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Abstract

More than a year after the emergence and rapid spread of porcine epidemic diarrhea
virus (PEDV) in the U.S. swine herd, the extent to which the virus has spread through
pathways associated with the transportation of swine remains unclear. We analyze
counts of state-level, laboratory-confirmed infections to better discern the pathways by
which the virus has propagated. In particular, we aim to establish and quantify any
large-scale association of swine movements with the spread of PEDV. To that end, we
find that the similarity of the dynamics of cases in a pair of states increases with
transport flows. We find with stability selection that balance sheet variables and the
number of farms in a state are likely be relevant predictors of PEDV burdens. Fitting a
time series susceptible–infected–recovered model by maximum likelihood, we reject the
hypothesis that flows have no effect on the transmission rate. We show with simulation
how our state-level analyses may be affected by farm-level variation in risk relations.
Overall, the results are consistent with the common belief that transmission is associated
with swine movement and provide quantification of the strength of association.

Author Summary

In the spring of 2013, a virus to which the U.S. swine population was highly susceptible 1

emerged and began causing high-mortality outbreaks. The virus is highly contagious 2

but exactly how often it spreads by any particular route between farms remains 3

unknown. We find the similarity in the dynamics of infected farms between states to 4

increase with the flow of live swine between them, which supports the hypothesis of 5

transportation-associated spread. Looking at cumulative burdens, we find that swine 6

inventories are more likely to be relevant predictors than climatic variables or the 7

number of farms in a state. The association of inventories with flow volumes may 8

explain why. Consistently, the time series data support the inclusion of flow volumes in 9

models of disease spread. Thus overall we find evidence for transportation-associated 10

spread, which supports the emphasis placed on transportation biosecurity in the control 11

of this and similar pathogens. We also submit that more conclusive findings could be 12

obtained from the next such event with incremental improvements in surveillance. 13
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Introduction 14

The 2013 emergence of porcine epidemic diarrhea virus (PEDV) [1] in the United States 15

has provided an example of both the economic hardships livestock diseases can cause 16

and our limited understanding of how such diseases spread. This virus acutely infects 17

the intestine and causes severe diarrhea and vomiting [2]. The first confirmed U.S. 18

outbreak occurred in April [3], and in less than a year PEDV outbreaks were confirmed 19

in 27 states [4], states that together produce 95 percent of the U.S. pig crop [5]. Farms 20

experiencing outbreaks have suffered 90 percent and higher losses of unweaned pigs [3]. 21

The time it takes for a farm to return to stable production is highly variable but on the 22

order of weeks, leading to great expenses in infection control costs and production losses 23

alike. 24

Losses are also apparent on a national economic scale. Producers had for the 25

previous 8 years been making steady increases in the average litter size of about 0.16 26

head per year [6]. By November 2013, the average litter size had begun an abnormal 27

downturn [6], dropping 0.66 head by March 2014 [7]. The virus also affected swine 28

production in other parts of America and Asia, as reviewed by Refs. [8] and [9]. 29

With no vaccines of proven efficacy yet on the market, producers wishing to protect 30

their herds from PEDV must find effective practices to prevent exposure of their herds, 31

making research into the mechanisms by which PEDV is spreading a priority. 32

Transportation-associated transmission of PEDV has been supported by the observation 33

at harvest facilities that it spreads among trailers used to transport swine [10], and 34

some experts believe that current resources of livestock trailers, trailer-washing facilities, 35

and transport personnel are insufficient to allow for a standard 3-hour trailer cleaning 36

between every load [11]. With such concerns in mind, some states have responded to 37

PEDV by requiring that imported swine are from PEDV-free premises. Nevertheless, in 38

many of the outbreaks occurring on U.S. farms, the source of infection remains open to 39

speculation; no animals were introduced to the farm in the weeks leading up to the 40

outbreak and no personnel, feed, or equipment provide a clear link to another 41

outbreak [3, e.g.]. Research is in progress to evaluate the importance of 42

transportation-independent mechanisms of spread such as airborne particles [12] and 43

contaminated feed [13–16]. 44

Most of the research on PEDV involves detailed investigations on a small scale. For 45

example, there have been epidemiological investigations of infected farms in North 46

Carolina and a cluster of infected farms in Oklahoma and adjacent states [17]. Such 47

work is effective for determining the biological plausibility of different routes, but the 48

risk-factors identified in a small-scale study may be specific to the small area of the 49

study. Modeling studies based on large-scale surveillance data, such that of bovine 50

tuberculosis in Ref. [18], can thus be a valuable complement to other work by providing 51

evidence that a transmission route is consistently used across a large population. 52

Here we analyze cases of PEDV-infected farms to evaluate at the national level 53

evidence for transportation-based pathways of spread. We consider whether states that 54

exchange large numbers of swine have similar PEDV dynamics, what predictors have 55

the most robust association with PEDV burdens, and whether incorporating flows 56

improves the fit of a mechanistic model of PEDV spread. 57

Results 58

A few preliminary facts pertain to all our results. First, all of the contiguous 48 states 59

share some portion of the nation’s swine but the Midwest and North Carolina are areas 60

of major concentration (Fig. 1A), holding some 88 percent of the inventory [5]. 61

Second, PEDV data are available at the state level in the form of weekly counts of 62
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the number of diagnostic case submissions that tested positive for PEDV. These counts, 63

reported as positive accessions, appear to reflect swine inventories fairly well (Figs. 1A 64

and 1B), but in fact are likely to be informative of the number of infective farms because 65

each infected farm will submit a limited number of samples for testing. We refer to 66

positive accessions as cases and work with the assumption that they are correlated with 67

the number of PEDV-positive farms. We analyze cases from the year 2013, which has 68

the advantage that farms protected by their immunity rather than a lack of exposure 69

were most likely rare during this initial period of spread. As of June 2014, data on the 70

number of infected farms is available. In support of our assumption that counts of 71

positive accessions and positive farms are correlated in 2013, we find that they have a 72

