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Heritability analyses of GWAS cohorts have yielded important insights into complex dis-

ease architecture, and increasing sample sizes hold the promise of further discoveries. Here,

we analyze the genetic architecture of schizophrenia in 49,806 samples from the PGC, and

nine complex diseases in 54,734 samples from the GERA cohort. For schizophrenia, we infer

an overwhelmingly polygenic disease architecture in which ≥71% of 1Mb genomic regions

harbor at least one variant influencing schizophrenia risk. We also observe significant enrich-

ment of heritability in GC-rich regions and in higher-frequency SNPs for both schizophrenia

and GERA diseases. In bivariate analyses, we observe significant genetic correlations (rang-

ing from 0.18 to 0.85) among several pairs of GERA diseases; genetic correlations were on

average 1.3x stronger than correlations of overall disease liabilities. To accomplish these anal-

yses, we developed a fast algorithm for multi-component, multi-trait variance components

analysis that overcomes prior computational barriers that made such analyses intractable at

this scale.
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Over the past five years, variance components analysis has had considerable impact on re-

search in human complex trait genetics, yielding rich insights into the heritable phenotypic varia-

tion explained by SNPs [1–3], its distribution across chromosomes, allele frequencies, and func-

tional annotations [4–6], and its correlation across traits [7,8]. These analyses have complemented

genome-wide association studies (GWAS): while GWAS have identified individual loci explain-

ing significant portions of trait heritability, variance components methods have aggregated signal

across large SNP sets, revealing information about polygenic SNP effects invisible to association

studies. The utility of both approaches has been particularly clear in studies of schizophrenia, for

which early GWAS achieved few genome-wide significant findings, yet variance components anal-

ysis indicated a large fraction of heritable variance spread across common SNPs in numerous loci,

over 100 of which have now been discovered in large-scale GWAS [5, 9–12].

Despite these advances, much remains unknown about the genetic architecture of schizophrenia

and other complex diseases. For schizophrenia, known GWAS loci are collectively estimated to

explain only 3% of variation in disease liability [12]; of the remaining variation, a sizable frac-

tion has been shown to be hidden among thousands of common SNPs [5, 11], but the distribution

of these SNPs across the genome and across the allele frequency spectrum has remained uncer-

tain. Even for traits such as lipid levels and type 2 diabetes for which loci of somewhat larger

effect have been identified, the spatial and allelic distribution of variants responsible for the bulk

of known SNP-heritability has remained a mystery [13, 14]. Variance components methods have

the potential to shed light on these questions using the increased statistical resolution offered by

tens or hundreds of thousands of samples [15, 16]. However, while study sizes have increased

beyond 50,000 samples, existing variance components methods [2] are becoming computationally

intractable at such scales. Computational limitations have thus forced previous studies to split and

then meta-analyze data sets [6], a procedure that results in loss of precision for variance compo-

nents analysis, which relies on pairwise relationships for inference (in contrast to meta-analysis in

association studies) [15, 16].

Here, we introduce a much faster variance components method, BOLT-REML, and apply it

to analyze roughly 50,000 samples in each of two very large data sets—from the Psychiatric

Genomics Consortium (PGC2) [12] and the Genetic Epidemiology Research on Aging cohort

(GERA; see URLs)—obtaining several new insights into the genetic architectures of schizophrenia
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and nine other complex diseases. We harnessed the computational efficiency and versatility of

BOLT-REML variance components analysis to estimate components of heritability, infer levels of

polygenicity, partition SNP-heritability across the common allele frequency spectrum, and esti-

mate genetic correlations among GERA diseases. We corroborated our results using an efficient

implementation of PCGC regression [17] when computationally feasible to do so.

Results

Overview of Methods

The BOLT-REML algorithm employs the conjugate gradient-based iterative framework for fast

mixed model computations [18, 19] that we previously harnessed for mixed model association

analysis using a single variance component [20]. In contrast to that work, BOLT-REML robustly

estimates variance parameters for models involving multiple variance components and multiple

traits [21, 22]. BOLT-REML uses a Monte Carlo average information restricted maximum like-

lihood (AI REML) algorithm [23], which is an approximate Newton-type optimization of the re-

stricted log likelihood [24] with respect to the variance parameters being estimated. (In contrast,

our previous work [20] used a rudimentary quasi-Newton approach that sufficed only for univariate

optimization.) In each iteration, BOLT-REML rapidly approximates the gradient of the log like-

lihood using pseudorandom Monte Carlo sampling [25] and approximates the Hessian of the log

likelihood using the average information matrix [26]. Full details, including simulations verify-

ing the accuracy of BOLT-REML heritability parameter estimates and standard errors (which are

nearly identical to standard REML), are provided in Online Methods and the Supplementary Note.

We have released open-source software implementing the method (see URLs).

Computational efficiency of BOLT-REML variance components analysis

We assessed the computational performance of BOLT-REML, comparing it to the GCTA soft-

ware [2] (see URLs) for REML variance components analyses of GERA disease phenotypes on

subsets of the GERA cohort of increasing size. We observed that across three types of analyses,

BOLT-REML achieved order-of-magnitude reductions in running time and memory use compared
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to GCTA, with relative improvements increasing with sample size (Figure 1). The running times

we observed for BOLT-REML scale roughly as ≈MN 1.5, consistent with previously reported em-

pirical results for BOLT-LMM association analysis [20], whereas standard REML analysis requires

O(MN 2 + N 3) running time (Figure 1a and Supplementary Table 1). BOLT-REML also only re-

quires≈MN/4 bytes of memory (nearly independent of the number of variance components used),

in contrast to standard REML analysis, which requires O(N 2) memory per variance component

(Figure 1b and Supplementary Table 1). Consequently, GCTA could only analyze at most half of

our available samples; indeed, computational constraints have forced previous studies to split large

cohorts into multiple subgroups for analysis [6], increasing standard errors and reducing statisti-

cal power. In contrast, BOLT-REML enabled us to perform a full suite of heritability analyses of

N=50,000 samples with tight error bounds [15, 16].

