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When learning a complex task our nervous system self-organizes
large groups of neurons into coherent dynamic activity patterns.
During this, a cell assembly network with multiple, simultaneously
active, and computationally powerful assemblies is formed; a pro-
cess which is so far not understood. Here we show that the com-
bination of synaptic plasticity with the slower process of synaptic
scaling achieves formation of such assembly networks. This type of
self-organization allows executing a difficult, six degrees of freedom,
manipulation task with a robot where assemblies need to learn com-
puting complex non-linear transforms and – for execution – must
cooperate with each other without interference. This mechanism,
thus, permits for the first time the guided self-organization of com-
putationally powerful sub-structures in dynamic networks for be-
havior control.

When we are performing a complex skill, like neatly stacking two blocks, our motor
system needs to accurately control position and orientation of the hand, which is a process
that took us quite some time to learn when we were children. During learning, synaptic
plasticity in the nervous system forms functional networks – often called ”cell assemblies”
– that allow us to perform motor fine-control. Several thousands of neurons in many cell
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assemblies are active during any motor task and perform complex non-linear calculations
to control the different degrees of freedom of the respective limbs. Adults master a large
number of motor skills requiring a multitude of different cell assemblies most – if not
all – of which have been formed by learning. To achieve such mastery, our brain has
to solve a very complex problem. It needs to create a large number of computationally
very powerful assemblies, which can only be achieved by using relatively small quantity of
neurons for any one of them and by involving the same neurons in many different motor
tasks. How such interwoven assembly networks are formed and how powerful assemblies
can coexist therein without catastrophically interfering with each other remains unknown.
Understanding this would, thus, carry substantial promise for our comprehension of how
the brain can self-organize and provide the required requisite variety for complex motor
control (1).

It is known, on the one hand, that networks can be trained to perform complex non-
linear calculations (2,3), which could be used for motor control. This requires that those
networks produce a reservoir of rich, transient dynamics from which the desired outputs
can be siphoned off (4). On the other hand, it is also easy to create cell assemblies
using hebbian learning rules that strengthen a synapse if pre- and post-synaptic neurons
are co-active within a small enough time window (5, 6). It appears straight-forward to
combine those mechanisms to arrive at the required assembly networks. Alas, two effects
can destroy such an approach. Self-organization of neurons into cell assemblies by the
processes of synaptic plasticity induces ordered or even synchronized neuronal dynamics
replicating basic processes of long-term memory (7–9). This will reduce the dynamics of
the network often to a degree that the required requisite variety for complex calculations
cannot be provided by it any longer (10). In addition, trying to simultaneously create
multiple assemblies will lead indeed to the aforementioned catastrophic interference if one
cannot prevent them from growing into each other.

In this study, we exploit for the first time the interaction between neuronal and synap-
tic processes acting on different time scales to enable, on a long time scale, the self-
organized formation of assembly networks, while on a shorter time scale, to conjointly
perform several non-linear calculations needed to control six degrees of freedom of a mo-
tor system (robot) in parallel.

To understand how this can be achieved, we first show that assembly growth will lead
to improved computational power using an example where a growing assembly is required
to calculate some freely chosen non-linear transforms (e.g., power of 7 of the input).
Crucial for this is that assembly growths must not create persistent or even synchronized
network activity by which the required requisite variety of the assembly dynamics would
be destroyed.