Spearman rank correlation of 0.74 with data from June 2014 to February 2015 [19]. 73

Third, as a proxy variable for all pathways of spread involving shipment of live 74

swine, we use estimates of swine transport flows (i.e., the total number of swine moved 75

between pairs of states each year for purposes other than slaughter). These flows vary 76

greatly in size but generally the larger ones move swine into the Midwest (Fig. 1C). 77

While they may seem to be a crude proxy, previous phylogeographic analysis [20] has 78

found evidence that they were associated with movement of H1 influenza A virus among 79

swine. A detailed description of the data we have analyzed appears in S1 Text. 80

Flow Cross correlation

A

B

C

AL
ARAZ

CA CO

CT

DE

FL

GA

IA

ID

IL IN

KS KY

LA

MA

MD

ME

MI

MN

MO

MS

MT

NC

ND

NE

NH

NJ

NM

NV

NY

OH

OK

OR

PA
RI

SC

SD

TN

TX

UT VA

VT

WA

WI

WV

WY

1 10 100Cases

AL
ARAZ

CA CO

CT

DE

FL

GA

IA

ID

IL IN

KS KY

LA

MA

MD

ME

MI

MN

MO

MS

MT

NC

ND

NE

NH

NJ

NM

NV

NY

OH

OK

OR

PA
RI

SC

SD

TN

TX

UT VA

VT

WA

WI

WV

WY

100 10,000Inventory 2,000,000
1,000,000
100,000
10,000
1

0.7
0.1
0.0
-0.1
-0.7

D

Figure 1. Spatial structure in the PEDV outbreak reflects that of swine production. (A) State-level swine
inventory estimates in thousands of head. (B) Cumulative cases in each state for 2013. (C) Network of estimated annual
interstate flows of head of swine. The arrow in the key indicates the direction of flow along the color gradient. (D) Network of
cross correlation in weekly cases between states reporting cases in 2013. In both (C) and (D), edges with similar origins and
destinations are bundled together to make spatial patterns in relationships visible.
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Flows and cross correlations of cases 81

To measure the coupling of disease dynamics, we computed the cross correlation with a 82

lag of 1 week between all pairs of states reporting cases (Fig. 1D). A simple 83

metapopulation model predicts that cross correlations will increase with increased 84

contact rates between populations [21]. Consistent with this prediction, we found that 85

cross correlations were correlated with the logarithm of transport flows. This relation 86

held whether flows and cross correlations were treated as directional (Fig. 2A), were 87

averaged over both directions (S1 Figure), or were ranked (S2 Figure and S3 Figure). 88

This correlation seemed to be driven in part by concentration of both high cross 89

correlations (Fig. 1D) and large flows (Fig. 1C) in Midwestern states. The cross 90

correlations of these states results from the presence of a small wave of cases early in 91

the outbreak and a much larger wave toward the end of our observations (Fig. 2B, left 92

column). To describe a second point of support, Kansas and Oklahoma share a 93

distinctive period of high cases in the middle of the time series and fairly large flows (S4 94

Figure and Fig. 2B). 95
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Figure 2. Similarity in case dynamics correlated more strongly with transport than with distance. (A)
Scatter plots and Pearson correlations between shipment flows, similarities in PEDV dynamics, and spatial proximity. These
state-to-state relationships are measured as annual transport flows, cross correlations (CC) of cases, and negative
centroid-to-centroid great circle distances (-GCD). Stars next to the correlations indicate the significance level from a Mantel
test as follows: *, P < 0.05; ***, P < 0.001. -GCD is in units of 1000 km. (B) PEDV dynamics for selected states. Distinct
shapes are apparent in the time series of the Midwestern states (MN, IL, IA), Kansas and Oklahoma, and North Carolina.

Now, the flows were themselves correlated with the geographic distance between 96

states, and these distances were in turn correlated with cross correlations (Fig. 2A). 97

Thus we also examined the partial correlation of flows and cross correlations, controlling 98

for geographic distance. This partial correlation equaled about 0.31 whether directed or 99

undirected relationships were used, and thus controlling for distance does not greatly 100

diminish the correlation. As the limited strength of the correlations in Fig. 2A also 101

indicates, there is not a clear linear relationship between the sizes of flows and cross 102

correlations. For example, North Carolina’s time series did not correlate strongly with 103

many other states in spite of North Carolina being a major source of swine for many 104

other states (S4 Figure). 105
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Predictors of cumulative burdens 106

The previous analysis did not account for many potential confounding variables. To 107

address that limitation, we performed variable selection on a panel of candidate 108

variables to identify those with the most robust associations with cumulative burdens of 109

PEDV. Candidate variables were chosen based on availability and expected effects on 110

either reporting rates or risk. In addition to transport-associated risk, we considered 111

risk dependent on climate, as PEDV is an enveloped virus, and on farm density and 112

geographic distance, as spatial clusters of infection have been reported. Table 1 contains 113

a brief description of all of the variables considered. 114

Table 1. Variables available for selection in regression model of cumulative cases. This table summarizes the
variables used by describing groups of one or more variables that were closely related.

Variable group Description
Number of operations Count of livestock operations in state with 25 or more swine.
Balance sheet Dec. 2012 swine inventory and 2011–2012 pig crop, inshipments, and marketings.
Farm resource region Proportion of swine farms in each state in each region, indicative of climate.
Nearby cases Weighted average of cases nearby in flow network or geographically.
Farm density Summary statistics for each state of the number of farms in each county per km2.