Estimates of SNP-heritability for schizophrenia and GERA diseases

We analyzed 22,177 schizophrenia cases and 27,629 controls with well-imputed genotypes at

472,178 markers of minor allele frequency (MAF) ≥2% in the PGC2 data [12] (Supplementary

Table 2) as well as nine complex diseases in 54,734 randomly ascertained samples typed at 597,736

SNPs in the GERA cohort (see Online Methods; QC procedures included filtering both data sets to

unrelated samples of European ancestry and LD-pruning markers to r2≤0.9). To remove possible

effects of population stratification, all analyses included 10 principal component covariates and

PGC2 analyses further included 29 study indicators (see Online Methods). We computed liability-

scale SNP-heritability estimates (hg
2, ref. [1]) for schizophrenia in the PGC2 data set and all 22

disease phenotypes in the GERA data set assuming a liability threshold model; we assumed schizo-

phrenia population risk of 1% (ref. [5,11,12]), and we assumed population risks of GERA diseases

matched case fractions in the GERA cohort. For the GERA diseases, we estimated hg
2 by applying

BOLT-REML directly to observed case/control status—obtaining raw observed-scale heritability

parameter estimates hg–cc
2—and then converting hg–cc

2 to liability-scale hg
2 using the linear trans-

formation of ref. [3] (Table 1 and Supplementary Table 3). Given the very low values of hg–cc
2 for

many GERA diseases, we restricted further GERA analyses to the nine individual diseases with

highest hg–cc
2 (Table 1). For schizophrenia, we estimated hg

2 by developing and applying a com-
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putationally efficient implementation of PCGC regression [17] (see URLs and Online Methods)

in light of the known downward bias of large-sample REML hg
2 estimates for ascertained case-

control traits [17, 27]. Indeed, upon performing REML analyses on full data sets as well as on

subsamples of each data set with 2x–10x fewer samples, we observed significant downward bias

of schizophrenia hg
2 estimates with increasing sample size, whereas we observed no such trend for

data from GERA, which is a cohort study not subject to case-control ascertainment (Supplemen-

tary Table 4). REML hg
2 estimates on 10x-downsampled (N≈5,000) PGC2 data corroborated the

PCGC regression estimate (Supplementary Table 4), but we believe that PCGC regression is the

most appropriate method for estimating genome-wide hg
2 in ascertained case-control data.

These analyses help explain a previously mysterious observation of decreasing estimated schizo-

phrenia hg
2 with increasing aggregation of cohorts [5]. This phenomenon was attributed to phe-

notypic heterogeneity [5, 11], as suggested by estimates of between-cohort genetic correlation <1

(ref. [5]). Our analyses implicate ascertainment-induced downward bias of estimated hg
2 (worsen-

ing with sample size) as an additional explanation of this effect (Supplementary Tables 4 and 5).

In theory, the extent of ascertainment-induced bias could be used to infer the extent of case over-

ascertainment and hence infer population risk, but we found in simulations that larger sample sizes

would be required (Supplementary Table 6). Finally, we note that while our reported schizophrenia

hg
2 assumes a population risk of 1% (ref. [5, 11, 12]), this assumption does not affect estimates of

the relative partitioning of SNP-heritability across SNP subsets; in the partitioning analyses that

follow, hg
2 serves only as a scale factor (Online Methods). Similarly, while our use of an LD-

pruned marker set to alleviate LD bias [28–30] (Online Methods) results in a higher hg
2 estimate

than using unpruned markers (Supplementary Table 5), this choice does not otherwise affect the

analyses that follow.

Contrasting polygenicity of schizophrenia and GERA diseases

We next turned to a detailed investigation of the polygenicity of schizophrenia and the GERA dis-

eases. Specifically, we estimated SNP-heritability explained by each 1Mb region of the genome,

hg,1Mb
2 (defined in Online Methods; Fig. 2a); we confirmed in simulations that 1Mb regions are suf-

ficiently wide to ensure negligible leakage of heritability across region boundaries due to linkage
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disequilibrium or incomplete tagging of variants (Supplementary Tables 7 and 8). We restricted

our primary analyses of GERA diseases to dyslipidemia and hypertension, the diseases with the

highest observed-scale SNP-heritability hg–cc
2 (Supplementary Table 3), because we had insuffi-

cient statistical power to make inferences for diseases with lower hg–cc
2 (Supplementary Fig. 1).

As expected, SNP-heritability estimates for individual 1Mb regions were individually noisy (mean

estimated hg,1Mb
2 / mean s.e.(hg,1Mb

2) = 0.85 for schizophrenia and 0.51 for dyslipidemia and hy-

pertension), although we did see substantial SNP-heritability in some 1Mb regions (particularly

for dyslipidemia, which has relatively large-effect SNPs [13]; in contrast, no 1Mb region was

estimated to explain more than 0.1% of schizophrenia liability). We therefore sought to draw in-

ferences from the bulk distribution of per-megabase SNP-heritability estimates (Supplementary

Fig. 2). (We note that a limitation of BOLT-REML is that it is does not compute likelihood ratio

test statistics for testing whether individual variance components contribute nonzero variance; see

Supplementary Note.)

To understand the effect of different levels of polygenicity on the distribution of per-megabase

SNP-heritability estimates, we simulated quantitative traits of varying polygenicity (2K–600K

causal SNPs) with hg
2 matching the genome-wide observed-scale hg–cc

2 estimates for schizo-

phrenia, dyslipidemia, and hypertension (Supplementary Table 3) using PGC2 and GERA geno-

types. We then applied the same procedures we applied to the real phenotypes to obtain per-

megabase SNP-heritability estimates for the simulated traits (Online Methods) and compared the

simulated distributions of per-megabase estimates to the observed distributions, focusing on the

fraction of 1Mb regions with hg,1Mb
2 estimates of zero (Figure 2b). Intuitively, more polygenic

traits have heritability spread more uniformly across 1Mb regions and hence have fewer hg,1Mb
2 es-

timates of 0, as our simulations confirmed. (Based on this statistic, our analyses suggest that

schizophrenia has a genetic architectures involving >20,000 causal SNPs; however, we caution

that—unlike our analyses below—this estimate is contingent on our parameterization of simulated

genetic architectures, as are previous estimates [11, 31].)

We further interrogated our real and simulated distributions of per-megabase SNP-heritability

estimates to obtain nonparametric bounds on the cumulative fraction of hg
2 explained by vary-

ing numbers of true top 1Mb regions—i.e., those that harbor the most SNP-heritability in the

population—for schizophrenia, dyslipidemia, and hypertension (Figure 2c). We observed that the

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 5, 2015. ; https://doi.org/10.1101/016527doi: bioRxiv preprint 

https://doi.org/10.1101/016527
http://creativecommons.org/licenses/by-nc-nd/4.0/


probability of observing an hg,1Mb
2 estimate of zero for a given 1Mb region is a convex function

of the true SNP-heritability of that region (Supplementary Figures 3 and 4), and we harnessed

this observation to obtain upper bounds on the cumulative heritability explained by true top re-

gions. To obtain lower bounds on this quantity, we applied a cross-validation procedure (similar to

ref. [32]) in which we selected top regions using subsets of the data and estimated heritability ex-

plained using left-out test samples (see Online Methods). Combining the upper and lower bounds

allowed us to obtain conservative 95% confidence intervals for heritability explained by top re-

gions (Figure 2c), as we verified in simulations (Supplementary Fig. 5). In particular, we inferred

that schizophrenia has an extremely polygenic architecture, with most 1Mb regions (conservative

95% CI: 71%-100%) containing nonzero contributions to the overall SNP-heritability and very lit-

tle concentration of SNP-heritability into top 1Mb regions, in contrast to dyslipidemia (Figure 2c).

