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Abstract

Background: Bayesian networks are directed acyclic graphical models widely used
to represent the probabilistic relationships between random variables. They have
been applied in various biological contexts, including gene regulatory networks
and protein-protein interactions inference. Generally, learning Bayesian networks
from experimental data is NP-hard, leading to widespread use of heuristic search
methods giving suboptimal results. However, in cases when the acyclicity of the
graph can be externally ensured, it is possible to find the optimal network in
polynomial time. While our previously developed tool BNFinder implements
polynomial time algorithm, reconstructing networks with the large amount of
experimental data still leads to computations on single CPU growing exceedingly.
Results: In the present paper we propose parallelized algorithm designed for
multi-core and distributed systems and its implementation in the improved version
of BNFinder - tool for learning optimal Bayesian networks. The new algorithm has
been tested on different simulated and experimental datasets showing that it has
much better efficiency of parallelization than the previous version. BNFinder gives
comparable results in terms of accuracy with respect to current state-of-the-art
inference methods, giving significant advantage in cases when external
information such as regulators list or prior edge probability can be introduced.
Conclusions: We show that the new method can be used to reconstruct
networks in the size range of thousands of genes making it practically applicable
to whole genome datasets of prokaryotic systems and large components of
eukaryotic genomes. Our benchmarking results on realistic datasets indicate that
the tool should be useful to wide audience of researchers interested in discovering
dependencies in their large-scale transcriptomic datasets.
Keywords: Bayesian networks learning; gene regulatory networks inference;
parallel and distributed computing

Background
Bayesian networks (BNs) are graphical representations of multivariate joint prob-
ability distributions factorized consistently with the dependency structure among
variables. In practice, this often gives concise structures that are easy to interpret
even for non-specialists. A BN is a directed acyclic graph with nodes represent-
ing random variables and edges representing conditional dependencies between the
nodes. Nodes that are not connected represent variables that are independent con-
ditionally on their parent variables [1]. In general, inferring BN structure is NP-hard
[2], however it was shown by Dojer [3] that it is possible to find the optimal network
structure in polynomial time when datasets are fixed in size and the acyclicity of
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the graph is pre-determined by external constraints. The latter is true when deal-
ing with dynamic BNs or when user defines the regulation hierarchy restricting
the set of possible edges in case of static BNs. This algorithm was implemented in
BNFinder - a tool for BNs reconstruction from experimental data [4].

One of the common use of BNs in bioinformatics is inference of interactions be-
tween genes [5] and proteins [6]. Even though it was originally developed for this
purpose, BNFinder is a generic tool for reconstructing regulatory interactions. Since
its original publication, it was successfully applied to linking expression data with
sequence motif information [7], identifying histone modifications connected to en-
hancer activity [8] and to predicting gene expression profiles of tissue-specific genes
[9]. Even though it can be applied to many different datasets, the practical usage of
the algorithm is limited by its running times that can be relatively long. Since the
algorithm published by Dojer [3] has a capacity to be parallelized by design and the
current version of BNFinder [10] has only a simple parallelization implemented, we
have developed a new version that takes advantage of multiple cores via the python
multiprocessing module and gives better performance.

Implementation
The general scheme of the learning algorithm is the following: for each of the ran-
dom variables find the best possible set of parent variables by considering them
in a carefully chosen order of increasing cost function. Current parallelization in
BNFinder version 2 [10] can be considered variable-wise as it distributes the work
done on each variable between the different threads. However, such approach has
natural limitations. Firstly, the number of parallelized tasks cannot exceed the num-
ber of random variables in the problem, meaning that in the cases where only a few
variables are considered (e.g. in classification by BNs) we get a very limited perfor-
mance boost. Secondly, variable-wise parallelization might be vulnerable (in terms
of performance) to the datasets with highly heterogeneous variables, i.e. variables
whose true dependency graph has a wide range of connections. As the time spent
on computing parent sets for different variables varies - it leads to uneven load of
threads. In biology we usually observe networks with scale-free topology consisting
of a few hub nodes with many parents and a large number of nodes that have one or
small number of connections [11]. If one applies variable-wise algorithm to such
networks the potential gain in the algorithm performance is not greater than in the
case where all the nodes have as many parents as the hub node with the largest
parent set.