We considered cumulative burdens to be an appropriate response variable because 115

many of the candidate variables were not time-varying. Also, cumulative measures of 116

burden may be more robust measures of risk. Using the more detailed data available 117

after June 2014 [19], we found the Spearman rank correlation between positive 118

accessions and positive farms to equal 0.91, as compared to 0.74 for the weekly counts. 119

We used absolute burdens rather than prevalence as the response variable because of 120

uncertainty in the correct denominator for calculation of prevalence. Our analysis of the 121

cases by age class, available in S2 Text, indicates that sampling of cases may be highly 122

biased toward farms with suckling pigs, which is reasonable because such farms would 123

likely observe the most mortality in an outbreak [22]. However, we did not attempt to 124

correct for this bias, as it was not clear that such a correction would be accurate. 125

Most of our predictors were correlated with other predictors as well as with the total 126

cases in each state, making it unclear which variables were likely to be the best 127

predictors. We used elastic net regression [23] with stability selection [24] to identify a 128

set of best predictors. Further details on the modeling approach are in Materials and 129

Methods. 130

With this approach, we found that the number of farms in a state was the only 131

variable selected as a reliable predictor of whether it reported any cases. Among those 132

states reporting cases, swine inventory and marketings were selected as predictors of the 133

total number of cases. 134

Because estimates of average pig litter size are available and PEDV has high 135

mortality among newborn pigs, we considered percent decrease in pig litter size as a 136

second cumulative burden. We fit a model for the probability that a state’s decrease 137

exceeded 2 percent, which split the decreases into two loose clusters. For this model, 138

swine inventory was the only variable selected. 139

Flows in a model of transmission 140

One explanation for the robust association of inventory with cumulative burdens is that 141

transport flows increase with inventories, and that farm-to-farm contact rates increase 142

with transport flows. One explanation for the comparatively weak association of nearby 143

cases with cumulative burdens is that a more detailed model which includes time is 144

necessary to see their effect. To flesh out these explanations, we fitted the case data to 145
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time series susceptible-infected-recovered models. See the Materials and Methods for 146

the derivation of these models. 147

Fig. 3 displays the predicted and observed marginal relationships between flows and 148

cases for one of the models, and suggests that flows have an effect. Comparing the 149

likelihoods of models with and without a term for within-state flows, we found evidence 150

against the hypothesis that flows had no effect on transmission rates (χ2
1 = 12.9, 151

p < 0.001). Among those models containing flows, undirected models, which assumed 152

that flows increased contact rates in both source and destination states, fit best, and 153

directed models, which assumed that flows increased contact of susceptible farms in the 154

destination state to infective farms in the origin state, fit worst (Table 2). However, the 155

parameter estimates were generally similar for all of these models, with flows having an 156

appreciable effect (Fig. 4).
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Figure 3. Transport flows were predictive of the number of new cases. The
line is R’s [25] LOESS smoother of predicted values from the undirected model, where
predictions were calculated for each observation by adding fixed effects and conditional
modes of random effects. The points are the original data. To display their density,
they have been made semi-transparent and jittered along the y axis. The y axis was
transformed using y = log(Cases + 1).

157

Effects of farm-level heterogeneity 158

We have analyzed state-level data with the aim of better understanding farm-level 159

relationships. This ecological approach made the large scale and scope of this study 160

possible but such an approach raises the question of how individual-level variation 161

around group averages may be affecting the results. Thus we conducted simulations to 162

clarify how farm-level variation within states could affect the apparent relationship 163

between state-level flows and cross correlations. 164
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Table 2. Summary of models. The models chiefly differ by how contact is assumed
to depend on flows. In the null model, denoted by none, contact was independent of
flows. In the internal model, contact was a function of within state flows. In the
directed model, contact was a function of flows moving into a state and within-state
flows. In the undirected model, contact was a function of both flows into and out of a
state. The column “Fit η” indicates whether we estimated the value of η, which
corresponds to risk that is independent of the number of infective farms. The symbol θ
denotes the dispersion parameter of the negative binomial response. The symbol σ
denotes the standard deviation of the random effect of State on transmission rates. The
abbreviation d.f. is for degrees of freedom (i.e., the number of parameters estimated).
∆AIC gives the AIC (Akaike information criteria) of a model minus the lowest AIC of
all models.

Flow term Fit η Intercept Intercept σ̂ d.f. Log lik. ∆AIC
undirected yes −4.5 2.21 1.36 8 −999.8 0.0
directed yes −4.7 1.94 1.52 8 −1017.9 36.3
internal yes −4.0 2.20 1.42 8 −1005.4 11.3
internal no −3.8 2.17 1.10 7 −1005.6 9.7
none no −3.9 2.16 1.52 6 −1012.1 20.6

Our model tracked the infection status of individual farms and included the full set 165

of relationships by which farms could infect each other. Farms were represented as 166

nodes in a network, and the set of transmission routes as undirected edges. A pair of 167

states was represented by placing each of the nodes into one of two disjoint sets. 168

To obtain a simple model of the dynamics of PEDV, we use a stochastic 169

susceptible–infected–susceptible (SIS) model in which the states of the vertices are 170

either susceptible to infection from any of its neighbors (i.e., other vertices that share an 171

edge with it) or infective and able to spread infection to any of its neighbors. Full model 172

specifications appear in Materials and Methods. 173

The use of an SIS model is a simplification that does not include the immune state 174

farms are likely to experience following an outbreak, in which no clinical signs are 175

visible and farms may be less infectious. However, the eventual return to a susceptible 176

state in our model is supported by reports [26] of farms experiencing two PEDV 177

outbreak within about one year of each other. Such reinfections are to be expected 178

because, unless controlled oral exposure or vaccines are regularly used, a farm’s 179

immunity will wane as animals that were exposed to the virus are replaced. 180

If we consider sets of vertices in each of two partitions, any edges that link vertices 181

in each of the partitions are members of what is called the edge cut set of those 182

partitions—removing those edges would cut off all paths between them. We refer to this 183