Importantly, these bounds are not contingent on any particular parametric model of genetic archi-

tecture (Supplementary Fig. 6): this inference uses simulation data only to interrogate the sampling

variance of hg,1Mb
2 estimates, which is largely independent of the distribution of heritability across

SNPs in a region (Supplementary Fig. 4) [28]. (We note that we report only conservative 95%

confidence intervals—without parameter estimates—because obtaining point estimates would re-

quire assuming a parameterization of genetic architecture.) We repeated all of these analyses using

0.5Mb regions and observed no qualitative differences in the results (Supplementary Figures 2, 3,

and 7 and Supplementary Table 7).

Having computed per-megabase hg,1Mb
2 estimates, we checked for correlations between es-

timated hg,1Mb
2 and genomic annotations that vary slowly across the genome. Specifically, we

tabulated GC content, genic content [6], replication timing [33], recombination rate [34], back-

ground selection [35], and methylation QTLs [36] per megabase of the genome. (Each of these

annotations had an autocorrelation across consecutive 1Mb segments of at least 0.3; see Supple-

mentary Table 9.) For each of schizophrenia, dyslipidemia, and hypertension, we observed the

greatest correlation with GC content (p < 10–5) (Supplementary Table 10). We also observed

significant correlations of per-megabase hg,1Mb
2 with genic content, replication timing and recom-

bination rate; however, upon including GC content—which is correlated with each of the other an-

notations (Supplementary Table 11)—as a covariate, all other correlations became non-significant

(Supplementary Table 10). To further investigate this finding, we stratified 1Mb regions into GC
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content quintiles and partitioned SNP-heritability across these strata, observing a clear enrichment

of heritability with increasing GC content (Figure 3), which we verified was not due to system-

atic differences in SNP counts or MAF distributions across GC quintiles (Supplementary Table 12

and Supplementary Fig. 8) and not explained by differences in meQTL counts (Supplementary

Fig. 9). To quantify this enrichment, we performed finer partitioning into 50 GC content strata and

regressed SNP-heritability estimates against GC content (Online Methods). We found that a 1%

increase in GC content (relative to the median) corresponded to 1.0%, 4.4%, and 3.2% increases

in heritability explained (relative to the means) for schizophrenia, dyslipidemia, and hypertension

(95% confidence intervals, 0.3–1.6%, 2.1–6.7%, and 1.8–4.6%). Once again, repeating these anal-

yses using 0.5Mb regions produced no qualitative differences in results (Supplementary Fig. 10

and Supplementary Tables 10 and 11). We also observed that including 10 principal component

covariates per variance component or applying extremely stringent QC had negligible impact on

our results (Supplementary Table 13). Likewise, repeating our analyses using PCGC regression

instead of BOLT-REML produced consistent results with slightly larger standard errors (Supple-

mentary Table 13).

Finally, we performed chromosome partitioning of SNP-heritability for each disease, as pre-

viously done for schizophrenia using N=21K samples [5]. We confirmed a strikingly linear rela-

tionship between SNP-heritability of schizophrenia explained per chromosome and chromosome

length (Supplementary Fig. 11), consistent with a highly polygenic disease architecture. In con-

trast, the trend for dyslipidemia was noticeably less linear, consistent with the existence of large-

effect loci (Supplementary Fig. 11).

Enrichment of SNP-heritability in higher-frequency SNPs

Given the high observed-scale heritability of schizophrenia on the full N=50K data set (Supple-

mentary Table 3), we reasoned that analyses partitioning schizophrenia SNP-heritability by al-

lele frequency would produce results with small enough standard errors to yield high-confidence

conclusions, providing greater resolution than the results of ref. [5] based on N=21K samples.

We began by running minor allele frequency (MAF)-partitioned heritability analyses of simulated

quantitative phenotypes based on UK10K sequencing data (see Online Methods and URLs). We
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simulated genetic architectures in which causal SNPs were drawn from SNPs with MAF p≥0.1%

and were randomly assigned allele effect sizes with variances proportional to (p(1− p))α for var-

ious values of α between −1 and 0 (ref. [28, 29]) (Online Methods). Under this parameterization,

α = −1 corresponds to a model in which rare SNPs have larger per-allele effects, so that all SNPs

have the same expected contribution to variance [1], while α = 0 corresponds to a model with

no selection [37] in which all alleles have similar per-allele effects, so that on average rarer SNPs

contribute less variance. We performed MAF-partitioned analyses [29] over six MAF bins (parti-

tioning the 2–50% MAF range) using tag SNPs from the PGC2 data set, and we observed that the

heritability captured by tag SNPs in each bin (hg,MAF
2, defined in Online Methods) accounted for

most but not all of the true heritability contributed by causal UK10K variants in each bin (hMAF
2,

defined in Online Methods) (Fig. 4a).

We next performed MAF-partitioning of schizophrenia hg
2 by running BOLT-REML on the full

PGC2 data set with variance components corresponding to the same six MAF bins (Fig. 4b). We

then estimated total narrow-sense heritability contributed per MAF bin, hMAF
2 (Fig. 4b), by per-

forming an inverse-variance weighted least-squares fit of observed hg,MAF
2 against data from our

simulations, interpolated for −1 ≤ α ≤ 0; this procedure yielded a best-fit value of α = −0.28

(jackknife s.e.=0.09) (Supplementary Fig. 12), from which we inferred hMAF
2. To keep our in-

ferences robust to model parameterization, we computed conservative 95% confidence intervals

for hMAF
2 (independent of the best-fit α, which is not our focus here) by taking the union of 95%

confidence intervals assuming different values of α (−1 ≤ α ≤ 0). Finally, we divided hMAF
2 by

the number of UK10K SNPs per bin (Supplementary Table 14) to estimate the average heritability

explained per SNP in each MAF bin, σMAF
2 (Fig. 4c), observing a clear increase in heritabil-

ity explained per SNP with increasing allele frequency. Repeating the MAF-partitioning using