While variable-wise algorithm is the most straightforward one, it is also possible
to consider different possible parents sets in parallel denoting set-wise algorithm.
It means that in the first step we compute singleton parents sets using all available
threads, in the second step we compute two-element parents sets in parallel and so
on, until we reach parents sets size limit or score function limit. However, set-wise
algorithm requires more synchronizations between the threads [12] in comparison
with variable-wise. On top of that allocating large number of cores to the variable
whose parents set is very quick to compute may result in lower performance due to
context switching. As it is difficult to tell, which problem might be more important
in practice, we have implemented and tested two approaches: set-wise only and
hybrid one - a combination of variable-wise and set-wise.
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Figures 1,2 and 3 show python pseudocode for variable-wise, set-wise and hy-
brid algorithms accordingly, which was simplified in comparison to the original
implementation for better illustration. As was stated above set-wise algorithm
uses each given core to compute parents sets for one gene and after finding parents
it proceeds with the next gene. On the contrary hybrid algorithm uniformly dis-
tributes cores between genes, for example, if user has 3 genes in the network and 6
cores available, each gene will have 2 cores for computing its parents set. If there
are 7 cores available, one gene will have 3 cores, while other two genes - 2 cores.
Thus, once the gene is processed the freed cores cannot be allocated to other genes,
which may be a potential disadvantage.

So, the pure theoretical complexity of set-wise (left side of inequality) and hy-
brid (right side of inequality) algorithms can be described in following way:∑n

i=1 ti

k
= (avgn

i=1 ti)n
k

≤ (maxn
i=1 ti)n
k

where k is the cores number, n is the number of random variables, and ti is the
time one needs to compute optimal parents set for the ith variable using one core.

Thus, the time to reconstruct the whole network in case of set-wise approach is
the sum of time needed for each random variable, which is in fact average time one
spends on finding the parents set for one variable, while inferring BN with hybrid
approach is bounded by the maximum time one spends on one variable.

Results
Performance testing
Algorithms comparison. We compared implementations of three different al-
gorithms: variable-wise, set-wise and hybrid. The original implementation
(variable-wise) serves as a baseline for computing the speedup and efficiency of
the parallelization. For testing we used synthetic benchmark data as well as real
datasets concerning protein phosphorylation network published by Sachs et al. [13].
The efficiency is defined as speedup divided by the number of cores used.

Set-wise and hybrid algorithms performance on 20 genes synthetic network was
very similar, while the speedup and efficiency comparison revealed more differences
between the algorithms (See Figure 4). There is no regulators list for this network,
making BNFinder to reconstruct Dynamic Bayesian network. Hybrid algorithm
showed more unstable behavior, performing better when the number of cores cor-
relates with the number of genes. It outperformed set-wise when the number of
cores exceeded the number of genes two times at least, however it didn’t show any
speedup when increasing the number of cores from 42 to 50. The latter is easily
explained by the algorithm design, since running time is bound by the most com-
putationally complex variable, using 41-59 cores cannot give performance boost as
long as this variable provided with one core only.

The Sachs et al. network we tried next has 11 proteins, the regulators are selected
from those proteins and introduced in the cascade manner, which denotes expected
layer structure of the signaling pathway. First layer can regulate all the following,
while each next one cannot regulate previous layers. On the first layer only single-
ton parents set is possible consisting of plcg protein, on the second layer we have
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two regulators, PIP3 and previously defined plcg, making it possible to search for
singleton and two-element parents sets for the rest of proteins, and so on.

Sachs et al. data showed significant difference between two algorithms. Clearly,
the set-wise algorithm outperforms the hybrid one: using 11 cores it showed 8x
speedup, while the hybrid algorithm showed only 1.5x speedup (See Figure 5).
Hybrid algorithm performance was hindered by highly heterogeneous variables
in the input data, because out of the 11 proteins in the network pakts473 has
6 parents, p44/42 has 3 parents, while others have 1-2 parents. Importantly, the
better performing algorithm is also the one showing more consistent behavior.

However, the way how regulators are introduced in the input file produces uneven
load by itself, as each next variable has bigger set of potential parents. Therefore,
we generated more benchmark data with different number of regulator and target
genes, where we could define regulators in one layer manner (one line list) or similar
to Sachs data. Moreover, underlying structure of generated networks was designed
to be heterogeneous. Namely, it contains genes with gradually increasing number
of parents: first gene has zero regulators, second gene - one regulator, third - two
regulators and so on. The datasets were generated with BayesGen.py script that is
included in the supplementary material. It takes the desired connectivity between
variables and simulates the observations as emissions from a Bayesian Network with
bimodal Gaussian distributions of variables.