set of edges as the cut set for brevity. Our study consists in calculating the cross 184

correlation (with a lag of 1 time step) of the number of cases in two states with varying 185

cut sets. The goal is to see how the cross correlation in cases between a pair of states 186

depends on both data we have (the flows of swine) and data we do not have (how the 187

flow is distributed among pairs of farms). Clearly, the total flow, size of the cut set, and 188

the number of vertices incident to edges in the cut set are all important variables. We 189

use three schemes to tune these variables systematically to provide insight into how they 190

work together to determine the observable coupling of two subpopulations. These 191

schemes, fully described in Materials and Methods, cover extreme scenarios in the 192

distribution of cut set edges among nodes and thus allow for the full range of possible 193

outcomes. 194

As seen in models that assume homogeneous mixing [27], the largest cross 195

correlations typically occur when the population of infected nodes is near subsistence 196
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Figure 4. Parameter estimates for the transmission model. The estimates are
not sensitive to the choice of interstate flow model, and flows have similar effect sizes to
farm densities. Baseline risk refers to the parameter η, which determines the risk of
infection when no infectives are present. The error bars represent 50- and 95-percent
Wald confidence intervals. The scaled variables were divided by the interquartile ranges
to make their effect estimates comparable. The interquartile ranges for week and the
logarithm of farm density were were 19.0 and 4.5. Those for the logarithm of undirected,
directed, and internal (none interstate) transport flows were 4.5, 4.3, and 3.8.

levels and transient flare-ups in the number of infected nodes occasionally occur in one 197

population and move to the other. In such cases, the R0 baseline parameter (defined in 198

Materials and Methods) is near 1, and Fig. 5A shows a decrease in the cross correlation 199

as this parameter changes from 1 to 2. 200

In a similar manner, intermediate values of the capacity factor, which we define as 201

the average weight of edges between the subpopulations, lead to the largest cross 202

correlations (Fig. 5B). The capacity factor is representative of the transport flows 203

between states, and the increase in cross correlations as the capacity factor moves from 204

0.5 to 1 confirms the intuition that cross correlations should increase with flows if flows 205

are transmission pathways. The decrease in the cross correlations as the capacity factor 206

moves from 1 to 2 is counter-intuitive and may explain the weakness of the correlation 207

between cross correlations and flows in Fig. 2A. 208

In contrast to the previous two variables, the cross correlation is a non-decreasing 209

function of the number of edges in the cut set (Fig. 5C). It seems that a certain 210

threshold number of edges is necessary for large cross correlations to occur and that this 211

threshold depends on the wiring scheme of the network. The controlling parameter for 212

this threshold appears to be closely rated to the vertex connectivity of the network 213

(Fig. 5D). The vertex connectivity of a network may be defined as the number of 214

vertices that must be removed to disconnect part of the network, and it has a close 215
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Figure 5. Dependence of the cross correlation of cases on the transmission rate, between-subpopulation
flows, and individual-level contact network structure. These relationships are shown in terms of (A) R0 baseline, (B)
the capacity factor, (C) edges in the cut set, and (D) vertex connectivity. For (A) and (B), results from subpopulations of size
16 and 32 are combined in each plot and the maximum number of edges have been added such that the network is fully
connected. In (A), the capacity factor is fixed at 1 as R0 baseline varies. In (B), R0 baseline is fixed at 1 as the capacity factor
varies. For (C) and (D), the subpopulations were of size 64, R0 baseline was set to 1, and the capacity factor was set to 1. The
red lines and semi-transparent bands interpolate through sample means and 95% confidence intervals for each of the schemes
of edge addition. The network diagrams on the right give an example of a network with seven between-subpopulation edges.
In each diagram, the two vertically aligned columns of dots represent the nodes in each subpopulation. Within-subpopulation
edges are not shown to keep the diagrams simple. For all panels, the expected number of infections introduced from outside
was set to 1 per time step, and points have been jittered and made semi-transparent to illustrate densities.

connection to the number of vertex-independent paths between pairs of non-adjacent 216

vertices [28]. The implication is that the large cross correlations observed between some 217

pairs of states (Figs. 1C and 2A) are not as informative of the number of edges 218

connecting farms in either state as much as of the number of independent pathways 219

spread in the contact network of the farms in the two states. 220

Discussion 221

We have evaluated evidence for transport-associated transmission routes of PEDV at 222

the state level. We first found that the disease dynamics of a pair of states became more 223

similar as transport flows increased. To address some possible confounding, we screened 224

several candidate predictors of the cumulative burden of PEDV and found the relevant 225

ones to be total swine inventory, total number of farms, and marketings. Fitting a 226

mechanistic model, we found that including undirected or internal flows in the 227

transmission term significantly improved likelihoods. Since inventories are closely 228

related to flows, this result illustrates one interpretation of the relevance of inventory for 229

predicting cumulative burdens. A simulation study illustrated how the coupling of 230

disease dynamics at the state level may depend not only on the interstate flow data we 231

analyzed but also on how close the rate of disease spread is to the rate required for 232

long-term subsistence and on farm-level heterogeneity in numbers of interstate contacts. 233

We also found that suckling cases are highly overrepresented among all age groups. 234

Although reporting bias toward high mortality outbreaks could explain this finding, it 235

may also be the result of real differences in risk. Assuming that each time a trailer 236

arrives for a pick-up there is a similar risk of infection, and that pigs typically spend 237
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about one month on sow-farms being weaned versus three months on finishing farms 238

being fed to market weight, a sow farm of a certain size inventory would have a 239

time-averaged risk 3-fold greater than a finishing farm of the same size inventory. 240

Our result that transmission pathways are associated with transport flows is 241

consistent with the findings of Ref. [20]. Now at least two pathogens, influenza and 242