PCGC regression produced consistent results with slightly larger standard errors (Supplementary

Table 13). We observed the same general trend in analyses of GERA diseases, although the results

were noisier due to smaller hg–cc
2 (Supplementary Fig. 13).
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Genetic correlations across GERA diseases

The availability of multiple phenotypes across all GERA samples also allowed us to estimate the

genetic correlations and total correlations (rg and rl, defined in Online Methods) among disease

liabilities (Figure 5 and Supplementary Table 15). We estimated genetic correlations by running

bivariate BOLT-REML for each pair of case-control traits [7] and total liability-scale correlations

by Monte Carlo simulations to match total observed-scale correlations (Online Methods). We first

ran the analysis using only our standard set of covariates (age, sex, 10 principal components, and

Affymetrix kit type) (Fig. 5a) and then reran the analysis including BMI as an additional covariate

(Fig. 5b). We verified that of the nine survey-derived covariates provided with the GERA data set,

BMI was the only one relevant to our analysis (Supplementary Fig. 14). Interestingly, we observed

that adjusting for BMI lowered genetic correlations by a multiplicative factor of 0.75 (s.e.=0.05)

and total correlations by a factor of 0.81 (s.e.=0.03), as assessed by regressing BMI-adjusted cor-

relations on unadjusted correlations, suggesting that some correlation signal among these diseases

may be mediated by BMI. Of the 13 significant genetic correlations in the unadjusted analysis, six

became non-significant upon adjusting for BMI, leaving a very strong genetic correlation between

asthma and allergic rhinitis (rg=0.85, s.e.=0.11) and a cluster of six moderate genetic correlations

among cardiovascular disease, type 2 diabetes, dyslipidemia, and hypertension (rg=0.27–0.43)

(Supplementary Table 15).

We further investigated the relationship between genetic correlations (rg) and total correlations

(rl) among disease liabilities. We observed that rg significantly exceeded rl for asthma and al-

lergic rhinitis (rg=0.85 vs. rl=0.46; p=0.008) after adjusting for 36 hypotheses tested; no other

pair reached significance. We also observed an approximately linear relationship between genetic

correlation and total liability correlation; regressing rg on rl yielded a proportionality constant of

rg/rl=1.3 (s.e.=0.1, with the caveat that the 36 trait pairs are not independent) robust to the choice

of whether or not to use BMI as a covariate (Supplementary Fig. 15).

Discussion

We have introduced a new fast algorithm, BOLT-REML, for variance components analysis involv-

ing multiple variance components and multiple traits, and demonstrated that it enables accurate
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large-sample heritability analyses that were previously computationally intractable. Such analy-

ses will be essential to attaining the statistical resolution necessary to reveal deeper insights into

the genetic architecture of complex traits (Supplementary Table 16) [15, 16]. We have applied

BOLT-REML to study human complex diseases in roughly 50K samples from each of the PGC2

and GERA data sets. At this sample size, we uncovered multiple insights into complex disease ar-

chitecture, including extreme polygenicity of schizophrenia, enrichment of complex disease SNP-

heritability in GC-rich regions and in higher-frequency SNPs, and significant genetic correlations

among several GERA diseases.

Our per-megabase analyses of SNP-heritability in schizophrenia, dyslipidemia, and hyperten-

sion revealed contrasting levels of polygenicity, with schizophrenia exhibiting an exceptionally

polygenic architecture. Our inference that the large majority of 1Mb regions of the genome (71–

100%) contain schizophrenia loci evokes the concern that complex-trait GWAS of increasing sam-

ple sizes will ultimately implicate the entire genome, becoming uninformative [38]. Recent very

large-scale GWAS [12, 32, 39] have begun grappling with this problem by focusing on biological

pathways or gene sets instead of individual SNPs [40]. While previous studies have provided evi-

dence for a highly polygenic architecture for schizophrenia [9,41], no previous study has provided

a quantification of the extreme level of polygenicity we have observed here; in light of this result,

methods that further interrogate association signal at the pathway level will be essential to extract-

ing further biological insights about schizophrenia [42]. An additional question that this finding

raises is whether the polygenicity would diminish in analyses with more homogeneous sample

recruitment or phenotype (e.g., treatment resistant); future studies may be sufficiently powered

to answer this question. As to our observation of enrichment of SNP-heritability with increasing

GC content, further study will be required to disentangle the mechanisms underlying this phe-

nomenon; previous work has shown that GC architecture has complex effects on recombination

and replication timing [33] as well as DNA methylation [43].

Our results from partitioning the SNP-heritability of schizophrenia and GERA diseases across

the 2–50% allele frequency spectrum shed light on the extent to which rarer SNPs tend to have

larger per-allele effects, as predicted by evolutionary models [44, 45]. Our analysis of schizo-

phrenia, based on well-imputed SNPs with MAF≥2%, does not assess the contribution of rare

variants (MAF<1%) due to the need for stringent QC in heritability analyses of ascertained case-
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control cohorts [3]; however, the trend for SNPs with MAF 2–50% (Fig. 4b,c) strongly suggests

that rarer SNPs have larger effect sizes per allele, yet explain less variance per SNP. While further

study of more phenotypes and rarer variants is needed, this observation implies that the implicit

assumption of α = −1 made by standard analyses of heritability [1] and mixed model associa-

tion [20, 27] may be suboptimal, leaving room for further improvement on both fronts.

Our correlation analyses of GERA disease phenotypes identified a very strong genetic correla-

tion (rg=0.85, s.e.=0.11) between asthma and allergic rhinitis. While the link between asthma and

allergy has long been known and recent GWAS have identified many shared associations, the ex-

tent to which these two diseases are genetically related has not previously been quantified [46–48].

Among other disease pairs, our observation of significant genetic correlations among metabolic

diseases confirms and adds resolution to previous estimates [49, 50], while our observation of sig-

nificant broad decreases in genetic and total correlations upon including BMI as a covariate high-

lights the importance of carefully considering the effects of heritable covariates when conducting

and interpreting genetic analyses [51]. Additionally, our empirical observation of an approximately

linear relationship between correlations of total liability and genetic correlations [52], viewed in

conjuction with a similar (but noisier) empirical observation among a set of seven quantitative

metabolic traits [50], suggests the generality of such a trend for human complex traits.

