Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Sex chromosome dosage compensation in Heliconius butterflies: global yet still incomplete?

James R. Walters, Thomas J. Hardcastle, Chris D. Jiggins
doi: https://doi.org/10.1101/016675
James R. Walters
1Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: jrwalters@ku.edu
Thomas J. Hardcastle
2Department of Plant Biology, University of Cambridge, Cambridge, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chris D. Jiggins
3Department of Zoology, University of Cambridge, Cambridge, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

The evolution of heterogametic sex chromosome is often – but not always – accompanied by the evolution of dosage compensating mechanisms that mitigate the impact of sex-specific gene dosage on levels of gene expression. One emerging view of this process is that such mechanisms may only evolve in male-heterogametic (XY) species but not in female-heterogametic (ZW) species, which will consequently exhibit “incomplete” sex chromosome dosage compensation. However, some recent results from moths suggest that Lepidoptera (moths and butterflies) may prove to be an exception to this prediction. Here we report an analysis of sex chromosome dosage compensation in Heliconius butterflies, sampling multiple individuals for several different adult tissues (head, abdomen, leg, mouth, and antennae). Methodologically, we introduce a novel application of linear mixed-effects models to assess dosage compensation, offering a unified statistical framework that can estimate effects specific to chromosome, to sex, and their interactions (i.e., a dosage effect). Our results show substantially reduced Z-linked expression relative to autosomes in both sexes, as previously observed in bombycoid moths. This observation is consistent with an increasing body of evidence that at least some species of moths and butterflies possess an epigenetic sex chromosome dosage compensating mechanism that operates by reducing Z chromosome expression in males. However, this mechanism appears to be imperfect in Heliconius, resulting in a modest dosage effect that produces an average 5-20% male-bias on the Z chromosome, depending on the tissue. Strong sex chromosome dosage effects have been previously in a pyralid moth. Thus our results reflect a mixture of previous patterns reported for Lepidoptera and bisect the emerging view that female-heterogametic ZW taxa have incomplete dosage compensation because they lack a chromosome-wide epigenetic mechanism mediating sex chromosome dosage compensation. In the case of Heliconius, sex chromosome dosage effects persist apparently despite such a mechanism. We also analyze chromosomal distributions of sex-biased genes and show an excess of male-biased and a dearth of female-biased genes on the Z chromosome relative to autosomes, consistent with predictions of sexually antagonistic evolution.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted March 17, 2015.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Sex chromosome dosage compensation in Heliconius butterflies: global yet still incomplete?
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Sex chromosome dosage compensation in Heliconius butterflies: global yet still incomplete?
James R. Walters, Thomas J. Hardcastle, Chris D. Jiggins
bioRxiv 016675; doi: https://doi.org/10.1101/016675
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Sex chromosome dosage compensation in Heliconius butterflies: global yet still incomplete?
James R. Walters, Thomas J. Hardcastle, Chris D. Jiggins
bioRxiv 016675; doi: https://doi.org/10.1101/016675

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genomics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4685)
  • Biochemistry (10362)
  • Bioengineering (7682)
  • Bioinformatics (26343)
  • Biophysics (13534)
  • Cancer Biology (10694)
  • Cell Biology (15446)
  • Clinical Trials (138)
  • Developmental Biology (8501)
  • Ecology (12824)
  • Epidemiology (2067)
  • Evolutionary Biology (16867)
  • Genetics (11402)
  • Genomics (15484)
  • Immunology (10621)
  • Microbiology (25226)
  • Molecular Biology (10225)
  • Neuroscience (54483)
  • Paleontology (402)
  • Pathology (1669)
  • Pharmacology and Toxicology (2897)
  • Physiology (4345)
  • Plant Biology (9254)
  • Scientific Communication and Education (1587)
  • Synthetic Biology (2558)
  • Systems Biology (6781)
  • Zoology (1466)