PEDV, have been found to have their movement predicted by these flow data. The flow 243

data were generated with such a use in mind [29], and these findings thus provide some 244

support of the concept. Also, this study provides parameters for indirect transmission 245

rates that are based on field data. Such parameters have a strong effect on the output 246

of outbreak simulations, but estimates are rare enough that modelers typically must rely 247

on expert opinion to set them [30,31]. 248

Our simulation results suggest a refined interpretation of the cross correlation of 249

disease dynamics as indicative of the number of independent pathways of spread in the 250

contact network linking those areas in addition to the flow of infective material between 251

those areas. This refinement may explain a few apparent contradictions in the literature. 252

For example, gravity models replicate the coupling of seasonal influenza dynamics in the 253

United States fairly well [32] in spite of some problems in replicating the commuter 254

flows [33]. Likewise, Bharti and coauthors [34] found it necessary to artificially increase 255

the coupling of coastal towns to the rest of England and Wales by 50 percent to fit the 256

observed persistence of measles in coastal towns in spite of not finding any evidence of 257

increased flows to the region. Given that the seaside was a popular vacation destination 258

at the time [35] and that crowded lodging or recreational areas could lead to large 259

numbers of contacts for children, it seems natural to attribute this increased coupling to 260

increased numbers of independent pathways of spread. The general implication is that 261

we cannot expect any particular relationship between coupling strength and flows 262

without making some assumption about the number of independent paths in the 263

underlying contact network. 264

We must acknowledge the limitations of our data. The accuracy of the case data and 265

the flow estimates are unknown. One source of error in the flows as a measure of 266

contact rates may be that they exclude transport to harvest plants, and Ref. [10] 267

observes that such movements can result in the contamination of trailers. This 268

limitation may in part explain the weakness of the correlation of flows with cross 269

correlations. At any rate, the common assumption that movements of animals to 270

slaughter represent a dead end for disease spread may well be invalid for PEDV, and 271

more data about these movements and the sharing of trailers among farms could allow 272

for estimation of any associated risks. 273

Undirected flows were used both in our statistical models and simulations, which 274

deserves some explanation. We suggest interpreting directed flows as a model of 275

transmission by movement of live animals and undirected flows as a model of 276

transmission where the trucks, trailers, and transport personnel act as mechanical 277

vectors of PEDV. For example, if a truck regularly moves animals from one group of 278

farms to another, they might pick up the virus where they drop off the animals and 279

drop off the virus where they pick up the animals just as frequently as the other way 280

around. If trucks generally serve farms in one or two states, then each such 281

mechanical-vector contact from one state to another must generally be reciprocated if 282

we suppose that the number of trucks in each state is stable over time. Given a constant 283

average shipment size, the rate of these contacts will be proportional to our undirected 284

flows. We do not suggest interpreting the better fit of the undirected model (Table 2) as 285

strong evidence that it is in general a better model for PEDV spread because we were 286

only able to differentiate between directed and undirected flows between states, while 287

the bulk of all flow is within states. 288

Flows are correlated with several other variables, and we cannot rule out that these 289
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other variables are the true drivers of the observed effect of flows. Flows increase with 290

inventory, both because more swine are moving through the farm and because they 291

often have shorter residence times, as larger farms tend to specialize on specific 292

production stages. Perhaps larger farms did not experience more PEDV outbreaks but 293

only reported them more frequently, providing a false signal that flows are associated 294

with risk. This possibility may be reduced in more recent data because the USDA 295

issued a Federal Order [36] that requires all detected outbreaks of PEDV to be reported, 296

actively managed, and monitored. 297

With the more active and detailed surveillance currently taking place, retrospective 298

analyses may allow the route of infection to farms to be more frequently identified by 299

simple considerations of the order of events in time and the biological plausibility of 300

implicated pathways of spread. However, such analyses may be inconclusive because 301

many hypothetical explanations for most infections may be consistent with the data. In 302

such a situation, assembly of further data that would allow the hazard of infection by 303

multiple routes to be modeled could allow for valuable further insight. For example, one 304

might collect data on the trailer-cleaning protocols and air-filtration systems in place for 305

different farms. Both of these biosecurity measures can be costly, so there are practical 306

benefits to understanding which one may be more effective and when. By further 307

quantifying the risk of spread by movement of animals from infected farms, we could also 308

quantify the benefits of current movement restrictions from PEDV-infected farms. Most 309

generally, the insights into the biology of PEDV and the pragmatics of data collection 310

could likely transfer to other livestock diseases and result in more effective management. 311

Materials and Methods 312

Data 313

The data on transport flows comes from a study by the USDA Economic Research 314

Service [29], and the PEDV case data are provided by the American Association of 315

Swine Veterinarians. Both data sets are open and publicly available. 316

Percent decrease in pig litter was calculated as the difference in litter size between 317

the 2013 and 2014 December through February estimates [7] divided by the 2013 318

estimates and multiplied by -100. 319

Sixteen states had individual pig litter estimates, and a group average is reported for 320

the other states. We assumed that the decreases for states in that group were close to 321

the group average, which was 1 percent, and thus that those states had decreases less 322

than 2 percent. 323

Relevant predictors of cumulative burden 324

Many states had no confirmed cases (Fig. 1B) such that the case counts appear to be a 325

mixture of zeroes and a right-skewed distribution of counts. Thus we chose to fit the 326

data to a hurdle model in which the probability of a state having a confirmed case and 327

the number of cases, given that there is at least one case in the state, are described by 328

separate regression models. 329

Elastic net regression is a penalized likelihood approach to data-driven variable 330

selection, and such an approach is less likely to lead to overfitting than alternatives such 331

as stepwise model selection or the use of Bayes factors [37, p. 59]. Stability selection 332

uses subsampling of the data to identify variables in a way that allows the probablity of 333

selecting noise variables to be limited [24]. 334

The elastic net penalty includes a tuning parameter, denoted by α, that determines 335

the extent to which groups of correlated variables are selected together. We set α to 0.8 336
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to allow for highly correlated variables to be grouped while still keeping the total 337

number of selected variables small. 338

The choice α = 0.8 was made subjectively, but we checked that the results were not 339

sensitive to this choice by also looking at the results with α ∈ {0.01, 0.2, 0.5, 1}. For 340

