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Abstract 
 
Functional magnetic resonance imaging (fMRI) research is routinely criticized for being 
statistically underpowered due to characteristically small sample sizes and much larger 
sample sizes are being increasingly recommended. Additionally, various sources of 
artifact inherent in fMRI data can have detrimental impact on effect size estimates and 
statistical power. Here we show how specific removal of non-BOLD artifacts can 
improve effect size estimation and statistical power in task-fMRI contexts, with particular 
application to the social-cognitive domain of mentalizing/theory of mind. Non-BOLD 
variability identification and removal is achieved in a biophysical and statistically 
principled manner by combining multi-echo fMRI acquisition and independent 
components analysis (ME-ICA). Group-level effect size estimates on two different 
mentalizing tasks were enhanced by ME-ICA at a median rate of 24% in regions 
canonically associated with mentalizing, while much more substantial boosts (40-149%) 
were observed in non-canonical cerebellar areas. This effect size boosting is primarily a 
consequence of reduction of non-BOLD noise at the subject-level, which then translates 
into consequent reductions in between-subject variance at the group-level. Power 
simulations demonstrate that enhanced effect size enables highly-powered studies at 
traditional sample sizes. Cerebellar effects observed after applying ME-ICA may be 
unobservable with conventional imaging at traditional sample sizes. Thus, ME-ICA 
allows for principled design-agnostic non-BOLD artifact removal that can substantially 
improve effect size estimates and statistical power in task-fMRI contexts. ME-ICA could 
help issues regarding statistical power and non-BOLD noise and enable potential for 
novel discovery of aspects of brain organization that are currently under-appreciated and 
not well understood.  
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 A common criticism of neuroscience research in general (Button et al., 2013) and 
functional MRI (fMRI) in particular (Yarkoni, 2009), is that studies are characteristically 
statistically underpowered. Low statistical power by definition means that a study will 
have less of a chance for detecting true effects, but also means that observed statistically 
significant effects are less likely to be true and will be more susceptible to the biasing 
impact of questionable research practices (Button et al., 2013; Ioannidis, 2005). This 
problem is important given the emergent ‘crisis of confidence’ across many domains of 
science (e.g., psychology, neuroscience), stemming from low frequency of replication 
and the pervasive nature of questionable research practices (Button et al., 2013; 
Ioannidis, 2005; Simmons et al., 2011). 

 
Low statistical power can be attributed to small sample sizes, small effect sizes, or 

a combination of both. The general recommended solution is primarily to increase sample 
size (though other secondary recommendations also include increased within-subject scan 
time). These recommendations are pragmatic mainly because these variables are within 
the control of the researcher during study design. While these recommendations are 
important to consider (Desmond and Glover, 2002; Friston, 2012; Lindquist et al., 2013; 
Mumford and Nichols, 2008; Yarkoni, 2009), other considerations such as dealing with 
substantial sources of non-BOLD noise inherent in fMRI data also need to be evaluated 
before the field assumes increasing sample size or scan time to be the primary or only 
means of increasing statistical power. These considerations are especially poignant when 
mandates for large-N studies and increased within-subject scan time are practically 
limiting due to often cited reasons such as the prohibitively high costs for all but the most 
well-funded research groups or in situations where the focus is on studying sensitive, 
rare, and/or less prevalent patient populations and where increasing scan time is 
impractical (e.g., children, neurological patients). 

 
On the issue of non-BOLD noise variability, it is well known that fMRI data are 

of variable quality. Poor and variable quality data can significantly hamper ability to 
achieve accurate and reproducible representations of brain organization. It is widely 
understood that the poor sensitivity of fMRI often arises from high levels of subject 
motion (often task correlated), cardiopulmonary physiology, or other types of imaging 
artifact (Murphy et al., 2013). These artifacts are problematic because they are often 
inadequately separable from the functional blood oxygenation level dependent (BOLD) 
signal when using conventional fMRI methods. Given an advance in fMRI methodology 
that allows enhanced detection and removal of these artifacts, the situation regarding 
statistical power and sample size may change markedly. Such advances could create 
viable experimental alternatives or supplements to the recommendation for increasing 
sample size/scan time to boost statistical power, and concurrently make for an fMRI 
approach that can more reliably enable discovery of subtle but potentially key aspects of 
typical and atypical brain function. 

