|SFRP5) may be due to the non preservation
of the interaction of MYC given SFRP5. This is so be-
cause Pr(SFRP5|MYC) depicts a reversible SFRP5 <>
−|MYC (MYC <> −|SFRP5) in the network on normal
(tumor) samples, while Pr(MYC|SFRP5) does not depict a
reversible MYC|− <> SFRP5 (MYC| − |SFRP5) in the
network on normal (tumor) samples.

Similar behaviour was observed in the case of incremental
deviations as depicted in figures 11 and 12. Analysis of be-
haviour of other gene-gene interactions showing <> −| or
|− <> can be observed in a similar way and can be found by
executing the R code provided in the website.

3.3.2 Case: | − | or <> − <> with θ = 0.5Again, as
pointed out in Sinha1, the unknown behaviour of DKK3− 2
in the Wnt pathway has been revealed slightly using computa-
tional causal inference. In figure 7, DKK3− 2 shows preser-
vation in the network and it’s interaction with other genetic
factors involved in the model proposed in Sinha1 has been de-
picted. In one such paired interaction betweenDKK3−2 and
WIF1, both showed repression (activation) in normal (tumor)
samples. As the change in the effect of transcription complex
was induced via sensitizing the initially assigned cpt values,
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Fig. 9 Constant deviations in β i.e ETGN and corresponding
deviations in Pr(SFRP5|MYC) for both normal and tumor test
samples. Corresponding Weber and Bernoulli deviations were also
recorded. Note that the plots and the y-axis depict scaled deviations
to visually analyse the observations. The model used is
MPBK+EI . Red - deviation in Pr(SFRP5|MYC) in Normal case
using Weber’s law, Blue - deviation in Pr(SFRP5|MYC) in
Tumor using Weber’s law, Green - constant deviation in Webers law,
Cyan - constant deviation in Bernoullis law.
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Fig. 10 Same as figure 10 but for Pr(MYC|SFRP5).
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Fig. 11 Same as figure 10 but for Pr(SFRP5|MYC). Instead of
constant deviations, incremental deviations are represented.
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Fig. 12 Same as figure 10 but for Pr(MYC|SFRP5). Instead of
constant deviations, incremental deviations are represented.

the deviations in the prediction of the gene-gene interaction
network was observed to follow the logarithmic-power law
crudely.

Table 8 and 9 show these deviations in the prediction of the
interactions for both the normal and the tumor cases. The ta-
bles show how deviations are affected when the changes in the
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Deviation study for DKK3− 2 and WIF1 for normal case
β ∆β ∆β

β log(1 + ∆β
β )Pr(DKK3− 2|WIF1)Pr(WIF1|DKK3− 2)

0.8 0.1 0.125 0.117783 7.710071e-05 -0.003833343
0.7 0.1 0.1428571 0.1335314 6.543515e-05 -0.003833343
0.6 0.1 0.1666667 0.1541507 5.389710e-05 -0.003833343
0.5 0.1 0.2 0.1823216 4.247643e-05 -0.003833343
0.8 0.1 0.125 0.117783 2.389094e-04 -0.015333372
0.7 0.2 0.2857143 0.2513144 1.618087e-04 -0.011500029
0.6 0.3 0.5 0.4054651 9.637353e-05 -0.007666686
0.5 0.4 0.8 0.5877867 4.247643e-05 -0.003833343

Table 8 Deviation study for Pr(DKK3− 2|WIF1) and
Pr(WIF1|DKK3− 2) for normal case

effect of the transcription complex are done at constant and
incremental level. To summarize the results in these tables,
graphs were plotted in figures 13 for Pr(DKK3 − 2|WIF1)
(constant deviations), 14 for Pr(WIF1|DKK3−2) (constant
deviations), 15 for Pr(DKK3 − 2|WIF1) (incremental de-
viations) and 14 for Pr(WIF1|DKK32) (incremental devia-
tions).