α 6= 1, only additional balance sheet variables were selected for all models. When α = 1, 341

inventory and resource region 4 were selected as predictors of both litter rate decrease 342

and total cases, and no variables were selected as predictors of whether any cases 343

occurred. We consider these aberrations likely to be an artifact of correlations among 344

predictors, as single members of correlated groups can be selected somewhat arbitrarily 345

when α = 1. 346

For stability selection, we used 1000 subsamples of 63.2 percent of the full data sets 347

(the same percentage that would appear in large bootstrap samples of a data set). The 348

set of selected variables was chosen by using a threshold parameter πthr of 0.6 and 349

choosing the regularization parameter λ to select as many variables as possible while 350

keeping the per-comparison error rate (i.e., the probability that any one variable is 351

incorrectly selected) below 0.05. Predictors were put onto the same scale by dividing by 352

standard deviations. 353

Transmission models 354

We assume that the expected number of infectives in state i at week t+ 1, E(Ii,t+1), 355

follows 356

E(Ii,t+1) = βi,t(
∑
jwi,jIj,t + η)αSi,t, (1)

where βi,t is the transmission rate for state i at time t, wi,j is the weight for the 357

influence of infectives in state j on susceptibles in state i, η is parameter that 358

determines the influence of other sources of infection, α determines the power by which 359

the expected number of transmissions grows with these risks, and Si,t is the number of 360

susceptibles in state i at week t. We set Si,t = Ni −
∑t−1
k=0 Ii,t, where Ni is the number 361

of farms in state i from the 2002 Census of Agriculture [38]. This model is a variant of 362

the time series SIR (susceptible–infective–recovered) model introduced in Ref. [39]. S3 363

Text discusses some of the assumptions and data we used for this model. 364

Our calculation of Si,t assumes that all farms were susceptible to infection at the 365

beginning of the epizootic and that farms pass on to an immune state following 366

infection. The assumption of complete susceptibility seems reasonable for the United 367

States given the absence of previous reports of PEDV and the high frequency of 368

high-mortality outbreaks that followed the first reported outbreak [9]. Although PEDV 369

has been observed to reoccur on a farm [26], that observation was a newsworthy 370

event [40] and it followed a 6-month interval of normal operations. Thus the assumption 371

of immunity over the 38 week period that we analyze seems reasonable. 372

Our transmission rate βi,t in Eq. 1 takes the form 373

βi,t = exp(c0 + Zi + c1t)(N
2
i di)

c2f c3i N
−2
i , (2)

where the ci are unknown parameters that we estimate, Zi represents state-level random 374

effects, di is a state-level summary statistic of the county-level farm density from the 375

2007 Census [41], and fi is value characterizing the average flow of swine through 376

individual farms in state i. c1 allows the transmission rate to vary seasonally, which has 377

been proposed as an explanation for why most cases occurred in the fall and winter. For 378

the summary statistic di, we used the median county-level density among counties with 379

any farms in the state. The results were not sensitive to using this statistic versus 380

others such as the overall median or mean. di is multiplied by N2
i because that led to 381

the greatest correlation between the density and flow terms on the logarithmic scale, 382

and we wished to as much as possible separate the estimated effects of flows with those 383
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of farm density. It also allowed us to see whether density-dependent transmission [42] is 384

suggested by the data, which would have corresponded to estimates (ĉ2, ĉ3) ≈ (1, 0). 385

The characteristic flows fi in Eq. 2 and the weights wi in Eq. 1 are calculated in 386

various ways to model the rate of contact of a susceptible farm with infected farms in 387

various scenarios. We make the derivations assuming α = 1, and values of α below 1 (as 388

usual) break the precise mechanistic interpretation of the model but can be understood 389

as capturing the effects of infective farms being clustered together in the contact 390

network. Let Fi,j be the number of swine shipped to farms in state i from farms in 391

state j per year. In the directed model, only farms receiving animals are at risk for 392

infection. Then, omitting the time subscripts for simplicity, susceptible farms in state i 393

are infected at a rate proportional to
∑
j Fi,j(NiNj)

−1Ij , or fiN
−2
i

∑
j wi,jIj , where 394

fi =
∑
j Fi,j and wi,j = NiN

−1
j Fi,jf

−1
i . In the undirected model, both farms sending 395

and farms receiving animals may be at risk, and susceptible farms in state i are infected 396

at a rate proportional to
∑
j(Fi,j + Fj,i)(NiNj)

−1Ij , which implies that 397

fi =
∑
j Fi,j + Fj,i and wi,j = NiN

−1
j (Fi,j + Fj,i)f

−1
i . 398

In the internal model, both farms sending and receiving animals may be at risk, but 399

transmission associated with flows only occurs within a state. Thus susceptible farms in 400

state i are infected at a rate proportional to 2Fi,iN
−2
i Ii, which implies that fi = 2Fi,i 401

and wi,j = δi,j , Kronecker deltas. Comparison of the fit of this model with the directed 402

or undirected models allows any effects of between-state transmission to be seen. The 403

internal model also includes in the case that c3 = 0 a null model which has no flows in 404

it, which we use in a likelihood ratio test of the hypothesis that flows have no effect on 405

transmission rates. 406

The values of Fi,j , when i 6= j, come directly from the estimates of interstate flows in 407