The results of multiple tests showed that introducing complex layer structure of
regulators always resulted in hybrid algorithm poor performance. It either showed
much worse results regardless of the number of cores as on Figure 5 or it showed
comparable speedup when number of cores was three times bigger than number
of genes. In cases when regulators were supplied as one single list both algorithms
showed results similar to Figure 4, namely set-wise algorithm was better when
number of cores was less than number of genes, while hybrid one was better in the
opposite case (although there was no such dramatical difference as in case of layered
regulators structure). The more observations per regulator-target interaction we
had, the better BNFinder predicted the network structure. However, as we studied
running times per gene we observed that variables with biggest number of parents
not always resulted in longest computations. The latter is explained by how the
scoring function works, BNFinder stops when the penalty for increasing the set
of parents is so big that it cannot improve beyond what it has already found. In
general, if the optimal parent set is very good in predicting the child variable value
BNFinder will finish searching earlier. It means that the whole family of three-
element parents set can have worse score than two-element parents set, but the
algorithm will proceed further because it has not reached penalty on increasing the
set size yet.

In particular, running times also depend on the number of observation and number
of nodes in the networks. For example, Figure 6 shows that increasing the number
of observation by 10x leads to 12x longer running time for the network of the same
size, while 8 genes network takes 3 times longer to compute in comparison to 7
genes network having the same number of observations.

Since there is no obvious winner between set-wise and hybrid algorithms, we
decided to provide users with both options with set-wise being default algorithm.
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Tests on benchmark and Sachs data were performed on the same server with AMD
Opteron (TM) Processor 6272 (4 CPUs with total of 64 cores) and 512GB RAM.
During the tests server was loaded only by regular system processes, but to ensure
statistical significance we performed each test five times, plotting average values
with standard deviations.

Distributed computations testing. For the new version of BNFinder we also imple-
mented an option for distributed usage of the tool. The idea is quite simple and did
not require specific python libraries or tools. The user has to submit the file with
subset of genes as input argument, so BNFinder can calculate partial result. When
all the genes are processed user must place all the results into one folder and run
BNFinder again, so it will aggregate the results.

For the tests we chose Challenge 5 (Genome-Scale Network Inference) data from
DREAM2 competition (Dialogue for Reverse Engineering Assessments and Meth-
ods) [14, 15]. Challenge data is a log-normalized compendium of Escherichia coli
expression profiles, which was provided by Tim Gardner to DREAM initiative [16].
The participants were not informed about the data origin and were provided only
with 3456 genes x 300 experiments dataset and the list of transcription factors.

BNFinder was tested with different parents set limit parameter value (i.e. max-
imum number of potential parents), which increases the computation time dra-
matically in non-linear way, especially in case of dataset with many variables. We
compared set-wise algorithm performance with context likelihood of relatedness
(CLR) algorithm - an extension of the relevance networks approach, that utilizes
the concept of mutual information [16]. We chose CLR, because it is very fast and
easy to use tool, which provides good results. In addition, CLR-based algorithm -
synergy augmented CLR (SA-CLR) was best performed algorithm on Challenge 5
[17].

Table 1 DREAM2 Challenge 5 data testing. CLR with cutoff means limiting output results to
100000 genes interactions. l stands for BNFinder parents sets limit.

CLR CLR with cutoff BNF, l=1 BNF, l=2 BNF, l=3
CPU time, hours 0.7879 0.1999 2.0021 383.7149 109200

Actual time, hours 0.2626 0.0666 0.0667 12.7904 336
CPU number 3 3 30 30 ∼325

The CLR tests were performed on the GP-DREAM platform, designed for the
application and development of network inference and consensus methods [18]. BN-
Finder tests were done within Ukrainian Grid Infrastructure [19], which was ac-
cessed through nordugrid-arc middleware (arc client version 4.1.0 [20]), so the tasks
submitting process was automated and unified. The results in Table 1 are not pre-
cisely comparable due to differences in used hardware, especially when using such
heterogeneous environment as Grid. In addition, we could not obtain stable number
of cores over time with the Grid, as the clusters were loaded with other tasks. How-
ever, running times can give rough estimate for those who plan to use BNFinder on
large datasets.