Methodologically, while the variance components (REML) approach [1] that we have applied

and accelerated here enjoys widespread use, three alternative approaches to heritability analysis

(with various trade-offs) have recently been proposed. First, the Bayesian sparse linear mixed

model [53] adapts the variance components approach to better model traits with large-effect loci,

slightly reducing standard errors at the expense of much larger computational cost; integrating this

approach into BOLT-REML is a potential future direction. Second, PCGC regression [17], which

generalizes Haseman-Elston regression [54], is not subject to downward bias under case-control

ascertainment; we therefore recommmend PCGC regression for the purpose of estimating genome-

wide hg
2 in such situations. (For partitioning SNP-heritability across subsets of SNPs, PCGC

estimates have slightly higher standard errors than REML.) Third, LD Score regression [49,55] is a

very different approach that makes inference using only GWAS summary statistics—not genotype

data. LD Score regression has the disadvantage of somewhat higher standard errors (vs. REML)

that further increase if inference is desired for small regions of the genome; as such, we are not
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currently aware of a method for assessing degree of polygenicity using summary statistics. All

of these methods have the limitation that they assume independence of genetic and environmental

effects; violation of this assumption may cause bias.

Compared to existing REML methods, the BOLT-REML algorithm we have proposed is much

more computationally efficient; however, our approach does have limitations. First, because BOLT-

REML achieves its speedup by avoiding direct computation of likelihoods, it is unable to compute

likelihood ratio tests to assess whether variance parameters are significantly nonzero. In fact, the

assumptions underlying REML analytic standard errors break down for parameter estimates of

zero (and more generally, at the parameter space boundary; see Supplementary Note). GCTA [2]

provides an unconstrained optimization feature that allows negative variance estimates, thereby

sidestepping this issue and also reducing constraint-induced bias; incorporating such a feature into

BOLT-REML is a potential future direction. Second, BOLT-REML, like all REML algorithms, oc-

casionally fails to converge when variance parameters are poorly constrained, typically for multi-

component models at small sample sizes (N�5,000). Given that sample sizes are steadily in-

creasing, however, we expect BOLT-REML to be a robust choice for harnessing the full power of

large-scale cohorts to further elucidate complex trait architectures.

URLs. BOLT-REML software and source code (implemented in the BOLT-LMM v2.1 package),

http://www.hsph.harvard.edu/alkes-price/software/.

GCTA software, http://www.complextraitgenomics.com/software/gcta/.

PCGC regression efficient software, http://github.com/gauravbhatia1/PCGCRegression.

PLINK2 software, http://www.cog-genomics.org/plink2.

KING software, http://people.virginia.edu/˜wc9c/KING/.

EIGENSOFT v6.0.1, including open-source implementation of FastPCA, http://www.hsph.

harvard.edu/alkes-price/software/.

GERA data set, http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id=phs000674.v1.p1.

UK10K project, http://www.uk10k.org/.
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Online Methods

BOLT-REML algorithm. The overall framework of the BOLT-REML algorithm is Monte Carlo

AI REML [23], a Newton-type iterative optimization of the (restricted) log likelihood with respect

to the variance parameters sought. BOLT-REML begins a multi-variance component analysis by

computing an initial estimate of each parameter using the single variance component estimation

procedure of BOLT-LMM [20] (which is the only analysis possible with BOLT-LMM). Then, in

each iteration, BOLT-REML rapidly approximates the gradient of the log likelihood using pseu-

dorandom Monte Carlo sampling [25] and the Hessian of the log likelihood using the average

information matrix [26]. BOLT-REML efficiently computes both approximations using conjugate

gradient iteration [18, 19] with the performance optimizations applied by BOLT-LMM [20]. The

approximate gradient and Hessian produce a local quadratic model of the likelihood surface, which

we optimize within an adaptive trust region radius—key to achieving robust convergence—to ob-

tain a proposed step. To evaluate success of the proposed step (i.e., determine whether to accept the

step, whether to change the trust region radius, and whether the optimization has converged) we in-

troduce a gradient-based approximation to the change in log likelihood achieved by the step. These

procedures allow BOLT-REML to consistently achieve convergence in ≈O(MN 1.5) time; in con-

trast, existing multi-component REML algorithms either are less robust or require O(MN 2 +N 3)

time (e.g., GCTA [2]). Details are described in the Supplementary Note.

Accuracy of BOLT-REML variance components analysis. We verified the accuracy of BOLT-

REML analysis by simulating quantitative traits with infinitesimal architectures using genotypes

from subsets of the GERA data set and partitioning heritability by chromosome. On a first set

of 50,000 simulations using genotypes from N=2,000 samples on chromosomes 21–22, BOLT-

REML correctly estimated components of heritability, computing nearly identical results to GCTA [2]

when run with 100 Monte Carlo trials, and incurring only 1.03 times higher standard errors when

run with 15 Monte Carlo trials (Supplementary Table 17), consistent with theory (Supplemen-

tary Note). On additional sets of 100 simulations using genotypes from N=10,000 samples on

chromosomes 1–2, BOLT-REML correctly estimated genetic correlations in bivariate analyses of

simulated quantitative traits [7] (Supplementary Table 18) and randomly ascertained case-control

traits using a liability threshold model [3] (Supplementary Table 19). Finally, in simulated N=50K
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case-control cohorts over-ascertained for cases (including population stratification and varying

polygenicity), we observed that while absolute estimates of heritability were downward biased,

as previously demonstrated [17, 27], relative contributions of variance components and their stan-

dard errors were still accurately estimated when partitioning heritability by chromosome or minor

allele frequency (Supplementary Figures 16–19).

PGC2 data set. We analyzed the PGC2 schizophrenia data set [12], applying the following fil-

ters. Of 39 European-ancestry cohorts available to us for analysis, we first eliminated 10 cohorts

(containing 12% of the available samples) with the lowest numbers of well-imputed SNPs. We

further filtered out samples with <90% European ancestry as determined by SNPweights v2.0

(ref. [56]). Finally, we extracted an unrelated subset of individuals (pairwise genetic similarity

<0.0884) using KING v1.4 --unrelated --degree 3; see URLs (ref. [57, 58]), comprising

22,177 cases and 27,629 controls (Supplementary Table 2). Of the imputed genotypes previously

computed for each cohort, we restricted to well-imputed autosomal markers (genotype call confi-

dence P>0.8 with <2% missing rate in the cohort), given that stringent QC is critical to avoid

inflated estimates of components of heritability in ascertained case-control data [3]. We then

merged the 29 cohorts, taking the union of remaining markers across cohorts and then restrict-

ing to markers with total missing rate <5%, leaving 4.4 million markers. We further imposed a

>2% MAF threshold based on the imputation quality of typical arrays at low MAF [59], yielding

3.9 million markers in substantial LD, to which we applied two rounds of LD-pruning at r2=0.9

(PLINK2 [60] --indep-pairwise 50 5 0.9; see URLs), reducing the number of markers to

596,583 and finally 472,178. Our primary motivation for pruning was to reduce susceptibility of

REML hg
2 estimation to LD bias [28–30]; additionally, pruning reduced computational costs.