Considering figure 13, when deviations are constant in both
Weber and Bernoulli formulation, the deviations in the pre-
diction of Pr(DKK3 − 2|WIF1) is observed to be logarith-
mic in the normal samples (apropos the Weber and Bernoulli
deviations represented by green and cyan curves). Deviation
in predictions are depicted by the red (blue) curves for nor-
mal (tumor) samples. Such a behaviour is not observed for
Pr(WIF1|DKK3 − 2) as is depicted in figure 14. It is pe-
culiar to see that the interaction for DKK3− 2 given WIF1
was not observed to be reversible in normal and tumor cases
while the interaction for WIF1 given DKK3 − 2 was ob-
served to be reversible. This points to a crucial fact that the in-
teractions interpretated from conditional probabilities are not
always one sided. Thus the interpretation for Pr(gi|gj) is in-
vestigated in both directions as giIRgj and gjIRgi to get a
full picture. Not that the results are wrong, but all angles of in-
terpretations need to be investigated to get the picture between
any two genes. Similar behaviour was observed in the case of
incremental deviations as depicted in figures 15 and 16.

Note that the predicted conditional probability a gene i
given evidence for gene j does not change but the inferred
gene-gene interactions do change depending on the choice of
the threshold. These changes are depicted in the figures 7
and 8 and table 4. Dual interactions were inferred using the
weighted mean as a discretization factor, as is shown next.
These are dual interactions are marked in red colour in figure
8.

3.3.3 Case: Dual interactions with θ = θNThe dual in-
teractions revealed using weighted means indicate an impor-
tant phenomena between any two genes. These interactions
reveal that gene activation interplay might not always be con-

Deviation study for DKK3− 2 and WIF1 for tumor case
β ∆β ∆β

β log(1 + ∆β
β )Pr(DKK3− 2|WIF1)Pr(WIF1|DKK3− 2)

0.8 0.1 0.125 0.117783 -0.0008710076 -1.110223e-16
0.7 0.1 0.1428571 0.1335314 -0.0008493470 0.000000e+00
0.6 0.1 0.1666667 0.1541507 -0.0008280790 1.110223e-16
0.5 0.1 0.2 0.1823216 -0.0008071857 -1.110223e-16
0.8 0.1 0.125 0.117783 -0.0033556193 -1.110223e-16
0.7 0.2 0.2857143 0.2513144 -0.0024846117 0.000000e+00
0.6 0.3 0.5 0.4054651 -0.0016352647 0.000000e+00
0.5 0.4 0.8 0.5877867 -0.0008071857 -1.110223e-16

Table 9 Deviation study for Pr(DKK3− 2|WIF1) and
Pr(WIF1|DKK3− 2) for tumor case
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Fig. 13 Constant deviations in β i.e ETGN and corresponding
deviations in Pr(DKK32|WIF1) for both normal and tumor test
samples. Corresponding Weber and Bernoulli deviations were also
recorded. Note that the plots and the y-axis depict scaled deviations
to visually analyse the observations. The model used is
MPBK+EI . Red - deviation in Pr(DKK32|WIF1) in Normal
case using Weber’s law, Blue - deviation in Pr(DKK32|WIF1) in
Tumor using Weber’s law, Green - constant deviation in Webers law,
Cyan - constant deviation in Bernoullis law.

stant for normal (tumour) samples. These in silico observa-
tions imply that a gene that was found to be actively expressed
in normal sample might reverse activity at some stage or the
other (an vice versa). Here, one such interaction is discussed
in detail. Interpretations of the other dual interactions can be
done in the same way. Results for other interactions are avail-
able but not presented here.

Also, a point to be observed is that the weighted means
show much more crisp discretization during inference of gene-
gene interaction in comparison to use of an arbitrary value of
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Fig. 14 Same as figure 10 but for Pr(WIF1|DKK32).
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Fig. 15 Same as figure 14 but for Pr(DKK32|WIF1). Instead of
constant deviations, incremental deviations are represented.

0.5. To determine this distinction between the inferred gene-
gene interactions obtained via weighted threshold and the arbi-
tray threshold of 0.5, the receiver operator curves (ROC) along
with its corresponding area under the curve (AUC) are plotted.
The ROCs are plotted using the discretized predicted values
and the discretized labels obtained using the thresholds (com-
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Fig. 16 Same as figure 14 but for Pr(WIF1|DKK32). Instead of
constant deviations, incremental deviations are represented.

puted from the training data) on the test data. The ROC graphs
and their respective AUC values indicate how the predictions
on the test data behaved under different values assigned to the
TRCMPLX while training. Ideally, high values of AUC and
steepness in ROC curve indicate good quality results. Finally,
two sample Kolmogorov-Smirnov (KS) test was employed to
measure the statistical significance between the distribution of
predictions. If the cumulative distributions are not similar the
KS test returns a small p-value. This small p-value indicates
the existing statistical significance between the distributions
under consideration.