Ref. [29]. We estimated within-state flows in two ways. In the first, a demand for pigs 408

was calculated for state i from 2002 sales [38] finish-only and nursery operations plus 409

the deaths reported in the 2001 balance sheet [43]. Internal flow, Fi,i, was estimated as 410

the this demand less imports,
∑
j,j 6=i Fi,j . In the second method, Fi,i was estimated as 411

the combined sales of farrow-to-wean, farrow-to-feeder, and nursery operations less 412

exports,
∑
j,i 6=j Fj,i. For most states with large inventories, the logarithms of these two 413

estimates were similar relative to estimates from other states, and we averaged the 414

log-transformed estimates to generate a single estimate. For the other states, one of the 415

estimates was negative, and we simply used the positive estimate. We suspect the 416

negative estimates and the difference between the positive estimates stem in part from 417

us not being able to use 2001 sales data or to account for internal supplies of and 418

demand for breeding animals. Coarse as these estimates may be, it still seems 419

reasonable to us that they will permit detection of large, state-level associations. 420

To fit the model, we form a linear predictor of log E(Ii,t+1) by substituting Eq. 2
into Eq. 1 and taking logarithms to obtain

log E(Ii,t+1) = c0 + Zi + c1t+ c2 log(N2
i di) + c3 log fi + α log(

∑
jwi,jIi,t + η)

+ logSi,t − 2 logNi. (3)

We fit this model to data from all 50 states with the assumption that the observed cases 421

Ii,t+1 have a negative binomial distribution with an unknown, but constant, dispersion 422

parameter which we denote with θ. This parameter is related to the variance by 423

Var(Ii,t+1) = E(Ii,t+1)[1 + E(Ii,t+1)/θ]. We assume that the random effect Zi is 424

normally distributed. Then the likelihood is fully specified. We calculate marginal 425

likelihoods with the Laplace approximation and numerically find the parameters that 426

maximize it. In some cases we fixed η to 0.5, which allowed the model to be fully fit 427

with both the lme4 [44] and glmmADMB [45] packages in R [25]. To make sure our 428

results were not sensitive to η = 0.5, we used R’s optimize function to find the value of 429

η in [0, 5] with highest likelihood. 430
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We performed several diagnostic checks of our fits, including checking for signs of 431

nonlinearity with partial residual plots and for signs of temporal autocorrelation in the 432

residuals. We also verified that the flows term is significant in models lacking random 433

effects, and after excluding any data points with dfbetas [37, e.g.] above 0.2. 434

Simulation model 435

We use a discrete-time model in which the probability that a susceptible vertex i avoids 436

becoming infected at the next time step is equal to exp (−β
∑
j 6=iAijIj), where β is the 437

transmission rate, Aij is the weight of the edge pointing to vertex i from vertex j, and 438

Ij is an indicator variable equal to one if vertex j is infected and equal to zero otherwise. 439

The edge weight Aij represents the amount of infective material that vertex i may 440

receive from vertex j and the transmission rate is the expected number of infections per 441

unit of this infective material. In the case of livestock diseases, we might think of the 442

edge weight as proportional to the number of animals moved from one farm to another 443

and the transmission rate as the rate at which the probability of a farm avoiding 444

infection decreases for a given number of animals introduced from an infective farm. 445

We set the transmission rate in terms of an R0 baseline parameter, which we define 446

as β(N − 1), where N is the number of vertices in the network. Thus we do not change 447

the transmission rate as the number of edges is changed, which we find makes the 448

results easier to interpret. 449

For simplicity, we assume infective vertices recover in one time step. To allow for 450

highly stochastic dynamics without extinction, we assume that all vertices have some 451

constant probability of infection from vertices outside of the simulated population. We 452

describe this parameter in terms of the expected number of introduced infections, which 453

is equal to the number of vertices in the network times the per-time-step probability of 454

any one of them being infected from an external source. 455

We calculate the cross correlation using a window of 500 time steps that follows a 456

warm-up period of 500 time steps that allowed the model to reach a stationary 457

distribution. All simulations began with a completely susceptible population at the 458

beginning of the warm-up. 459

Wiring schemes 460

The vertex sets corresponding to each of the subpopulations are kept fully connected to 461

emphasize the community structure of the network. Also, because fully connected 462

networks are highly symmetric, the sets of topologically unique cut sets are reduced 463

from more general cases and thus easier to systematically explore. 464

The wiring schemes differ in which edges are added as we increase the size of the cut 465

set, which is most easily described in terms of non-zero elements of the adjacency 466

matrix A of the network. We begin with a block-diagonal adjacency matrix where the 467

the blocks (submatrices) on the diagonal contain weights of within-subpopulation edges 468

and the complementary blocks contain the weights of edges in the cut set. We consider 469

only undirected networks so a particular cut set can be described in terms of one of the 470

cut-set blocks. In the balanced scheme, the degree distribution (the probablity mass 471

distribution for the number of neighbors of each vertex) of the two subpopulations is 472

kept as balanced as possible. Thus cut-set edges are added by forming bands on the 473

diagonal of the block of increasing width. In the unbalanced scheme, the degree 474

distribution is kept as unbalanced as possible. Thus cut-set edges are added by filling in 475

the cut-set block columwise. Consequently, one of the subpopulations contains vertices 476

with many cut set members incident to them, which we refer to as hubs. In the 477

reciprocally-unbalanced scheme, cut set edges are added by filling in columns and rows 478
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in an alternating manner. Thus hubs appear in each subpopulation in an alternating 479

manner. 480

In all schemes, we distribute the total weight of cut-set edges evenly among them. 481

