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Abstract1

1. There is a growing realization among community ecologists that interactions between species vary across2

space and time, and that this variation needs be quantified. Our current numerical framework to analyze the3

structure of species interactions, based on graph-theoretical approaches, usually do not consider the variabil-4

ity of interactions. Since this variability has been show to hold valuable ecological information, there is a5

need to adapt the current measures of network structure so that they can exploit it.6

2. We present analytical expressions of key measures of network structured, adapted so that they account for7

the variability of ecological interactions. We do so by modeling each interaction as a Bernoulli event; using8

basic calculus allows expressing the expected value, and when mathematically tractable, its variance. When9

applied to non-probabilistic data, the measures we present give the same results as their non-probabilistic10

formulations, meaning that they can be generally applied.11

3. We present three case studies that highlight how these measures can be used, in re-analyzing data that exper-12

imentally measured the variability of interactions, to alleviate the computational demands of permutation-13

based approaches, and to use the frequency at which interactions are observed over several locations to infer14

the structure of local networks. We provide a free and open-source implementation of these measures.15

4. We discuss how both sampling and data representation of ecological networks can be adapted to allow the16

application of a fully probabilistic numerical network approach.17

Keywords: ecological networks, species interactions, connectance, degree distribution, nestedness, modularity18
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Introduction1

Ecological networks efficiently represent biotic interactions between individuals, populations, or species.2

Historically, their study focused on describing their structure, with a particular attention on food webs3

(Dunne 2006) and plant-pollinator interactions (Jordano 1987; Bascompte et al. 2003). This established4

that network structure is linked to community or ecosystem-level properties such as stability (McCann5

2014), coexistence (Bastolla et al. 2009; Haerter et al. 2014), or ecosystem functioning (Duffy 2002).6

The description of ecological networks resulted in the emergence of questions about how functions and7

properties of communities emerged from their structure, and this stimulated the development of a wide8

array of measures for key network properties (Bersier et al. 2002; Banašek-Richter et al. 2004; Jordano9

& Bascompte 2013).10

Given a network (i.e. a structure where nodes, most often species, are linked by edges, representing eco-11

logical interactions) as input, measures of network structure return a property based on one or several units12

(e.g. nodes, links, or groups thereof) from this network, either directly measured, or after an optimization13

process. Some of the properties are direct properties (they only require knowledge of the unit on which14

they are applied), whereas others are emergent (they require knowledge of, and describe, higher-order15

structures). For example, connectance, the realized proportion of potential interactions, is a direct prop-16

erty of a network, since it can be derived from the number of nodes and edges only. The degree of a node17

(howmany interactions it is involved in) is a direct property of the node. The nestedness of a network (that18

is, the extent to which specialists and generalists overlap), is an emergent property, as it is not directly19

predictable from the degree of all nodes. The difference is no mere semantics: the difference between20

direct and emergent properties is important when interpreting their values. Direct properties are concep-21

tually equivalent to means, in that they tend to be the first moment of network units, whereas emergent22

properties are conceptually equivalent to variances, higher-order moments, or probability distributions.23

The interpretation of the measures of network structure as indicators of the action of ecological or evolu-24

tionary processes must now account for the numerous observations that network structure varies through25

space and time. In addition to the already well-established variation in the composition of the local species26

pool (Havens 2015), networks vary because species do not interact in a consistent way (Poisot et al. 2012).27
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Empirical evidence suggests that the network is not the right unit to understand this variation; rather, net-1

work variation emerges from the response of interactions to environmental factors and chance events (see2

Poisot et al. 2015 for a review). Interactions can vary for multiple (non-exclusive) reasons. Local mis-3

matching in phenology creates forbiden links (Olesen et al. 2011; Vizentin-Bugoni et al. 2014; Maruyama4

et al. 2014). Local variations in abundance prevent the species from encountering one another (Canard5

et al. 2014). The joint action of neutral, phenologic, and behavioral effects, creates complex and hard to6

predict responses (Chamberlain et al. 2014; Olito & Fox 2015; Trøjelsgaard et al. 2015). For example,7