Finally the ROC plots and AUC values for dual gene-gene
interactions are also plotted and KS test is conducted to find
the existence of statistical significance if any. These reveal the
significance of existence of dual interactions in the signaling
pathway which might not have been revealed using the arbi-
trary threshold value of 0.5. Plots are made using functions
from the PRROC package provided by Grau et al.22.

Interaction between DKK1 and DACT2 - Dual interac-
tions DACT2 <> − <> DKK1 and DKK1|− <>
DACT2 (DACT2|−|DKK1 andDKK1 <> −|DACT2)
in normal (tumor) sample were found as depicted in figure
8. Figure 17 shows the kernel density estimate of the pre-
dicted conditional probabilities for both normal and tumor test
cases. Using the weighted mean of the discretized values of
the test samples (discretization done using median estimated
from the training data as mentioned before), the predicted
Pr(DKK1|DACT2) and Pr(DACT1|DKK1) are classified
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as active or passive. It might be useful to note that instead of
using 0.5 as an arbitrary value, the weighted mean captures
the distribution of labels in a much more realistic manner and
helps infer interactions among the factors in the Wnt pathway.

Note the distributions depicted in figure 17. In the first col-
umn of the figure, the median for Pr(DKK1|DACT2) in nor-
mal (tumor) case is 0.4853088 (0.5006437). These medians
point to the mid value of the belief in the gene-gene interac-
tion depicted by the range of predicted conditional probabil-
ities. The weighted threshold θDKK1

N (θDKK1
T ) based on la-

bels for normal (tumor) test case was estimated at 0.5138889
(0.4861111). The estimations come from the following com-
putations in equation 6 -

θDKK1
N =

1× n1,N + 2× n2,N

(1 + 2)× (n1,N + n2,N )

=
1× 264 + 2× 312

3× 576
= 0.5138889

θDKK1
T =

1× n1,T + 2× n2,T

(1 + 2)× (n1,T + n2,T )

=
1× 312 + 2× 264

3× 576
= 0.4861111

(6)

Similarly, in the second column of the figure, the median for
Pr(DACT2|DKK1) in normal (tumor) case is 0.5606946
(0.2985911). The weighted threshold θDACT2

N (θDACT2
T )

based on labels for normal (tumor) test case was estimated
at 0.4583333 (0.5416667). The estimations come from the
following computations in equation 7 -

θDACT2
N =

1× n1,N + 2× n2,N

(1 + 2)× (n1,N + n2,N )

=
1× 360 + 2× 216

3× 576
= 0.4583333

θDACT2
T =

1× n1,T + 2× n2,T

(1 + 2)× (n1,T + n2,T )

=
1× 216 + 2× 360

3× 576
= 0.5416667

On comparison of these graphs it can be observed that the
discretization is more realistic and strict using the weighted
threshold rather than using the arbitrary value of 0.5. The mul-
tiple peaks point to the different frequencies at which the pre-
dicted probabilities were recorded. Note that the probabilities
here represent the belief in the activation status and the dis-
cretization only caliberates the belief into active and repressed
state. To evaluate the results further wet lab tests are needed.

Using these distributions and distributions obtained using
artbitrary value, the respective ROC are plotted and corre-
sponding AUC values estimated. Finally, KS test is used to
find the existence of statistical significance between the valid

permutations of the distributions. These estimates further help
derive insights about the interactions at a computational level.
Figure 18 shows the ROC plots and the respective AUC values
for the dual interactions observed via the in silico experiments.
The following are compared -

1. labels of test data geN and discretized values
Pr(DKK1|DACT2) using weighted mean in Nor-
mal case

2. labels of test data geN and discretized values
Pr(DKK1|DACT2) using arbitrary value of 0.5
in Normal case

3. labels of test data geT and discretized values
Pr(DKK1|DACT2) using weighted mean in Tu-
mor case

4. labels of test data geT and discretized values
Pr(DKK1|DACT2) using arbitrary value of 0.5
in Tumor case