An external signal repeatedly stimulates several randomly chosen rate-coded input
neurons in a randomly and very weakly excitatorily connected neuronal circuit with dom-
inating inhibition (Figure 1 A and Materials and Methods). Every stimulation induces
synaptic strengthening and thereby the outgrowth of a cell assembly starting from the
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Figure 1: Cell assembly size and computational performance are correlated. (A) An input
is delivered to several neurons (red disks) in a random neuronal network with very weak but plastic
excitatory (black lines) and constant inhibitory connections (green dashed lines). The interaction of
long-term potentiation (LTP) and synaptic scaling (Syn. Sca.) enables the formation of a cell assembly
(red and orange disks) by increasing synaptic efficacies (thicker lines) when repeating the input several
times. Note this network is not topographically organized. The here shown neighborhood ordering is for
graphical reasons only. Output neurons (blue disk) are connected (blue dashed) to the full network and
trained in a conventional way to create the desired output (by FORCE (11) or ordinary least squares
(OLS) (2)). Here we used a single output neuron, but several can be connected without additional
constraints (see also Fig. 3). (B) With more learning trials the assembly grows and integrates more
neurons. To measure this, we arbitrarily define assembly size by that set of neurons connected with
efficacies larger than Θ = 0.5 ·Wmax. (C) Parallel to the outgrowth of the cell assembly the error of the
system to perform several linear and non-linear calculations decreases. linear: O(t) = I(t); nonlinear 1:
O(t) = I(t)3; nonlinear 2: O(t) = I(t)7; O(t): output; I(t): input; please see SOM for protocol details.

input neurons (Figure 1 B and supporting online material [SOM]). Synaptic weights and
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– as a consequence – neural activities remain limited by the interaction of hebbian synap-
tic plasticity (long-term potentiation [LTP]; (12)) with the slower mechanism of synaptic
scaling (13,14). This aspect will be of direct relevance when later on considering several
assemblies in parallel. Importantly, due to the dominating inhibition, the here formed cell
assembly does not serve as an attractor of the neuronal dynamics and it does not produce
persistent neuronal activities (9), which would be detrimental to computation (see SOM).
Thus, with this type of repeated stimulation we obtain a growing assembly with transient
activity.

Now we can analyse the computational power of such a structure during the growth
process. To this end we interrupted assembly growth after each stimulus presentation
and trained an output neuron connected to the whole network to perform one of several
linear or non-linear calculations (2, 3, 11) and measured the error. We observed that the
performance of the network strongly correlates with the size of the cell assembly (compare
Figure 1 B to C).

Comparing the self-organized assembly network to networks with unchanging synapses
(”static” networks) shows that it is indeed the embedding of a strongly connected assembly
that creates the computational power. Computational reservoirs are commonly generated
using random connectivity of variable strength between many neurons (2, 3) and, as a
result, weak and strong synapses are randomly distributed therein. Inputs are also pro-
vided to randomly chosen units (2, 3). Consequentially, an input will lead to a spatially
extended activity trace including many neurons if and only if one makes sure that there is
a large-enough number of strong synapses existing in the network to begin with. In these
cases the error, when performing a computation, is indeed low. The data highlighted
by a light blue box in Figure 2 A shows that randomly connected static networks with
few strong synapses (Fig. 2 B) will perform poorly as compared to networks with many
strong synapses (dark blue box Fig. 2 A and Fig. 2 C), where the error is essentially
zero. Remarkably, the same small error is obtained with an assembly network after some
growth (Fig. 2 D) with only a small fraction of strong synapses, which can be seen when
comparing the yellow (early learning) with the orange box (late learning) in Figure 2 A.
The inputs provided to the assembly penetrate deep because strong synapses exist mainly
within the assembly and this creates the required rich dynamics. This is beneficial for
several reasons. Limiting the number of randomly distributed strong synapses mitigates
the problem of potential run-away activity (15), which would entirely destroy computa-
tion. In addition, possibly the most interesting property of such assembly networks is
that, due to the limited number of strong synapses per assembly, several assemblies can
coexist and/or compete in a realistic way with each other. As shown above, synaptic
scaling counterbalances the unrestricted growth processes of hebbian learning guarantee-
ing that the system stays in the non-persistent activity regime (9, 15). But, in addition,
this also creates a competition between different presynaptic sites (16). This competition,
which takes place on a neuronal scale, leads to a competition/coexistence between cell
assemblies on the network scale. Hence, with an alternating, balanced presentation of
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Figure 2: Comparison of the computational power of different networks relative to their
synaptic structure. (A) The error in performing non-linear calculations (here nonlinear 1) decreases
with the number of strong synapses having a weight of W > 0.5 ·Wmax in the network. We created
300 randomly connected but unchanging networks (”static”) with 100 neurons each; plotting the error
they produce against their number of strong synapses (blue, black dots). Green dots show the error from
networks that are obtained during the temporal development of assembly formation (temporal progress
indicated by the arrow). The assembly network (green) needs far fewer strong synapses as compared
to the randomly connected static structures to achieve small errors (black: all neurons receive input;
blue: same neurons as in the assembly network receive input). Shuffling the weights in the assembly
network (orange dots) leads to the same low performance as for the static networks demonstrating that
random arrangements of the same strong synapses does not suffice. (B-E) Schematic illustration of the
underlying topology for different networks (red dots: stimulated neurons; orange dots: non-stimulated
neurons driven by the input due to strong enough synapses; black lines: strong synapses; colored shadings:
regions driven by the input). (B) static network with few strong synapses, (C) static network with many
strong synapses, (D) plastic network after few learning trials (yellow shading) and after many learning
trials (yellow+orange shading; dashed lines=strong synapses obtained by longer learning). The color
coded boxes in panel (A) show the errors for cases (B-D). (E) Schematic of a plastic network with two
cell assemblies competing for neurons (striped areas). (F) Competitive development of the two competing
cell assemblies ”A” and ”B” as a function of the input protocol (top).