Olito & Fox (2015) showed that accounting for neutral (population-size driven) and trait-based effects8

allows the prediction of the cumulative change in network structure, but not of the change at the level of9

individual interactions. In addition, Carstensen et al. (2014) showed that not all interactions are equally10

variable within a meta-community: some are highly consistent, whereas others are extremely rare. These11

results suggest that species interactions, because they vary, cannot be adequately represented as yes-no12

events; it is therefore necessary to represent them as probabilities. We should replace the question of Do13

these two species interact? by How likely is it that they will interact?.14

Yet the current way of dealing with probabilistic interactions are either to ignore variability entirely, or to15

generate networks with yes/no interactions based on the measured probabilities. Both approaches incur16

a net loss of information, and measures of network structure that explicitly account for interaction vari-17

ability are a much needed mathematically rigorous alternative. When ignoring the probabilistic nature of18

interactions (henceforth binary networks), every non-zero element of the network is explicitly assumed19

to occur with probability 1. This over-represents rare events, and increases the number of interactions;20

as a result, this changes the estimated value of different network properties, in a way that remains poorly21

understood. The generation of random binary networks based on probabilities also suffers from biases,22

especially in the range of connectance within which most ecological systems lie. These biases are (i)23

pseudo-replication when the permutational space is small (Poisot & Gravel 2014), and (ii) systematic bi-24

ases in the emergent properties at low connectances (Chagnon 2015). An alternative is to consider only25

the interactions above a given threshold, which unfortunately leads to under-representation of rare events26

and decreases the effective number of interactions. The use of thresholds also notably introduces the27

risk of removing species that have a lot of interactions that individually have a low probability of occur-28
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ring. These considerations highlight the need to amend our current methodology for the description of1

ecological networks, in order to give more importance to the variation of individual interactions.2

Yet the extant methodological corpus is well accepted, and the properties it describes are well understood.3

Rather than suggesting measures, we argue that it is more productive to re-express those we already4

have, in a way that does not lose information when applied to probabilistic networks. We contribute5

to this effort by re-developing a unified toolkit of measures to characterize the structure of probabilistic6

interaction networks. Several direct and emergent core properties of ecological networks (both bipartite7

and unipartite) can be re-formulated in a probabilistic context. We illustrate this toolkit through several8

case studies, and discuss how the current challenges in the (i) measurement and (ii) analysis of probabilistic9

interaction networks.10

Suite of probabilistic network metrics11

We use the following notation throughout the paper. A is a matrix where each element Aij gives P(ij),12

i.e. the probability that species i establishes an interaction with species j. If A represents a unipartite13

network (e.g. a food web), it is a square matrix and contains the probabilities of each species interacting14

with all others, including itself. If A represents a bipartite network (e.g. a pollination network), it will not15

necessarily be square. We call S the number of species, and R and C respectively the number of rows16

and columns. S = R = C in unipartite networks, and S = R + C in bipartite networks. Note that all of17

the measures defined below can be applied on a bipartite network that has been made unipartite.18

The unipartite transformation of a bipartite matrix A is the block matrix B:19

B =
⎛

⎜

⎜

⎝

0(R,R) A

0(C,R) 0(C,C)

⎞

⎟

⎟

⎠

, (1)

where 0(C,R) is a matrix of C rows andR columns (noted C ×R) filled with 0s, etc. Note that for centrality20

to be relevant in bipartite networks, this matrix should be made symmetric: Bij = Bji.21

We assume that all interactions are independent (so that P(ij ∩ kl) = P(ij)P(kl) for any species), and can22
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be represented as a series of Bernoulli trials (so that 0 ≤ P(ij) ≤ 1). A Bernoulli trial is the realization1

of a probabilistic event that gives 1 with probability P(ij) and 0 otherwise. The latter condition allows2

us to derive estimates for both the variance (var(X) = p(1 − p)) and expected values (E(X) = p) of the3

network measures. The variance of additive independent events is the sum of their individual variances,4

and the variance of multiplicative independent events is5

var(X1X2...Xn) =
∏

i

(

var(Xi) + [E(Xi)]2
)

−
∏

i
[E(Xi)]2 . (2)

As all Xi are Bernoulli random variables ,6

var(X1X2...Xn) =
∏

i
pi −

∏

i
p2i . (3)

As a final note, all of the measures described below can be applied on the binary (0/1) versions of the net-7

works in which case they converge on the non-probabilistic version of the measure as usually calculated.8