In figure 18, column wise the ROCs for Pr(DKK1|DACT2)
(1st column) and Pr(DACT2|DKK1) (2nd column) have
been plotted with ETGN value for the 90%. Row wise the
plots depict the curves generated using weighted mean for
Normal case, weighted mean for Tumor case, arbit value of
0.5 for Normal case and arbit value of 0.5 for Tumor case, in
order. Respective AUC values for the ROC curves appear on
the title of each of the graphs. It can be seen that the ROCs
are different for both the interactions and the interaction de-
picted by Pr(DKK1|DACT2) are much more steeper while
using weighted means in comparison to those using arbitrary
value of 0.5. The normal cases show better results in terms
of prediction in comparison to the tumor cases. This points
to the fact that the interaction DACT2 <> − <> DKK1
is strongly supported in the normal case in comparison to
DACT2| − |DKK1 which is weakly supported in the tu-
mor case. Even though the algorithm showed that interaction
was reversible at computational level, ROC curves and cor-
responding AUC values indicate weakness in the belief that
DACT2| − |DKK1 prevails in tumor cases. On the other
hand, the interaction depicted by Pr(DACT2|DKK1) shows
higher predictive quality in the tumor case with respect to the
normal case. This means that DKK1 <> −|DACT2 has
more weight in tumor case than its reversible DKK1|− <>
DACT2 counter part in the normal case. Taken together, the
dual interactions do exist but with different strengths of belief
as shown conditional probability values.

Finally, to evaluate the statistical significance of the pre-
dicted probabilities, the values of the KS test are tabulated
and analyzed. Table 10 represents the computed values. The
first four rows show the existing significance between the pre-
dictions for which the ROC curves have be plotted and de-
scribed earlier. The next describes the significance between
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Kolmogorov-Smirnov test
Sr. No. Discretized Val. vs Labels p-value Discretized Val. vs Labels p-value

Pr(DKK1|DACT2) Pr(DACT2|DKK1)
1. wtd. mean (N) vs geN D = 0.5417 wtd. mean (N) vs geN D = 0.625

p-value < 2.2e−16 p-value < 2.2e−16

2. wtd. mean (N) vs geN D = 0.1059 wtd. mean (N) vs geN D = 0.625
p-value = 0.003129 p-value < 2.2e−16

3. wtd. mean (N) vs geT D = 0.5417 wtd. mean (T) vs geT D = 0.625
p-value < 2.2e−16 p-value < 2.2e−16

4. wtd. mean (N) vs geT D = 0.4844 wtd. mean (T) vs geT D = 0.625
p-value < 2.2e−16 p-value < 2.2e−16

KS test between predictions using wtd. mean and arbitrary value of 0.5

Sr. No. Pr(DKK1|DACT2) KS value Pr(DKK2|DACT1) KS value
1. wtd. mean vs arbit. (N) D = 0.4358 wtd. mean vs arbit. (N) D = 0

p-value < 2.2e−16 p-value = 1
2. wtd. mean vs arbit. (T) D = 0.0573 wtd. mean vs arbit. (T) D = 0

p-value = 0.3009 p-value = 1

KS test between predictions of interactions I1 and I2
1. wtd. mean - I1 (N) vs I2 (N) D = 1 wtd. mean - I1 (T) vs I2 (T) D = 1

p-value < 2.2e−16 p-value < 2.2e−16

2. arbit. - I1 (N) vs I2 (N) D = 0.5642 arbit. - I1 (T) vs I2 (T) D = 0.9427
p-value < 2.2e−16 p-value < 2.2e−16

Table 10 Kolmogorov-Smirnov test indicating statistical
significance between the distribution of predictions. Statistical
significance is evaluated by observing the p-value. Small p-value
indicates that significant difference. Significance test is conducted
between (1) discretized values of predictions and existing test labels
(2) discretized values of predictions based on weighted threshold
and discretized values of predictions based on arbit threshold and (3)
between predictions representing the dual interactions (obtained
using both thresholds). I1 and I2 correspond to interactions inferred
from Pr(DKK1|DACT2) and Pr(DACT2|DKK1), respectively.

predictions based on thresholds for both normal and tumor
cases. Note that some tests show no significance at all as is
the case with Pr(DACT2|DKK1). In general, significance
values differ depending on different interactions. Finally, sig-
nificance values between interactions are also tabulated. It
was found that there exists statistical difference between the
inferred dual interactions as shown by the low p-values.

Similar intepretations can be derived and respective mea-
sures can be plotted from the in silico observations.