Even though computing with parents sets limit 3 takes significant amount of time
and resources, it is clear that BNFinder is able to reconstruct genome-scale datasets,
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significantly broadening its application range after it was adapted to parallel and
distributed computing.

Accuracy testing
Previously we compared accuracy of BNFinder algorithm with Banjo [4] on data
provided with the tool and separately on Sachs data [10], which we used in this
work to test the performance. Here we performed accuracy testing on 14 different
datasets, both synthetic and taken from microarray experiments.

DREAM2 Genome Scale Network Inference 3456 genes x 300 experi-
ments dataset, log-normalized compendium of Escherichia coli expression profiles
described above [14]. Transcription factors list is provided with the data.

DREAM4 In Silico Network Challenge: time course datasets showing how
the simulated network responds to a perturbation and how it relaxes upon its re-
moval. There are 5 different datasets with 10 and 100 genes each. For networks of
size 10, datasets consist of 5 different time series replicates, while networks of size
100 has 10 time series replicates. Each time series has 21 time points [21].

Yeast time series: 102 genes x 582 experiments datasets with time series after
drug perturbation from the yeastrapamycin experiment described in Yeung et al
[22]. There are 582/6 = 97 replicates (the 95 segregants plus two parental strains
of the segregants), each with measurements at 6 time points. Prior probabilities of
genes regulations are provided.

Yeast static: 85 genes x 111 experiments subset of the data used for network
inference in yeast by Brem et al. [23]. Prior probabilities of genes regulations
are provided. TF-gene regulations were extracted from YEASTRACT repository
(http://www.yeastract.com, version 2013927).

Yeast static synthetic: 2000 genes x 2000 experiments dataset generated using
GNW simulator [24] by extracting parts of known real network structures capturing
several of their important structural properties. To produce gene expression data,
the simulator relies on a system of non-linear ordinary differential equations. TF-
gene regulations were extracted from YEASTRACT repository (version 2013927).
The adjacency matrix of true underlying network structure of this dataset has
symmetrical form, therefore it is not possible to evaluate the direction of interaction
in this case.

DREAM2 data was downloaded from the challenge website, DREAM4, YeastTS
(time series), and Brem data was imported from NetworkBMA [26] R package, while
synthetic Yeast static data (GNW2000) was imported from NetBenchmark [25] R
package.

Table 2 Gene regulatory network inference methods used for benchmarking.

Inference Approach Method
Co-expression algorithms MutRank [28]
Information-theoretic approaches CLR [16], ARACNE [29], PCIT [30], C3NET [31]
Feature selection approaches MRNET [32], MRNETB [33], Genie3 [34]
Bayesian model averaging FastBMA [35]

Table 2 summarizes gene regulatory network inference methods we used for bench-
marking. Specifically, we used FastBMA method implemented in NetworkBMA R
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package, while the rest of the methods were accessed through NetBenchmark, a
bioconductor package for reproducible benchmarks of gene regulatory network in-
ference. The methods were used with default parameters, while for FastBMA, Ge-
nie3 and BNFinder prior edge probabilities and TF-gene regulations were supplied
where applicable.

We used two metrics two asses methods performance: Area Under the Precision
Recall curve (AUPR) or Area Under Receiver Operating Characteristic curve (AU-
ROC), implemented in MINET R package [27]. However, this approach gives an
estimation of the global behavior of the method, therefore in NetBenchmark pack-
age Bellot at al. evaluated the inferred networks using only the top best 20% of the
total number of possible connections [25]. The latter allows to correctly compare
methods with sparse and concise outputs. We used both MINET and NetBenchmark
evaluation functions in order to assess the impact on methods rankings.

FastBMA, Genie3 and BNFinder methods allow to infer directed interactions,
therefore they were additionally evaluated on directed gold networks (where appli-
cable), while for the undirected evaluation gold network adjacency matrices were
converted to symmetrical ones (higher edge probabilities are preserved) as well as
outputs of directed methods.

In case of static gene expression data FastBMA can infer the regulators of a
particular gene by regressing it on the expression levels of the other genes. Therefore
we used the method with time series data only.

We mostly used DREAM2 data for running times tests and evaluated accuracy of
CLR method only. The results of BNFinder and CLR tests are shown in Table 3.