This property is particularly desirable as it allows our framework to be used on any unweighted network9

represented in a probabilistic or binary way. The approach outlined here differs from using weighted net-10

works, in that it answers a different ecological question. Probabilistic networks describe the probability11

that any interaction will happen, whereas weighted networks describe some measure of the effect of the12

interaction when it happens (Berlow et al. 2009); weighted networks therefore assume that the interaction13

happen. Although there are several measures for weighted ecological networks (Bersier et al. 2002), in14

which interactions happen but with different outcomes, these are not relevant for probabilistic networks;15

they do not account for the fact that interactions display a variance that will cascade up to the network16

level. Instead, the weight of each interaction is best viewed as a second modeling step focusing on the17

non-zero cases (i.e. the interactions that are realized); this is similar to the method now frequently used in18

species distribution models, where the species presence is modeled first, and its abundance second, using19

a (possibly) different set of ecological predictors (Boulangeat et al. 2012).20
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Direct network properties1

Connectance and number of interactions2

Connectance (or network density) is the proportion of possible interactions that are realized, defined as3

Co = L∕(R×C), whereL is the total number of interactions. As all interactions in a probabilistic network4

are assumed to be independent, the expected value of L, is5

L̂ =
∑

i,j
Aij , (4)

and Ĉo = L̂∕(R × C). Likewise, the variance of the number of interactions is var(L̂) =
∑

(Aij(1 − Aij)).6

Node degree7

The degree distribution of a network is the distribution of the number of interactions established (number8

of successors) and received (number of predecessors) by each node. The expected degree of species i is9

k̂i =
∑

j
(Aij + Aji) . (5)

The variance of the degree of each species is var(k̂i) =
∑

j(Aij(1 − Aij) + Aji(1 − Aji)). Note also that10

∑

k̂i = 2L̂, as expected11

Generality and vulnerability12

By simplification of the above, generality ĝi and vulnerability v̂i are given by, respectively,
∑

j Aij and13

∑

j Aji, with their variances
∑

j Aij(1 − Aij) and
∑

j Aji(1 − Aji).14
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Emergent network properties1

Path length2

Networks can be used to describe indirect interactions between species through the use of paths. The3

existence of a path of length 2 between species i and j means that they are connected through at least one4

additional species k. In a probabilistic network, unless some elements are 0, all pairs of species i and j5

are connected through a path of length 1, with probability Aij . The expected number of paths of length k6

between species i and j is given by7

̂n(k)ij =
(

Ak)

ij , (6)

where Ak is the matrix multiplied by itself k times.8

It is possible to calculate the probability of having at least one path of length k between the two species:9

this can be done by calculating the probability of having no path of length k, then taking the running10

product of the resulting array of probabilities. For the example of length 2, species i and j are connected11

through g with probability AigAgj , and so this path does not exist with probability 1 − AigAgj . For any12

pair i, j, letm be the vector such that mg = AigAgj for all g ∉ (i, j) (Mirchandani 1976). The probability13

of not having any path of length 2 is
∏

(1 − m). Therefore, the probability of having a path of length 214

between i and j is15

p̂(2)ij = 1 −
∏

(1 −m), (7)

which can also be noted16

p̂(2)ij = 1 −
∏

g
(1 − AigAgj). (8)

In most situations, one would be interested in knowing the probability of having a path of length 2 without17

having a path of length 1; this is simply expressed as p̂(2)∗ij = (1 −Aij)p̂
(2)
ij . These results can be expanded18
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to any length k in [2, n − 1]. First one can, by the same logic, generate the expression for having at least1

one path of length k:2

p̂(k)ij = 1 −
∏

(g1,g2...,gk−1)
(1 − Aig1Ag1g2 ...Agk−1j) (9)

where (g1, g2..., gk−1) are all the (k − 1)-permutations of 1, 2, ..., n∖(i, j). Then having a path of length k3

without having any smaller path is4

p̂(k)∗ij = (1 − Aji)(1 − p̂(2))...(1 − p̂(k−1))p̂(k). (10)

Unipartite projection of bipartite networks5

The unipartite projection of a bipartite network is obtained by linking any two nodes of one mode (“side”6

of the network) that are connected through at least one node of the other mode; for example, two plants7

are connected if they share at least one pollinator. It is readily obtained using the formula in the Path8

length section. This yields either the probability of an edge in the unipartite projection (of the upper or9

lower nodes), or if using the matrix multiplication, the expected number of such nodes.10

Nestedness11

Nestedness is an important measure of (bipartite) network structure that tells the extent to which the12

interactions of specialists and generalists overlap. We use the formula for nestedness proposed by Bastolla13

et al. (2009); this measure is a modification of NODF (Almeida-Neto et al. 2008) for ties in species degree14

that removes the constraint of decreasing fill. Nestedness for each margin of the matrix is defined as �(R)15

and �(C) for, respectively, rows and columns. As per Almeida-Neto et al. (2008), we define a global16

statistic for nestedness as � = (�(R) + �(C))∕2.17

Nestedness, in a probabilistic network, is defined as18

̂�(R) =
∑

i<j

∑

kAikAjk

min(gi, gj)
, (11)