The total flow is set to n2c, where n is the size of each of the subpopulations and c is a 482

tuning parameter we refer to as a capacity factor. The weight of edges outside of the 483

cut set was fixed at 1. Thus when varying the number of edges in the cut set, the 484

modularity statistic Q [28] remains unchanged. This invariance makes our schemes 485

similar to the different mixing styles introduced by Ref. [46]. 486

Software 487

We used R [25] for most of this work. The key contributed packages used were c060 [47], 488

igraph [48], glmmADMB [49], glmnet [50], ggplot2 [51], lme4 [52], and vegan [53]. We 489

performed the edge bundling for Figs. 1C and 1D using JFlowMap [54]. Code to 490

reproduce the results is archived on the web [55], and has been developed to run in 491

Docker [56] containers for enhanced reproducibility. Thus, after installing one 492

open-source software package on their personal computer, interested readers may 493

quickly repeat our analysis, examine intermediate results, perform their own diagnostics, 494

and extend this work. 495

Supporting Information 496

S1 Text 497

Detailed data description. This text describes the original sources, rationale for 498

inclusion, and preparation of various data for analysis. 499

S2 Text 500

Age-specific reporting bias. This text describes the analysis that indicates an 501

age-specific reporting bias. 502

S3 Text 503

Transmission model details. This text provides further details on assumptions and 504

data used for the transmission model. 505

S1 Figure 506

Scatter plots and Pearson correlations between pair-averaged (i.e., 507

undirected) transport flows, similarities in PEDV dynamics, and spatial 508

proximity. These state-to-state relationships are measured as annual transport flows, 509

cross correlations (CC) of cases, and negative centroid-to-centroid great circle distances 510

(-GCD). Stars next to the correlations indicate the significance level from a Mantel test 511

as follows: **, P < 0.01; ***, P < 0.001. -GCD is in units of 1000 km. 512

S2 Figure 513

Rank scatter plots and Spearman correlations between transport flows, 514

similarities in PEDV dynamics, and spatial proximity. These state-to-state 515

relationships are measured as annual transport flows, cross correlations (CC) of cases, 516

and negative centroid-to-centroid great circle distances (-GCD). Stars next to the 517
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correlations indicate the significance level from a Mantel test as follows: *, P < 0.05; 518

***, P < 0.001. -GCD is in units of 1000 km. 519

S3 Figure 520

Rank scatter plots and Spearman correlations between pair-averaged (i.e., 521

undirected) transport flows, similarities in PEDV dynamics, and spatial 522

proximity. These state-to-state relationships are measured as annual transport flows, 523

cross correlations (CC) of cases, and negative centroid-to-centroid great circle distances 524

(-GCD). Stars next to the correlations indicate the significance level from a Mantel test 525

as follows: *, P < 0.05; **, P < 0.01; ***, P < 0.001. -GCD is in units of 1000 km. 526

S4 Figure 527

Comparison of swine shipment flows and coupling of case dynamics. (A) 528

Annual swine shipment flows from source states to destination states. (B) Cross 529

correlations of PEDV cases per week. Cross correlations are calculated as the 530

correlations between cases in the leading state with those in the lagging state in the 531

previous week. Within-state values of flows and cross correlations are not included in 532

the analysis and appear as white squares. In both panels, rows and and columns are 533

arranged to cluster together states with similar shipment flows. 534
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30. Mart́ınez-López B, Ivorra B, Fernández-Carrión E, Perez A, Medel-Herrero A,
et al. (2014) A multi-analysis approach for space–time and economic evaluation of
risks related with livestock diseases: The example of FMD in Peru. Prev Vet Med
114: 47–63.

31. McReynolds SW, Sanderson MW, Reeves A, Hill AE (2014) Modeling the impact
of vaccination control strategies on a foot and mouth disease outbreak in the
Central United States. Prev Vet Med 117: 487–504.

32. Viboud C, Bjørnstad ON, Smith DL, Simonsen L, Miller MA, et al. (2006)
Synchrony, waves, and spatial hierarchies in the spread of influenza. Science 312:
447–451.

33. Truscott J, Ferguson NM (2012) Evaluating the adequacy of gravity models as a
description of human mobility for epidemic modelling. PLoS Comput Biol 8:
e1002699.

34. Bharti N, Xia Y, Bjornstad ON, Grenfell BT (2008) Measles on the edge: Coastal
heterogeneities and infection dynamics. PLoS One 3.

35. Walton JK (2000) The British Seaside: Holidays and Resorts in the Twentieth
Century. Manchester University Press.

36. USDA (2014). Federal order: Reporting, herd monitoring and management of
novel swine enteric coronavirus diseases. Available: http:
//www.aphis.usda.gov/newsroom/2014/06/pdf/secd_federal_order.pdf.
Accessed 3 July 2014.

37. Harrell FE (2001) Regression Modeling Strategies: With Applications to Linear
Models, Logistic Regression, and Survival Analysis. New York: Springer.

18/20

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 27, 2015. ; https://doi.org/10.1101/017178doi: bioRxiv preprint 

http://www.R-project.org/
https://www.pig333.com/clinical-case-of-the-world/pedv-recurrence_9260/
https://www.pig333.com/clinical-case-of-the-world/pedv-recurrence_9260/
http://www.ers.usda.gov/publications/ldpm-livestock,-dairy,-and-poultry-outlook/lpdm10801.aspx#.U26fN1Qt5Mk
http://www.ers.usda.gov/publications/ldpm-livestock,-dairy,-and-poultry-outlook/lpdm10801.aspx#.U26fN1Qt5Mk
http://www.aphis.usda.gov/newsroom/2014/06/pdf/secd_federal_order.pdf
http://www.aphis.usda.gov/newsroom/2014/06/pdf/secd_federal_order.pdf
https://doi.org/10.1101/017178
http://creativecommons.org/licenses/by/4.0/


bioRχiv preprint

38. USDA NASS. 2002 Census of Agriculture Query Tool. Available:
http://www.agcensus.usda.gov/Publications/2002/Download_Data_

Query_Application/agcensus2002.zip. Accessed 23 December 2014.
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