Table 3 DREAM2 Genome Scale Network Inference. BNFinder and CLR are compared with the
best scored method using 100% of output interactions. BNFinder is used with parents sets limit 1
and suboptimal parents sets 100, CLR is used with default parameters. Evaluation of BNF on
TF-TF free gold standard is provided as well. All the output interactions are considered for
calculating areas under curves.

CLR BNF BNF, gold standard Winner: Team 48
without TF-TF

AUPR 0.051398 0.028769 0.030584 0.059499
AUROC 0.617187 0.606326 0.629420 0.610643

We ranked AUROC and AUPR values across all the methods for each of five 10 and
100 genes network from DREAM4 challenge. Using different evaluation strategies
for 10 genes networks showed quite a different results (Figure 7, 8), while 100 genes
network results were more consistent among MINET and NetBechmark (Figure 9,
10). We believe that networks of a small size might not be a good benchmark data as
even a slightest change in the obtained scores might disrupt rankings dramatically.
This is especially valid for the methods, which output might differ each run due to
the nature of underlying algorithms (e.g. regression, greedy hill climbing). There
is no single best method for DREAM4 data, while Genie3, MRNET, MRNETB,
FastBMA, and BNFinder scored first at least once.

Yeast time series network inference showed extremely bad results for all the meth-
ods with MutRank having slightly better AUROC=0.58 and AUPR=0.07 values
according to MINET package. In contrast to synthetic DREAM4 data which has
21 time points, YeastTS has only 6, which could explain worse results.
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Surprisingly, BNFinder significantly outperformed other methods when recon-
structing network from Brem at al. static gene expression data (Figure 11). Impor-
tantly, Genie3 method was also supplied with the same regulators list as BNFinder,
but it has led to worse results contrary to using Genie3 without regulators. The
other methods were used without any additional prior information as implemented
in NetBenchmark package.

We also studied the effect of the number of experiments on the accuracy of inferred
network. For GNW2000 synthetic Yeast data we performed two separate tests: one
with full dataset - 2000 experiments, and second with only 150 randomly selected
observational points. Figure 12 clearly shows that all the methods improved their
results on the full dataset, with BNFinder being among the top methods and having
best AUPR on the reduced dataset. Interestingly, we did not see such a major
difference between BNFinder and other methods in contrast to Brem at al. data,
given the same input parameters and both datasets being of Yeast origin. It shows
the importance of developing new gold standards based on experimental data from
model organisms as synthetic data only cannot reflect all the complexity of biological
interactions.

Exploring BNFinder parameter space. The main advantage of BNFinder in com-
parison with heuristic search Bayesian tools such as Banjo is that BNFinder recon-
structs optimal networks, which also means that the same parameters lead to the
same result. However, with BNFinder one can use number of input arguments such
as scoring functions (Bayesian-Dirichlet equivalence, Minimal Description Length
or Mutual information test), static or dynamic (also with self-regulatory loops)
BNs, perturbation data, or even prior information on the network structure. All
of these may alter results significantly, so, naturally we are interested in choosing
best parameters for a particular dataset. Here we studied the impact of two very
important parameters: parents sets limit and number of suboptimal parents sets
(gives alternative sets of regulators with lower scores).

In Table 4 we have summarized the total number of interactions returned by BN-
Finder with different maximal parents per gene and different number of suboptimal
parent sets. The results indicate that increasing the size of the allowed parent set
leads to the decrease in the total returned edges in the network. This may seem
surprising at first, but it is consistent with highly overlapping suboptimal parents
sets. Theoretically, increasing parents set limit should lead to better precision, while
increasing the number of suboptimal parents set should increase the number of false
positives by adding lower scored parents. However, it may depend on the particular
dataset, especially on the number of observations available. On top of that, in cases
where using higher number of parents per variable is computationally challenging,
suboptimal parents may compensate for this limitation.

We studied the effect of different parameters by plotting AUPR against AUROC
values. Figure 13 shows that on 2000 genes x 2000 experiments synthetic dataset
using two parents per gene is always better than one, and increasing the number of
suboptimal parents leads to increase in AUROC and slight decrease in AUPR values.
Inferring a network from the same dataset with only 150 experiments sometimes
resulted in lower AUPR for two parents per gene cases in comparison with singleton
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parents sets. While BNFinder scoring function penalizes for parents set size increase
it might still produce false positives when the number of observational points is low
and number of variables is more than ten folds bigger. Importantly, zero (or very
low) number of sub-optimal parent sets leads to extremely sparse output network
(the number of edges is much less than 20% of all possible interaction) and therefore
poor AUPR and AUROC values.