9
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where gi is the expected generality of species i. The reciprocal holds for �(C) when using vi (the vulnera-1

bility) instead of gi. The values returned are within [0; 1], with � = 1 indicating complete nestedness.2

Modularity3

Modularity represents the extent to which networks are compartmentalized, i.e. the tendency for subsets4

of species to be strongly connected together, while they are weakly connected to the rest of the network5

(Stouffer & Bascompte 2011). Modularity is measured as the proportion of interactions between nodes6

of an arbitrary number of modules, as opposed to the random expectation.The modularity as derived by7

Newman (2004) can be expressed as8

 =
∑

[(

A
2
∑

A
−
∑

i⋅A
∑

⋅j A
2
∑

A2

)

�

]

(12)

where
∑

i⋅ A and
∑

⋅j A are the sums of rows and columns of A, and � is a matrix, wherein �ij is 1 if i9

and j belong to the same module, and 0 otherwise. This formula can be directly applied to probabilistic10

networks. Modularity takes values in [0; 1], where 1 indicates perfect modularity.11

Centrality12

Although node degree is a rough first order estimate of centrality, other measures are often needed. Here,13

we derive the expected value of centrality according to Katz (1953). This measure generalizes to directed14

acyclic graphs (whereas other do not). For example, although eigenvector centrality is often used in15

ecology, it cannot be measured on probabilistic graphs. Eigenvector centrality requires the matrix’s largest16

eigenvalues to be real, which is not the case for all probabilistic matrices. The measure proposed by Katz17

is a useful replacement, because it accounts for the paths of all length between two species instead of18

focusing on the shortest path.19

As described above, the expected number of paths of length k between i and j is (Ak)ij . Based on this,20

10
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the expected centrality of species i is1

Ci =
n
∑

j=1

n−1
∑

k=1
�k(Ak)ji . (13)

The parameter � ∈ [0; 1] regulates how important long paths are. When � = 0, only first-order paths2

are accounted for (and the centrality is equal to the degree). When � = 1, paths of all length are equally3

important. As Ci is sensitive to the size of the matrix, we suggest normalizing by C =
∑

C so that4

< Ci >=
Ci
C
. (14)

This results in the expected relative centrality of each node in the probabilistic network, which sums to5

unity.6

Species with no outgoing links7

Estimating the number of species with no outgoing links (successors) can be useful when predicting8

whether, e.g., predators will go extinct. Alternatively, when prior information about traits are available,9

this can allows predicting the invasion success of a species in a novel community.10

A species has no successors if it manages not to establish any outgoing interaction, which for species i11

happens with probability12

∏

j
(1 − Aij) . (15)

The number of expected such species is therefore the sum of the above across all species,13

̂PP =
∑

i

(

∏

j
(1 − Aij)

)

, (16)

11
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and its variance is1

var( ̂PP ) =
∑

i

(

∏

j
(1 − A2ij) −

∏

j
(1 − Aij)2

)

. (17)

Note that in a non-probabilistic context, species with no outgoing links would be considered primary2

producers. This is not the case here: if interactions are probabilistic events, then even a top predator may3

have no preys, and this clearly doesn’t imply that it will become a primary producer in the community.4

For this reason, the trophic position of the species may be measured better with the binary version of the5

matrix.6

Species with no incoming links7

Using the same approach as for the number of species with no outgoing links, the expected number of8

species with no incoming links is therefore9

̂T P =
∑

i

(

∏

j≠i
(1 − Aji)

)

. (18)

Note that we exclude self-interactions, as top-predators in food webs can, and often do, engage in canni-10

balism.11

Number of species with no interactions12

Predicting the number of species with no interactions (or whether any species will have at least one in-13

teraction) is useful when predicting whether species will be able to integrate into an existing network,14

for example. From a methodological point of view, this can also be a helpful a priori measure to deter-15

mine whether null models of networks will have a lot of species with no interactions, and so will require16

intensive sampling.17

12
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A species has no interactions with probability1

∏

j≠i
(1 − Aij)(1 − Aji) . (19)

As for the above, the expected number of species with no interactions (free species) is the sum of this2

quantity across all i:3

̂FS =
∑

i

∏

j≠i
(1 − Aij)(1 − Aji) . (20)