two stimuli (”A”,”B”) two assemblies embedded in the same network grow in the same
way (Fig. 2 F before trial 50), but with dominant presentation of stimulus ”A” the cor-
responding assembly will take over (Fig. 2 F after trial 50) without interference between
input traces. This is difficult to achieve in a random network as one has no control over
the actual input trace configurations, which might easily randomly interfere and perturb
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each other (10,17).
Motor control requires coordinated activation of many motor units. Evidences exist

that this happens by subsequent triggering of muscle-synergies (18, 19), which control a
subset of motor units into performing certain contraction patterns. Thus, multiple cell
assemblies, embedded into the topography of the motor cortex, are involved in generating
the correct activation sequence for the execution of a skill. Accordingly, when learning
a new task, neural self-organization structures the network into the required assemblies.
When practicing we check how far we have deviated from the desired goal and our nervous
system derives from this an error signal used as feedback to guide the learning.

A similar feedback-controlled motor learning process can be shown in our network
using a difficult task with a robot. Here we do not attempt to provide a detailed model
of the human motor system. Rather we are concerned with the challenging problem to
self-organize a network into functional units under feedback error control. For this we
were choosing an accurate pick&place problem, which is very difficult to learn for small
children as well as machines. The task was to insert a block into a very tightly fitting box
(Fig. 3 A). To make this harder, we provide as reference signals for the learning only one
single example action of putting the block into the box without having to rotate it and one
other example of just rotating the block in right way and dropping it in the box without
position change (see SOM). Creating a conjoint trajectory, thus, requires combining both
these components. However, it can be observed that the robot fails by a substantial
margin when it tries to do this prior to assembly growth (left panel in Fig. 3 C). Will
training an assembly network lead to success? After all, it remains to be shown that
there is no destructive cross interference occurring when several assemblies are active for
generating a conjoint trajectory.

In order to solve this problem, we use two assemblies (Fig. 3 B), one for position and
one for orientation and each computes one motor control function per degree of freedom
used for trajectory generation (assembly X: three control functions for position, assembly
φ: three for orientation (20)).

Two learning modes are possible. It is possible to learn both task components (position
and orientation) simultaneously (not shown), or one can let the network learn alternatingly
to put or rotate the object without performing both components together. We are here
showing the second variant, because it demonstrates more clearly how the system behaves
and how coexistent assemblies are formed.