In general we can conclude that if the user is interested in the very top of the
strongest interactions in the network, he or she should use small numbers of sub-
optimal parent (up to 5) sets and small limit on the parent-set size (up to 3).
However, if one is interested in discovering the more global picture of the true
regulatory network, one should focus on the higher number of sub-optimal parent
sets with limit on the set size as high as it is computationally feasible.

Table 4 The number of the interactions in the output network based on different BNFinder
parameters. DREAM2 Genome Scale Network Inference data is used.

Subparents=25 Subparents=50 Subparents=100
Parent limit=1 78366 156685 313061
Parent limit=2 65108 116424 213389

The results of all performance and accuracy tests are available from dedicated
github repository - https://github.com/sysbio-vo/article-bnf-suppl.

Discussion
Performance. Despite seemingly complex behavior of hybrid algorithm and many
cases where hybrid and set-wise algorithms can be applied, we can give the users
the best practice guidance for BNFinder application. In case of small networks where
number of variables is 2 or more times less than number of cores it is advisable to
use hybrid algorithm. The same is also applicable when the user imposes parent set
limit equal or less than 3, which makes the computational load per variable more
even. In case when the complex layered structure of regulators is introduced it is
always better to use set-wise. And finally, the user may just use the default param-
eters as set-wise algorithm did not show major drop in performance in comparison
with hybrid one.

Accuracy of reconstruction. While we understand that there are many more tools
for gene regulatory networks reconstruction in the literature we believe that Net-
Benchmark package is representative for the field since it incorporates state-of-the-
art methods, which are based on variety of different algorithms. On top of that using
benchmarking tool makes it easier for other researchers to compare their methods
to our results.

Measuring AUROC and AUPR values on 14 different datasets revealed that stud-
ied methods behave differently on different datasets, and none of the methods scored
best in all cases. In general time series data proved to be more challenging for the
methods than inferring network from static gene expression datasets. Our results
on 10 genes networks evaluation with top 20% and 100% interactions showed that
such small networks can hardly be used as the only source of comparison.
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Testing BNFinder on mentioned datasets we concluded that it performed best on
the static gene expression datasets with additional prior knowledge (transcription
factors list, prior edge probability between genes), while for other methods such as
Genie3 the same information did not yield significant improvement.

Conclusions
Improvement over previous version of BNFinder made it feasible to analyze datasets
that were impossible to analyze before by utilizing the power of distributed and par-
allel computing. It allowed us to significantly extend the application range of the
tool and for the first time compare it with best-performing non-Bayesian methods.
BNFinder showed overall comparable performance on synthetic and real biological
data, providing significant advantage in cases when prior knowledge on genes in-
teractions can be introduced. This can lead to further research on the optimization
of the BNFinder method for the purpose of finding larger networks with better
accuracy. We provide the new BNFinder implementation freely for all interested
researchers under a GNU GPL 2.0 license.
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Wilczyński, B., Riddell, A., Furlong, E.E.: Tissue-specific analysis of chromatin state identifies temporal
signatures of enhancer activity during embryonic development. Nature genetics 44(2), 148–156 (2012)

9. Wilczynski, B., Liu, Y.-H., Yeo, Z.X., Furlong, E.E.: Predicting spatial and temporal gene expression using an
integrative model of transcription factor occupancy and chromatin state. PLoS computational biology 8(12),
1002798 (2012)
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Figures

# Learns optimal parents set of size <= limit

def learn_parents(gene, data, parents, limit):

    parents_set_size = 1

    while acceptable_score(graph_score + data_score) and

            (parents_set_size <= limit):

        # Compute scores for all possible parents sets of parents_set_size

        for genes_subset in subsets(parents, parents_set_size):

            data_score = score_function(select_data_subset(genes_subset), gene)

            graph_score = score_function(genes_subset, gene)

        parents_set_size += 1

# Pool function argument denotes the number of processes to create

pool = multiprocessing.Pool(cores)

# Applying learn_parents() function to all the genes

results = pool.map(learn_parents, [(gene, data, regulators, limit) 

    for gene in genes])

Figure 1 Variable-wise algorithm python pseudocode.