The variance of the number of species with no interactions is4

var( ̂FS) =
∑

i

(

Aij(1 − Aij)Aji(1 − Aji) + Aij(1 − Aij)A2ji + Aji(1 − Aji)A2ij .
)

(21)

Self-loops5

Self-loops (the existence of an interaction of a species onto itself) is only meaningful in unipartite net-6

works. The expected proportion of species with self-loops is very simply defined as Tr(A), that is, the sum7

of all diagonal elements. The variance is Tr(A ⋄ (1 −A)), where ⋄ is the element-wise product operation8

(Hadamard product).9

Motifs10

Motifs are sets of pre-determined interactions between a fixed number of species (Milo et al. 2002;11

Stouffer et al. 2007), such as apparent competition with one predator sharing two prey. As there are an12

arbitrarily large number of motifs, we will illustrate the approach with only two examples.13

The probability that three species form an apparent competition motif where i is the predator, j and k are14

the prey, is15

P(i, j, k ∈ app. comp) = Aij(1 − Aji)Aik(1 − Aki)(1 − Ajk)(1 − Akj) . (22)

13
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Similarly, the probability that these three species form an omnivory motif, in which i and j consume k1

and i consumes j, is2

P(i, j, k ∈ omniv.) = Aij(1 − Aji)Aik(1 − Aki)Ajk(1 − Akj) . (23)

The probability of the number of any three-species motif motif m in a network is given by3

N̂m =
∑

i

∑

j≠i

∑

k≠j
P (i, j, k ∈ m) . (24)

It is indeed possible to have an expression of the variance of this value, or of the variance of any three4

species forming a given motif, but their expressions become rapidly untractable and are better computed5

than written.6

Network comparison7

The dissimilarity of a pair of (ecological) networks can be measured using the framework set forth by Kol-8

eff et al. (2003) using �-diversity measures. Measures of �-diversity compute the dissimilarity between9

two networks based on the cardinality of three sets, a, c, and b, which are respectively the shared items,10

items unique to superset (network) 1, and items unique to superset 2 (the identity of which network is 1 or11

2 matters for asymmetric measures). Supersets can be the species within each network, or the interactions12

between species. Following Poisot et al. (2012), the dissimilarity of two networks can be measured as13

either �WN (all interactions), or �OS (interactions involving only common species), with �OS ≤ �WN .14

Within our framework, these measures can be applied to probabilistic networks. The expected values of15

ā, c̄, and b̄ are, respectively,
∑

A1 ⋄ A2,
∑

A1 ⋄ (1 − A2), and
∑

(1 − A1) ⋄ A2. Whether �OS or �WN is16

measured requires to alter the matrices A1 and A2. To measure �OS , one must remove all unique species;17

to measure �WN , one must expand the two matrices so that they have the same species at the same place,18

and give a weight of 0 to the added interactions.19

14

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 20, 2015. ; https://doi.org/10.1101/016485doi: bioRxiv preprint 

https://doi.org/10.1101/016485
http://creativecommons.org/licenses/by/4.0/


Implementation1

We provide these measures of probabilistic network structure in a free and open-source (MIT licensed) li-2

brary for the julia language, available at http://github.com/PoisotLab/EcologicalNetwork.jl.3

The code can be cited using the following DOI: 10.5281/zenodo.28317 (version 1.0.1). A user guide,4

including examples, resides at http://ecologicalnetworkjl.readthedocs.org/.5

Case studies6

In this section, we contrast the use of probabilistic measures to the current approaches of either using7

binary networks, or working with null models through simulations. When generating random networks,8

what we call Bernoulli trials from here on, a binary network is generated by doing a Bernoulli trial with9

probability Aij , for each element of the matrix. This generates networks that have only 0/1 interactions,10

and are realizations of the probabilistic network. This is problematic because higher order structures in-11

volving rare events will be under-represented in the sample, and because most naive approaches (i.e. not12

controlling for species degree) are likely to generate species with no interactions, especially in sparsely13

connected networks frequently encountered in ecology (Milo et al. 2003; Poisot & Gravel 2014; Chagnon14

2015) – on the other hand, non-naive approaches (e.g. based on swaps or quasi-swaps) break the assump-15

tion of independence between interactions.16

Comparison of probabilistic networks17

In this sub-section, we apply the above probabilistic measures to a bacteria–phage interaction network.18

Poullain et al. (2008) measured the probability that 24 phage can infect 24 strains of bacteria of the19