Figure 3 D shows that the error signal drives the outgrowth of the assemblies, which
gets slower as the error decreases until the system reaches the minimal cell assembly
sizes required to successfully complete the task. Thus, such networks, in contrast to
static structures, generate an optimal trade-off between performance and resources used.
Remarkably, these cell assemblies are formed to coexist without leading to interfering ac-
tivities and the final, total error is similar to the error of the two independent components
(green shaded box in Fig. 3 D). This way, without learning this explicitly, a conjoint and
accurate trajectory (21) is being executed by the robot on co-activation of both assemblies
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after only 8 learning trials (right panel in Fig. 3 C).
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Figure 3: Highly accurate control of position and orientation in a robotic pick&place
action is achieved by learning in coexistent, non-interfering assemblies. (A) Three degrees of
freedom (DOF) each, for the trajectories for position x and orientation φ, need to be adjusted to an
accuracy of about 1mm on each side to make the white block fit into the brown box by the robot. A
human has provided two example trajectories by guiding the robot arm; one for position-only (DOFs:
x1, x2, x3) and one for orientation-only (DOFs: φ1, φ2, φ3), which are used for reference. Their trajectories
are encoded by dynamic movement primitives (DMPs (22, 23), see Materials and Methods), which use
Gaussian kernels for every DMP equally spaced along the trajectory. (B) Learning needs to adjust the
amplitude of the kernels until success. For this we grow and train two assemblies using average and
detailed trajectory error (error(Trial), error(t)), respectively. Learning of position (input: Taskx) and
orientation (Taskφ) is done independently and alternatingly. (C) Robot performance and trajectories
before and after learning. (D) Both errors (for x and φ) drop into the success range with only eight
learning trials. Please see SOM for protocol details and videos.

Previous works indicate that adaptation of the synaptic efficiency influences compu-
tational performance in neural networks (10,11,17,24,25), but the self-organization of a
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network into computationally powerful sub-structures poses a difficult and as yet unre-
solved problem.

In the current study efficient learning of a difficult motor skill was obtained by the com-
bination of slow self-organization of the network into non-interfering cell assemblies with
faster, error-driven acquisition of computational properties within these assemblies. As
shown above, such systems are capable of combining substantial computational power with
an economical use of network resources accommodating competition and/or coexistence
of assemblies as determined by the inputs. This type of dynamic network restructuring
is novel and not possible in static networks.

Structure, viz. cell-assembly-, formation must be adaptive but not volatile, which
suggests that synaptic plasticity needs to be stabilized by processes that act on longer
time scales – such as synaptic scaling. Our analytical results (see SOM) show that the
combination of plasticity and scaling is indeed especially well suited to achieve coexistent
assemblies and that it is difficult to achieve this by other plasticity rules (see SOM and
(9,26)).

Furthermore, it is known that synaptic plasticity and scaling act in many cortical areas
(27, 28) and, thus, the interaction between cell assembly formation and their transient
dynamics is not restricted to the here chosen example. For instance, experiments and
models provide evidence for the existence of transient dynamics (29) within cell assemblies
(30) in the prefrontal cortex, too.

An important additional aspect of such systems is that they will stay in a non-
persistent activity regime without which computations will deteriorate (31). The transient
activity present in our system is probably equivalent to the asynchronous irregular (AI)
state in spiking networks (15), which, in the same way, provides rich and transient dy-
namics (32). This state is dominated by inhibition and, therefore, does not need any
fine-tuning between inhibition and excitation (24); a strong property which is also shared
by the here presented system. In particular, experimental data from delayed vibrotac-
tile discrimination tasks are best described by a combined model of cell assemblies and
transient dynamics (33). Thus, cell assemblies with transient neuronal dynamics seems
to be ubiquitous feature in neural systems and the here presented results allow a better
understanding of how such structures might be dynamically shaped into computationally
powerful assembly networks.
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