# Learns optimal parents set of size <= limit

def learn_parents(gene, data, parents, limit):

    parents_set_size = 1

    # Pool function argument denotes the number of processes to create

    inner_pool = multiprocessing.Pool(cores)

    while acceptable_score(graph_score + data_score) and

            (parents_set_size <= limit):

        # Compute scores for all possible parents sets of parents_set_size

        # in parallel

        data_score = inner_pool.map(score_function, 

            [select_data_subset(data, genes_subset), gene]

            for genes_subset in subsets(parents, parents_set_size))

        graph_score = inner_pool.map(score_function, [genes_subset, gene]

            for genes_subset in subsets(parents, parents_set_size))

        parents_set_size += 1

# Applying learn_parents() function to all the genes

results = map(learn_parents, [(gene, data, regulators, limit) 

    for gene in genes])

Figure 2 Set-wise algorithm python pseudocode.

Additional Files
Additional file 1 — BNFinder source code
BNFinder is written on python, so you will need python 2.4 or higher in order to run it.
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# Learns optimal parents set of size <= limit

def learn_parents(gene, data, parents, limit):

    parents_set_size = 1

    # Pool function argument denotes the number of processes to create

    inner_pool = multiprocessing.Pool(cores/genes)

    while acceptable_score(graph_score + data_score) and

            (parents_set_size <= limit):

        # Compute scores for all possible parents sets of parents_set_size

        # in parallel

        data_score = inner_pool.map(score_function, 

            [select_data_subset(data, genes_subset), gene]

            for genes_subset in subsets(parents, parents_set_size))

        graph_score = inner_pool.map(score_function, [genes_subset, gene]

            for genes_subset in subsets(parents, parents_set_size))

        parents_set_size += 1

pool = multiprocessing.Pool(cores)

# Applying learn_parents() function to all the genes in parallel

results = pool.map(learn_parents, [(gene, data, regulators, limit) 

    for gene in genes])

Figure 3 Hybrid algorithm python pseudocode.
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Figure 4 Synthetic data testing. Comparing performance, speedup and efficiency of algorithms
on synthetic benchmark data: 20 variables x 2000 observations.
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Figure 5 Sachs et al. data testing. Comparing performance, speedup and efficiency of algorithms
on protein phosphorylation data: 11 variables x 1023 observations [13].

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/016683doi: bioRxiv preprint 

https://doi.org/10.1101/016683
http://creativecommons.org/licenses/by-nc-nd/4.0/


Frolova and Wilczynski Page 14 of 16

10.77

19.48

39.51

133.98

5.81
11.23

18.5

67.43

0

50

100

1 2

cores

R
un

ni
ng

 ti
m

e,
 m

in
s

dataset

8 regulators, 8 targets, 25600 observations

7 regulators, 7 targets, 25600 observations

7 regulators, 7 targets, 12800 observations

8 regulators, 8 targets, 2560 observations

Figure 6 Hybrid algorithm performance on the datasets of difference size. The tendency is
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Figure 7 DREAM4 10 genes network, evaluation by MINET package. Area under ROC and PR
curves are ranked across different methods. BNFinder is used with parents sets limit 2 and
suboptimal parents sets 30.
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Figure 8 DREAM4 10 genes network, evaluation by NetBenchmark package. Area under ROC
and PR curves are ranked across different methods. BNFinder is used with parents sets limit 2 and
suboptimal parents sets 30.
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Figure 9 DREAM4 100 genes network, evaluation by MINET package. Area under ROC and
PR curves are ranked across different methods. BNFinder is used with parents sets limit 2 and
suboptimal parents sets 30.
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Figure 10 DREAM4 100 genes network, evaluation by NetBenchmark package. Area under
ROC and PR curves are ranked across different methods. BNFinder is used with parents sets limit
2 and suboptimal parents sets 30.
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Figure 12 GNW 2000 genes Yeast synthetic dataset, evaluation by NetBenchmark package.
GNW 2000 short dataset contains only 150 observations, while GNW 2000 has all the 2000
observations. The effect of observations number increase is clearly seen for all the methods.
Genie3.noregs is the result of Genie3 execution without the regulators list. BNFinder is used with
parents sets limit 2 and suboptimal parents sets 30.
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Figure 13 BNFinder parameter space examination on GNW 2000 genes Yeast synthetic
dataset, evaluation by NetBenchmark package. GNW 2000 short dataset contains only 150
observations, while GNW 2000 has all the 2000 observations. Limit stands for parents set size
limit, while subopt denotes the number of suboptimal parents set in the output network.
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