Pseudomonas fluorescens species (group SBW25). The (probabilistic) adjacency matrix was constructed20

by estimating the probability of each phage–bacteria interaction though independent infection assays, and21

can take values of 0, 0.5 (interaction is variable), and 1.0. We have generated a “Binary” network by22

setting all interactions with a probability higher than 0 to unity, to simulate the results that would have23

been obtained in the absence of estimates of interaction probability.24

15
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Measuring the structure of the Binary, Bernoulli trials, and Probabilistic network gives the following1

results (average, and variance when there is an analytical expression):2

Measure Binary Bernoulli trials Probabilistic

links 336 221.58 ± 57.57 221.52 ± 57.25

� 0.73 0.528 0.512

�(R) 0.72 0.525 0.507

�(C) 0.75 0.531 0.518

one consumer, two resources motif 4784 2089 2110

two consumers, one resource motif 4718 2116 2120

As these results show, treating all interactions as having the same probability, i.e. removing the informa-3

tion about variability, (i) overestimates nestedness by≈ 0.2, (ii) overestimates the number of links by 115,4

and (iii) overestimates the number of motifs (we have limited our analysis to the two following motifs:5

one consumer sharing two resources, and two consumers competing for one resource). For the number of6

links, both the probabilistic measures and the average and variance of 104 Bernoulli trials were in strong7

agreement (they differ only by the second decimal place). For the number of motifs, the difference was8

larger, but not overly so. It should be noted that, especially for computationally demanding operations9

such as motif counting, the difference in runtime between the probabilistic and Bernoulli trials approaches10

can be extremely important.11

Using Bernoulli trials had the effect of slightly over-estimating nestedness. The overestimation is statis-12

tically significant from a purely frequentist point of view, but significance testing is rather meaningless13

when the number of replicates is this large and can be increased arbitrarily; what is important is that the14

relative value of the error is small enough that Bernoulli trials are able to adequately reproduce the prob-15

abilistic structure of the network. It is not unexpected that Bernoulli trials are this close to the analytical16

expression of the measures; due to the experimental design of the Poullain et al. (2008) study, probabili-17

ties of interactions are bound to be high, and so variance is minimal (most elements of A have a value of18

either 0 or 1, and so their individual variance is 0 – though their confidence interval varies as a function19
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of the number of observations from which the probability is derived). Still, despite overall low variance,1

the binary approach severely mis-represents the structure of the network.2

Null-model based hypothesis testing3

In this section, we analyse 59 pollination networks from the literature using two usual null models of net-4

work structure, and two models with intermediate constraints. These data cover a wide range a situations,5

from small to large, and from densely to sparsely connected networks. They provide a good demonstra-6

tion of the performance of probabilistic metrics. Data come from the InteractionWeb Database, and were7

queried on Nov. 2014.8

We use the following null models. First (Type I, Fortuna & Bascompte (2006)), any interaction between9

plant and animals happens with the fixed probability P = Co. This model controls for connectance, but10

removes the effect of degree distribution. Second, (Type II, Bascompte et al. (2003)), the probability of11

an interaction between animal i and plant j is (ki∕R+ kj∕C)∕2, the average of the richness-standardized12

degree of both species. In addition, we use the models called Type III in and out (Poisot et al. 2013), that13

use the row-wise and column-wise probability of an interaction respectively, as a way to understand the14

impact of the degree distribution of upper and lower level species.15

Note that these null models will take a binary network and, through some rules turn it into a probabilistic16

one. Typically, this probabilistic network is used as a template to generate Bernoulli trials and measure17

some of their properties, the distribution of which is compared to the empirical network. This approach18

is computationally inefficient (Poisot & Gravel 2014), especially using naive models (Milo et al. 2003),19

and as we show in the previous section, can yield biased estimates of the true average of nestedness (and20

presumably other properties).21

We measured the nestedness of the 59 (binary) networks, then generated the random networks under the22

four null models, and calculated the expected nestedness using the probabilistic measure. Our results are23

presented in Figure 1.24

There are two striking results. First, empirical data are consistentlymore nested than the null expectation,25

as evidenced by the fact that all Δ� values are strictly positive. Second, this underestimation is linear26
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between null models I and II, although null model II is always closer to the nestedness of the empirical1

network (whichmakes sense, since null model II incorporates the higher order constraint of approximating2

the degree distribution of both levels). That the nestedness of the null model probability matrix is so3

strongly determined by the nestedness of the empirical networks calls for a closer evaluation of how the4

results of null models are interpreted (especially since networks generated using Bernoulli trials revealed5

a very low variance in their nestedness).6

There is a strong, and previously unaccounted for, circularity in this approach: empirical networks are7

compared to a null model which, as we show, has a systematic bias and a low variance (in the properties8

of the networks it generates), meaning that differences in nestedness that are small (thus potentially eco-9

logically irrelevant) have a good chance of being reported as significant. Interestingly, models III in and10