GERA data set. We analyzed GERA samples (see URLs; dbGaP study accession phs000674.v1.p1)

typed on the GERA EUR chip [59] with phenotypes available for each of 22 disease conditions

based on electronic medical records. (Our primary analyses did not include survey-derived phe-

notypes such as BMI, as the data use conditions stipulated that these phenotypes could only be

used as covariates.) We applied similar filters as above, eliminating samples with <90% European

ancestry and samples with missing sex, and extracting an unrelated subset of 54,734 individu-
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als using PLINK2 (--rel-cutoff 0.05). We removed SNPs deviating from Hardy-Weinberg

equilibrium (p<10-6) and SNPs with missing rate >2%, leaving 597,736 autosomal SNPs.

UK10K data set. Our simulations used UK10K genotypes from sequencing data (see URLs); we

merged the ALSPAC and TWINSUK cohorts, intersected marker sets and eliminated multi-allelic

variants (leaving 18 million variants), and extracted 3,567 unrelated individuals using PLINK2.

Definitions of heritability parameters. We define hg
2 as the proportion of population variance

in disease liability (assuming a liability threshold model [61]) explained by the best linear predictor

using typed variants [6]. We call this quantity “SNP-heritability” [1] (although the set of well-

imputed variants in our PGC2 data set included a small fraction of biallelic indels). We define

hg,MAF
2 as the proportion of population variance in disease liability explained by the subset of

variants in a particular MAF range within the same best linear predictor (jointly fit using all typed

variants) and define hg,1Mb
2 and hg,chr

2 analogously [6]. We define h2 as the total narrow-sense

heritability—i.e., the proportion of population variance explained by the best linear predictor using

all variants (including untyped variants)—and we define hMAF
2 as the proportion of population

variance explained by all variants in the MAF range (within a predictor using all variants). Finally,

we note that we abuse notation slightly by using the above symbols to refer to both true population

parameter values and estimates thereof.

Estimating SNP-heritability of disease liabilities. We estimated hg
2 for each GERA disease by

running BOLT-REML on all samples and all markers in our filtered data set. In all our GERA anal-

yses, we adjusted for age, sex, Affymetrix kit type, and 10 principal component (PC) covariates by

residualizing genotypes and phenotypes accordingly. We included PC covariates (computed using

FastPCA [62]; see URLs) to eliminate phenotypic variance explained by ancestry. We transformed

raw REML parameter estimates (denoted hg–cc
2) to hg

2 using the linear transformation of ref. [3]

assuming case fraction for each GERA disease matched population risk.

For the PGC2 data set, which is over-ascertained for schizophrenia cases, we estimated hg
2 us-

ing PCGC regression [17] (see below) in order to avoid ascertainment-induced REML bias [17,27].

In all our PGC2 analyses, we included sex, 29 study indicators, and 10 principal components as

covariates and assumed schizophrenia population risk of 1% (ref. [5, 11, 12]).
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Computationally efficient implementation of PCGC regression In order to run PCGC regres-

sion on N=50K samples, we developed a new, efficient software implementation of PCGC re-

gression (see URLs). The new software (i) eliminates in-memory storage of N × N matrices by

accumulating dot products among regressors on-the-fly (i.e., streaming the genetic relationship

matrix inputs); (ii) speeds up jackknife computations (by streaming the GRMs in one pass); (iii)

eliminates storage of “cleaned” GRMs (i.e., GRMs with PCs projected out) by projecting PCs

on-the-fly.

Partitioning SNP-heritability across genomic regions. We estimated per-chromosome hg,chr
2 by

running BOLT-REML on all samples and markers using one variance component per chromosome

and rescaling raw REML parameter estimates and standard errors by hg
2/hg–cc

2 (Supplementary

Table 3), noting that relative variance contributions are accurately estimated by REML even under

case-control ascertainment (Supplementary Figures 16–19). Estimating per-megabase hg,1Mb
2 in

an analogous manner would have required fitting a >2500-variance component model, which was

computationally intractable, so we instead performed the computation on contiguous chromosomal

segments of up to 100 regions at a time, parallelizing computations using GNU parallel [63].

We used joint multi-VC analyses rather than fixed effect analyses of one region at a time to im-

prove robustness against potential confounding (e.g., subtle structure or LD between SNPs in

nearby windows): any such confounding would contribute to multiple one-region-at-a-time fixed

effect analyses, whereas it is spread across a joint random-effects analysis. For schizophrenia,

we used one variance component per 1Mb region in the segment (discarding regions contain-

ing <5 markers) plus a single additional variance component containing all remaining markers.

(This approach is similar to ref. [64] but computationally cheaper than directly applying ref. [64]

using BOLT-REML.) Including all markers in the model was necessary because of ascertainment-

induced genome-wide “linkage disequilibrium” among causal variants [27]; we observed that anal-

yses without the all-remaining-markers variance component produced inflated estimates. For the

GERA diseases, we did not observe this phenomenon, as expected for a randomly ascertained trait,

so for computational efficiency we included only markers in flanking 1Mb regions in the additional

variance component. We ran BOLT-REML with 15 Monte Carlo trials for the extensive computa-

tions in this section; we used 100 Monte Carlo trials in all other analyses. We note that we were
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unable to perform these analyses using PCGC regression due to the disk space requirements of

storing 100 different 50K × 50K GRMs.

We estimated per-GC quintile hg,GC
2 by stratifying 1Mb regions into GC quintiles and running

BOLT-REML as above with one variance component per quintile. To obtain finer resolution for re-

gression analyses, we further stratified 1Mb regions into 50 GC content strata. We then performed

a series of BOLT-REML analyses with one variance component containing the first n strata and a

second variance component containing the last 50 − n strata, and we estimated hg,GC
2 of the nth

stratum as the difference between the SNP-heritability estimates for n and n− 1 strata.

