Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Dimensionality and the statistical power of multivariate genome-wide association studies

Eladio J. Márquez, David Houle
doi: https://doi.org/10.1101/016592
Eladio J. Márquez
Department of Biological Science, Florida State University Tallahassee, Florida 32306-4298, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David Houle
Department of Biological Science, Florida State University Tallahassee, Florida 32306-4298, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Mutations virtually always have pleiotropic effects, yet most genome-wide association studies (GWAS) analyze effects one trait at a time. In order to investigate the performance of a multivariate approach to GWAS, we simulated scenarios where variation in a d-dimensional phenotype space was caused by a known subset of SNPs. Multivariate analyses of variance were then carried out on k traits, where k could be less than, greater than or equal to d. Our results show that power is maximized and false discovery rate (FDR) minimized when the number of traits analyzed, k, matches the true dimensionality of the phenotype being analyzed, d. When true dimensionality is high, the power of a single univariate analysis can be an order of magnitude less than the k=d case, even when the single trait with the largest genetic variance is chosen for analysis. When traits are added to a study in order of their independent genetic variation, the gains in power from increasing k up to d are much larger than the loss in power when k exceeds d. Simulations that explicitly model linkage disequilibrium (LD) indicate that when SNPs in disequilibrium are subjected to multivariate analysis, the magnitude of the apparent effect induced onto null SNPs by SNPs carrying a true effect weakens as k approaches d, such that the rank of P-values among a set of correlated SNPs becomes an increasingly reliable predictor of true positives. Multivariate GWAS outperform univariate ones under a wide range of conditions, and should become the standard in studies of the inheritance of complex phenotypes.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted March 17, 2015.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Dimensionality and the statistical power of multivariate genome-wide association studies
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Dimensionality and the statistical power of multivariate genome-wide association studies
Eladio J. Márquez, David Houle
bioRxiv 016592; doi: https://doi.org/10.1101/016592
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Dimensionality and the statistical power of multivariate genome-wide association studies
Eladio J. Márquez, David Houle
bioRxiv 016592; doi: https://doi.org/10.1101/016592

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genomics
Subject Areas
All Articles
  • Animal Behavior and Cognition (3686)
  • Biochemistry (7774)
  • Bioengineering (5668)
  • Bioinformatics (21244)
  • Biophysics (10563)
  • Cancer Biology (8160)
  • Cell Biology (11909)
  • Clinical Trials (138)
  • Developmental Biology (6738)
  • Ecology (10388)
  • Epidemiology (2065)
  • Evolutionary Biology (13843)
  • Genetics (9694)
  • Genomics (13056)
  • Immunology (8123)
  • Microbiology (19956)
  • Molecular Biology (7832)
  • Neuroscience (42971)
  • Paleontology (318)
  • Pathology (1276)
  • Pharmacology and Toxicology (2256)
  • Physiology (3350)
  • Plant Biology (7208)
  • Scientific Communication and Education (1309)
  • Synthetic Biology (1999)
  • Systems Biology (5528)
  • Zoology (1126)