III out made overall fewer mistakes at estimating nestedness – respectively 0.129 and 0.123, compared to11

resp. 0.219 and 0.156 for model I and II. Although the error is overall sensitive to model type (Kruskal-12

Wallis �2 = 35.80, d.f. = 3, p ≤ 10−4), the three pairs of models that where significantly different after13

controlling for multiple comparisons are I and II, I and III in, and I and III out (model II is not different14

from either models III in or out).15

In short, this analysis reveals that (i) the null expectation of a network property under randomization sce-16

narios can be obtained through the analysis of the probabilistic matrix, instead of the analysis of simulated17

Bernoulli networks; (ii) different models have different systematic biases, with models of the type III per-18

forming better for nestedness than any other models. This can be explained by the fact that nestedness of19

a network, as expressed by Bastolla et al. (2009), is the average of a row-wise and column-wise nested-20

ness. These depend on the species degree, and as such should be well predicted by models III. The true21

novelty of the approach outlined here is that, rather than having to calculate the measure for thousands of22

replicates, an unbiased estimate of its mean can be obtained in a fraction of the time using the measures23

described here. This is particularly important since, as demonstrated by Chagnon (2015), the generation24

of null randomization is subject to biases in the range of connectance where most ecological networks25

fall. Our approach aims to provide a bias-free, time-effective way of estimating the expected value of a26

network property.27
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Spatial-variation predicts local network structure1

In this final application, we re-analyze data from a previous study by Trøjelsgaard et al. (2015), to inves-2

tigate how spatial information can be used to derive probability of interactions. In the original dataset,3

fourteen locations have been sampled to describe the local plant-pollination network. This dataset exhibits4

both species and interaction variability across sampling locations. We define the overall probability of an5

interaction in the following way,6

P(i→ j) =
Nij

Oij
, (25)

whereOij is the number of sampling locations in which both pollinator i and plant j co-occur, andNij is the7

number of sampling locations in which they interact. This takes values between 0 (no co-occurence or no8

interactions) and 1 (interaction observed every time there is co-occurrence, including single observations9

of an interacting species pair). This represents a simple probabilistic model, in which it is assumed that10

our ability to observe the interaction is a proxy of how frequent it is.11

Based on this information, we compare the connectance, nestedness, and modularity, of each sampled12

(binary) network, to the expected values if interactions are well predicted by the probability given above.13

The results are presented in Figure 2. There is a clear linear, positive correlation (coeff. 0.89 for con-14

nectance, 0.76 for �, and 0.92 for modularity) between the observed network properties (binary matrices)15

and the predictions based on the probabilistic model. This analysis, although simple, suggest that the16

local structure of ecological networks can represent the outcome of a filtering of species interactions, the17

signature of which can be detected at the regional level by a variation in the probabilities of interactions.18

Note however that this approach does not allow predicting the structure of any arbitrary species pool,19

since it cannot know the probability of an interaction between two species that never co-occured.20

Discussion21

Understanding the structure of ecological networks, and whether it relates to emergent ecosystem prop-22

erties, is a strong research agenda for community ecology. A proper estimation of this structure requires23
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Figure 1: Results of the null model analysis of 59 plant-pollination networks. A. There is a consistent
tendency for (i) both models I and II to estimate less nestedness than in the empirical network, although
null model II yields more accurate estimates. B. Models III in and III out also estimate less nestedness
than the empirical network, but neither has a systematic bias. For each null model i, the difference Δ(i)� in
nestedness � is expressed as Δ(i)� = � − (i)(�), where  (i)(�) is the nestedness of null model i.
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Figure 2: Local network structure infered from the locally observed interactions (x-axis) or the spatial
probabilistic model (y-axis) in the Canaria Island dataset. Although the binary networks slightly under-
estimate the properties studied here, there is a positive and linear relationship between the empirical
structure, and the structure predicted based on probabilities of interactions derived from occurrence in-
formation.
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tools that address all forms of complexity, the most oft-neglected yet pervasive of which is the fact that1

interactions are variable. Through the suite of measures we present here, we allow future analyses of2

network structure to account for this phenomenon. There are two main considerations highlighted by this3

methodological development. First, in what way are probabilistic data are actually independent? Second,4

what are the implications for data collection?5

Non-independance of interactions6

We developed and presented a set of measures to quantify the expected network structure, using the prob-7

ability that each interaction is observed or happens, in a way that does not require time-consuming sim-8

ulations. Our framework is set up in such a way that the probabilities of interactions are considered to9

be independent. This is an over-simplification of what we understand of ecological reality, where inter-10

actions have effects on one another (Golubski & Abrams 2011; Sanders & Veen 2012; Ims et al. 2013).11