Bounding SNP-heritability explained by top 1Mb regions. We bounded the population vari-

ance in disease liability explained by the 1Mb regions with largest true hg,1Mb
2 using the following

procedure. We inferred an upper bound by analyzing the observed distribution of hg,1Mb
2 estimates

and accounting for sampling variance. Explicitly, we analyzed the probability of obtaining a zero

hg,1Mb
2 estimate, P (0), as a function of the actual value of hg,1Mb

2 (relative to its mean). Because

of sampling noise and the nonnegativity constraint on our REML hg,1Mb
2 estimates, P (0) is always

positive. In lieu of an analytic formula for P (0) as a function of actual hg,1Mb
2, we obtained Monte

Carlo estimates of P (0) by simulating quantitative traits (for the samples analyzed, using their

actual genotypes) with heritability equal to the hg–cc
2 of the actual disease status (Supplementary

Table 3). We distributed heritability across varying numbers of causal variants (13 values ranging

from 2,000 random markers to all available markers) and assigned each normalized causal variant a

normally distributed effect size, repeating each simulation five times. For each of the 65 simulated

traits, we estimated hg,1Mb
2 for each 1Mb region. Combining this data with the actual hg,1Mb

2 per

region (i.e., the sum of squared simulated effect sizes), and aggregating the data from all simula-

tions and all 1Mb regions, we obtained a clean empirical estimate of P (0) as a function of actual

hg,1Mb
2, which we observed was well-fit by a sum of two exponentials (Supplementary Fig. 3).

While the empirical curve was based on simulation data, it is robust to the genetic architecture

used in simulations (e.g., varying numbers of causal SNPs and normal vs. Laplace effect size dis-

tributions, Supplementary Fig. 4), as it simply measures the sampling distribution of constrained

REML estimates for our genotype data at a given actual hg,1Mb
2.

To interpret the observed fraction of zero hg,1Mb
2 estimates in light of this information, we har-
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nessed the fact that the decay curve of P (0) vs. actual hg,1Mb
2 is convex (Supplementary Fig. 3). In

particular, if a set of 1Mb regions has a fixed average actual hg,1Mb
2, their average P (0) is minimized

when all the regions have equal actual hg,1Mb
2 (by Jensen’s inequality). Conversely, an uneven dis-

tribution of actual hg,1Mb
2 across regions tends to increase the number of zero hg,1Mb

2 estimates.

These observations allowed us to bound the maximum fraction of hg
2 that could be explained by

top 1Mb regions and still be consistent with the observed fraction of zero hg,1Mb
2 estimates. Explic-

itly, if a certain number of top regions explain SNP-heritability hg,top
2, then the sum of P (0) over

all regions is minimized by setting hg,1Mb
2 of each top region to (hg,top

2/ #top regions) and hg,1Mb
2 of

each remaining region to (hg
2-hg,top

2) / (#non-top regions). We therefore bounded hg,top
2 by requir-

ing this minimum expected number of zero hg,1Mb
2 estimates to be at most the observed number

of zero hg,1Mb
2 estimates (plus 1.96 times its s.e. for a conservative 95% confidence bound). We

checked the accuracy of this procedure using simulated case-control ascertained data sets (Supple-

mentary Fig. 5).

We obtained lower bounds on the fraction of hg
2 explained by top 1Mb regions by 3-fold

cross-validation. For each fold in turn, we estimated hg,1Mb
2 for each region using the remain-

ing two folds, ranked regions accordingly, and then estimated the SNP-heritability explained by

top-ranked regions using the left-out fold. We repeated this procedure three times, obtaining nine

estimates per fraction of regions, and computed the mean minus 1.96 times the s.d./3 as a con-

servative 95% confidence lower bound on SNP-heritability explained by top regions. We estimate

s.e. using s.d./3 because the variance of heritability estimates scales with the number of sample

pairs (N 2) for N�M [15, 16]. This s.e. estimate is not theoretically precise due to the complex-

ities of sample reuse in cross-validation [65], but a rough estimate (see Supplementary Table 4

for empirical support) suffices given that the lower bound is probably a substantial underestimate

(i.e., very conservative): the finite sample size of the training folds prevents an accurate ranking of

regions, especially those contributing small amounts of variance.

Partitioning SNP-heritability across allele frequency bins. We computed per-MAF bin hg,MAF
2

estimates in a manner analogous to hg,chr
2 estimates. To infer per-MAF bin hMAF

2 explained by un-

typed as well as typed variants, we ran simulations using UK10K sequencing data to assess the

tagging efficiency of our PGC2 and GERA marker sets in various MAF ranges. Specifically, we
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simulated fully heritable quantitative traits in which normalized SNPs with MAF p≥0.1% (in the

UK10K data) were selected as causal with probability 0.5% and assigned normally distributed

effect sizes with variance (p(1− p))α. (This setup assumes that UK10K SNPs explain all narrow-

sense heritability, but given that we are only interested in tagging efficiency at MAF≥2%, our

estimation procedure is robust to violations of this assumption. We also note that our choice of a

normal distribution of effect sizes is inconsequential given the robustness of REML estimates to

a wide range of genetic architectures [28].) We performed 4,000 simulations for each of α = 0,

–0.25, –0.5, –1. For each marker set, we then computed REML estimates of hg,MAF
2 for each sim-

ulated trait across six MAF bins (Fig. 4) using one variance component per bin [29] and restricting

to SNPs in the marker set. A small subset of the PGC2 marker IDs (8%) and GERA SNP IDs

(4%) were not present among the UK10K SNP IDs, so we did not include these markers in our

REML analyses of simulated traits; we verified that the inclusion vs. exclusion of these markers

had a negligible effect on schizophrenia hg,MAF
2 estimates (Supplementary Fig. 20). We performed

REML analyses of UK10K simulated traits using a slightly modified version of GCTA v1.21 [2] in

order to perform robust unconstrained REML (i.e., allow negative hg,MAF
2 estimates); at low sam-

ple sizes, constrained REML estimates are upward biased due to noise and the positivity constraint.

(We modified GCTA to improve robustness in this setting by adding a trust region framework to

its REML optimization.) Finally, we computed hMAF
2 for the simulated traits by summing squared

simulated effect sizes.