4 Future directions

In context of the above observations, dynamic models might
reveal greater information regarding the psychophysical laws.
Work by Goentoro and Kirschner2 employs sensitivity analy-
sis methods to reveal such laws by tuning single parameters.
There might be a few ways to measure fold change in sin-
gle an multi parameter settings. Future work might involve
deeper study of the phenomena based on multi-parameter set-
ting in a dynamic bayesian network model. If one incorpo-
rates nodes in between two time snapshots of β-catenin con-
centration in a dynamic bayesian network, one might be able
to measure the changes at different phases of the signaling
pathway. For example, in figure 19 a set of nodes measur-
ing the different concentrations of β-catenin (say N ) are de-
picted. In a dynamic bayesian network, the previous concen-

dN(t) dN(t+1)
APC(t+1) APC(t+2)

dAPC(t+1)

N(t) N(t+1) N(t+2)

WNT(t+1) WNT(t+2)

dWNT(t+1)

Fig. 19 A schematic diagram of a dynamic bayesian network model
that might help study the fold change and the logarithmic
psychophysical laws behind the changes.

tration at t is connected to the next concentration at t + 1.
Also, to measure the effect of difference (∆N ), a change in
concentration can be measured. Computations regarding fold
change (∆N ) could then be estimated as posterior probabil-
ities given the two concentrations, which the Bayesian net-
works can easily handle. In case more parameters need to
be involved (say the effect of Wnt and APC together), nodes
might be added as shown below. Then the fold change is con-
ditional onN(t+1),N(t+2), ∆Wnt and ∆APC and is esti-
mated as Pr(∆N(t+1)|N(t+1), N(t+2),∆Wnt,∆APC).

Regarding sensitivity analysis, in nonlinear problems, it
might be useful to use Sobol’24 indices to estimate the sen-
sitivity of the parameters. These indices are a way to esti-
mate the changes in a multiparameter setting thus helping one
to conduct global sensitivity analysis instead of local sensi-
tivity analysis (Glen and Isaacs25). Finally, with respect to
the robustness of the gene-gene interaction network, the cur-
rent work employs a very simple algorithm to construct the
network and infer preserved interactions across the range of
values set for a particular parameter. This helps in eliminat-
ing interactions that do not contribute enough biological in-
formation in the pathway or are non existant and require fur-
ther analysis by integration of more data. Work in these lines
would require incorporation of bigger datasets.

5 Availability

Code with dataset is made available un-
der GNU GPL v3 license at google code
project on https://code.google.com/p/
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Fig. 17 Kernel density estimates for predicted Pr(DKK1|DACT2) and Pr(DACT2|DKK1) in Normal and Tumor cases. Gaussian kernel
is used for smoothing the density estimate. The bandwidth of the kernel is selected using the pilot estimation of derivative as proposed by
Sheather and Jones 23 and implemented in R programming language.

static-bn-for-wnt-signaling-pathway. Please
use the scripts in R as well as the files in zipped directory
titled Results-2015.

6 Conclusion

In this preliminary work via sensitivity analysis, the varia-
tion in predictive behaviour of β-catenin based transcription
complex conditional on gene evidences follows logarithmic
psychophysical law crudely, implying deviations in output
are proportional to increasing function of deviations in input
and show constancy for higher values of input. This points
towards stability in the behaviour of transcriptional activity
downstream of the Wnt pathway. As a further development,
this stability might reflect the preserved gene gene interactions
of the Wnt pathway inferred from conditional probabilities of
individual gene activation given the status of another gene ac-
tivation derived using biologically inspired Bayesian Network.

Finally, based on the sensitivity analysis it was observed that
the psychophysical laws are prevalent among the gene-gene
interactions network also.

Conflict of interest

None

Acknowledgement

Thanks to - (1) the Royal Society of Chemistry (RSC) for giv-
ing permission to reproduce parts of material in Shriprakash
Sinha, Integr. Biol., 2014, DOI: 10.1039/C4IB00124A. (2)
all anonymous reviewers who have helped in refining this
manuscript.

20 | 1–22

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2015. ; https://doi.org/10.1101/015834doi: bioRxiv preprint 

https://doi.org/10.1101/015834
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 18 Column wise ROCs for Pr(DKK1|DACT2) (1st column) and Pr(DACT2|DKK1) (2nd column) have been plotted with ETGN
value for the 90%. Row wise the plots depict the curves generated using weighted mean for Normal case, weighted mean for Tumor case,
arbit value of 0.5 for Normal case and arbit value of 0.5 for Tumor case. Respective AUC values for the ROC curves appear on the title of
each of the graphs.
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