Yet we feel that, as a first approximation, this assumption is reasonable. There is a strong methodologi-12

cal argument for which the non-independance of interactions cannot currently be robustly accounted for:13

analytical expectations for non-independant Bernoulli events require knowledge of the full dependence14

structure. Not only does this severely limit the ability to provide measures of network structure, it requires15

a far more extensive sampling that what is needed to obtain an estimate of the probability of interactions16

one by one.17

Estimates of interaction probabilities18

Estimating interaction probabilities based on species abundances (Canard et al. 2014; Olito & Fox 2015)19

do not yield independent probabilities: changing the abundance of one species changes all probabilities20

in the network. They are not Bernoulli events either, as the sum of all probabilities derived this way21

sums to unity. On the other hand, “cafeteria experiments” (in which individuals from two species are22

directly exposed to one another to observe whether or not an interaction occurs) give truly independent23

probabilities of interactions—although this approach is limited to systems with a small number of species,24

and that are amenable to microcosms or mesocosms experiments. Using the approach outlined by Poisot25

21

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 20, 2015. ; https://doi.org/10.1101/016485doi: bioRxiv preprint 

https://doi.org/10.1101/016485
http://creativecommons.org/licenses/by/4.0/


et al. (2015), different sources of information (species abundance, trait distribution, and the outcome1

of experiments) can be combined to estimate the probability that interactions will happen in empirical2

communities.3

Another way to obtain approximation of the probability of interactions is to use spatially and temporally4

replicated sampling (assuming that replicates are done in environments that can be assumed to be compa-5

rably homogeneous); in this context, it is not the interactions that are repeatedly sampled, but the network6

as a whole. Some studies (Tylianakis et al. 2007; Carstensen et al. 2014; Olito & Fox 2015; Trøjelsgaard7

et al. 2015) surveyed the existence of interactions at different locations, and a simple approach of divid-8

ing the number of observations of an interaction by the number of co-occurence of the species involved9

will provide a (somewhat crude) estimate of the probability of this interaction. This approach requires10

extensive sampling, especially since interactions are harder to observe than species (Poisot et al. 2012;11

Gilarranz et al. 2015), yet it enables the re-analysis of existing datasets in a probabilistic context.12

Implications for data collection13

An important outcome is that, when estimating probabilities from observational data, it becomes possible14

to have an estimate of how robust the sampling is. How completely a network is sampled is a key, yet15

often-overlooked, driver of some measures of structure (Nielsen & Bascompte 2007; Chacoff et al. 2012;16

Fründ et al. 2015). The probabilistic approach allows to estimate the confidence interval of the interaction17

probability, knowing the number of samples used for the estimation. Assuming normally distributed18

observational error (this can be generalized for other error distributions), the confidence interval around19

a probability p estimated from n samples is20

� = z
√

1
n
p(1 − p) . (26)

For a 95% confidence interval, z ≈ 1.96. If an interaction is estimated to happen at p = 0.3, its 95%21

confidence interval is [0; 0.74] when estimated from four samples, [0.01; 0.58] when estimated from ten,22

and [0.21; 0.38] when estimated from a hundred. Note that the above formula tends to perform poorly23

when n < 30, and do not applies when p ∈ {0, 1}; it nevertheless provides an estimate of how robust the24

22
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probability estimate is.1

The quantification, and integration, of uncertainty in the probability of interaction, is a subject that re-2

mains to be worked out. To develop a coarse understanding of how it affects the estimate of network3

properties, one can (for example) sample the interaction probability within its 95% confidence interval.4

This points to a fundamental issue with the sampling of networks: a precise estimate of the probability5

of interactions from observational data is tremendously difficult to achieve. Although the development of6

predictive models partly alleviates this difficulty, estimating confidence intervals around the probability7

of an interaction guide empirical research efforts to (i) either collect additional replicates or (ii) provide8

additional data to improve the performance of predictive models.9
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