Estimating genetic correlations and total correlations of disease liabilities. For each pair of

GERA diseases, we estimated their genetic correlation (denoted rg) directly from bivariate BOLT-

REML, which models both genetic and residual covariance, using all samples and markers. Under

a liability threshold model, the estimated genetic correlation (using observed case-control pheno-

types) accurately reflects the genetic correlation of underlying disease liabilities, so we did not

need to transform raw BOLT-REML rg parameter estimates [7]. However, the total correlation of

observed case-control phenotypes is damped relative to the total correlation of underlying disease

liabilities (which we denote by rl): assuming two diseases have bivariate normal liabilities l1 and l2

with correlation rl, the correlation of case-control phenotypes is rp= corr(l1>z1, l2>z2), where z1

and z2 are appropriate liability thresholds. In general, |rp|≤|rl| under a bivariate normal liability
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threshold model; e.g., two traits with the same liabilities (rl=1) but different thresholds (z1 6=z2)

have rp<rl. We recovered rl from rp by straightforward Monte Carlo simulation, performing a

binary search to determine the value of rl producing the observed rp assuming values of z1 and

z2 corresponding to GERA case fractions. Similarly, we obtained an s.e. for rl by transforming

the 95% confidence interval for rp (based on its s.e. of (1-rp
2)/
√
N ) in the same way. Finally, we

note that for analyses in which we included BMI (coded on a 1–5 scale in the GERA data) as

a covariate, we included an additional missing indicator covariate marking samples with missing

BMI (5%).
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Figure 1. Computational performance of BOLT-REML and GCTA heritability analysis
algorithms. Benchmarks of BOLT-REML and GCTA in three heritability analysis scenarios:
partitioning across 22 chromosomes, partitioning across six MAF bins, and bivariate analysis.
Run times (a) and memory (b) are plotted for runs on subsets of the GERA cohort with fixed SNP
count M=597,736 and increasing sample size (N ) using dyslipidemia as the phenotype in the
univariate analyses and hypertension as the second phenotype in the bivariate analysis. Reported
run times are medians of five identical runs using one core of a 2.27 GHz Intel Xeon L5640
processor. Reported run times for GCTA are total times required for computing the GRM and
performing REML analysis; time breakdowns and numeric data are provided in Supplementary
Table 1. Data points not plotted for GCTA indicate scenarios in which GCTA required more
memory than the 96GB available. Software versions: BOLT-REML, v2.1; GCTA, v1.24.
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Figure 2. Extreme polygenicity of schizophrenia compared to other complex diseases. (a)
Manhattan-style plots of estimated SNP-heritability per 1Mb region of the genome, hg,1Mb

2, for
dyslipidemia, hypertension, and schizophrenia. The APOE region of chromosome 19 is an outlier
with an hg,1Mb

2 estimate of 0.022. (b) Fractions of 1Mb regions with estimated hg,1Mb
2 equal to its

lower bound constraint of zero in disease phenotypes (solid) and simulated phenotypes with
varying degrees of polygenicity and with hg

2 matching the hg–cc
2 of each disease (dashed).

Simulation data plotted are means over 5 simulations; error bars, 95% prediction intervals
assuming Bernoulli sampling variance and taking into account s.e.m. (c) Conservative 95%
confidence intervals for the cumulative fraction of SNP-heritability explained by the 1Mb regions
that contain the most SNP-heritability. Lower bounds are from a cross-validation procedure
involving only the disease phenotypes while upper bounds are inferred from the empirical
sampling variance of hg,1Mb

2 estimates (Online Methods).
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Figure 3. SNP-heritability of disease liabilities partitioned by GC content. GC content was
computed at 1Mb resolution, after which 1Mb regions were stratified into GC quintiles for
variance components analysis. Quintiles 1–5 have median GC contents of 35.7%, 38.1%, 40.2%,
42.8%, and 47.2%, respectively. Error bars, 95% confidence intervals based on REML analytic
standard errors.
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Figure 4. Inferred heritability of schizophrenia liability due to SNPs of various allele
frequencies. (a) Simulated narrow-sense heritability per MAF bin (hMAF

2, dashed blue curves)
and estimated SNP-heritability per MAF bin (hg,MAF

2, solid red curves) for quantitative
phenotypes with genetic architectures in which SNPs of minor allele frequency p have average
per-allele effect size variance proportional to (p(1− p))α. Simulations used causal SNPs with
MAF≥0.1% in UK10K sequencing data and tag SNPs from our PGC2 analyses; error bars, 95%
confidence intervals based on 4,000 runs. (b) SNP-heritability (red) and inferred narrow-sense
heritability (blue) of schizophrenia liability partitioned across six MAF bins. Point estimates of
narrow-sense heritability per bin are based on interpolated values of the ratio hg,MAF

2/hMAF
2 at

α = −0.28, which provided the best weighted least-squares fit between observed hg,MAF
2 and

interpolated hg,MAF
2 from the simulations in panel (a) (Supplementary Fig. 12). (c) Inferred

narrow-sense heritability of schizophrenia liability explained per SNP in each MAF bin, i.e.,
hMAF

2 in panel (b) normalized by UK10K SNP counts (Supplementary Table 14). Schizophrenia
hg,MAF

2 error bars, 95% confidence intervals based on REML analytic standard errors.
Schizophrenia hMAF

2 and σMAF
2 error bars, unions of 95% confidence intervals assuming

−1 ≤ α ≤ 0. 32
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Figure 5. Genetic correlations and total correlations of GERA disease liabilities. (a)
Correlations from bivariate analyses using only age, sex, 10 principal components, and
Affymetrix kit type as covariates. (b) Correlations from bivariate analyses including BMI as an
additional covariate. Genetic correlations are above the diagonals; total liability correlations are
below the diagonals. Asterisks indicate genetic correlations that are significantly positive (z > 3)
accounting for 36 trait pairs tested. Numeric data including standard errors are provided in
Supplementary Table 15.
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Table 1. Estimated proportions of variance in disease liability explained by SNPs.

Disease Cases Controls hg
2 (s.e.)

Schizophrenia 22,177 27,629 0.274 (0.007)
Allergic rhinitis 13,437 41,297 0.074 (0.015)
Asthma 8,929 45,805 0.152 (0.018)
Cardiovasc. dis. 14,861 39,873 0.092 (0.015)
Diabetes type 2 6,845 47,889 0.297 (0.022)
Dyslipidemia 29,511 25,223 0.263 (0.014)
Hypertension 27,921 26,813 0.255 (0.014)
Macular degen. 3,700 51,034 0.242 (0.029)
Osteoarthritis 19,832 34,902 0.098 (0.014)
Osteoporosis 5,337 49,397 0.195 (0.024)

Schizophrenia cases and controls are from the PGC2 data set [12]; the hg
2 estimate assumes a

population risk of 1% and was computed using PCGC regression to avoid REML bias induced by
over-ascertainment of cases [17, 27]. Cases and controls for the other 9 diseases are from the
GERA data set; hg

2 estimates assume random sample ascertainment and were computed using
BOLT-REML.
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