 
In this study, we address problems related to statistical power through specific 

targeting of the problems related to non-BOLD artifact variability. We have applied an 
approach that integrates the fMRI data acquisition innovation of multi-echo EPI with the 
decomposition method of independent components analysis (ICA), towards principled 
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removal of non-BOLD signals from fMRI data. Our fully integrated implementation is 
called multi-echo independent components analysis or ME-ICA (Kundu et al., 2012). 
ME-ICA utilizes multi-echo fMRI to acquire both fMRI signal time series and their NMR 
signal decay, towards distinguishing functional BOLD from non-BOLD signal 
components based on their respective and differentiable signatures in the decay domain. 
Critically, BOLD and non-BOLD signal domains are readily differentiable in data 
analysis of the echo time (TE) domain - irrespective of overlap of signal patterns in the 
spatial and temporal domains. BOLD-related signals specifically show linear dependence 
of percent signal change on TE, whereas non-BOLD signal amplitudes demonstrate TE-
independence. Therefore, ME-ICA is a biophysically and statistically principled bottom-
up approach towards identifying and retaining BOLD-related variability while 
systematically removing non-BOLD variation. ME-ICA has been successfully applied to 
fMRI resting state connectivity acquisition and analysis and is shown to enable various 
improvements with regards to increased temporal signal-to-noise ratio (tSNR), enhanced 
ability to remove motion and other artifactual sources of variability, more principled 
statistical modeling in seed-based connectivity analysis, enhanced specificity, and 
translational capacities for use at high-field strength and within animal models (Kundu et 
al., 2015; Kundu et al., 2013; Kundu et al., 2014). ME-ICA can also be applied alongside 
multi-band acquisition (Olafsson et al., 2015) and has recently been applied to identify 
ultra-slow temporally-extended task-related responses (Evans et al., 2015). However, one 
very necessary yet unexamined niche within the space of uses for fMRI is within the 
highly utilized context of traditional task-based fMRI studies and the potential impact 
that ME-ICA innovations could have on effect size estimation and consequently 
statistical power.  

 
Here we conduct the first assessment of how ME-ICA performs with regards to 

effect size estimation and statistical power in task-related activation mapping settings 
with block-designs. ME-ICA can be flexibly applied to both task- and resting state fMRI 
contexts. This unified approach is advantageous since conventional resting state and task 
data processing and denoising use disjoint pipelines that often may require different 
technical skillsets. However, it is important and currently not well understood if and to 
what extent generalized non-BOLD removal as targeted by ME-ICA enhances the 
elucidation of task effects, compared to current task activation analysis with inline 
denoising based on linear artifact models and arbitrary filtering done in a study specific 
manner. Ultimately, because task-fMRI approaches form the bedrock of our 
understanding of human brain function and it is not clear how ME-ICA’s principled 
removal of non-BOLD signal could impact final inferences in such studies. In this study 
we specifically examined how ME-ICA performs against a conventional task-based 
imaging analysis pipeline with regressing out motion parameters (i.e. TSOC+MotReg) 
and another prominent yet more recent task-based denoising procedure (i.e GLMdenoise 
(Kay et al., 2013)). We utilized two separate tasks (i.e. the ‘SelfOther’ and ‘Stories’ 
tasks) tapping neural systems supporting the social cognitive domain or mentalizing and 
theory of mind and highlight its effects in terms of effect size estimation and statistical 
power. We also evaluate the impact of the method on two sets of brain regions; 
‘canonical’ regions typically highlighted as important in the neural systems for 
mentalizing (Frith and Frith, 2003; Lombardo et al., 2010b; Saxe and Powell, 2006; 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 23, 2016. ; https://doi.org/10.1101/017350doi: bioRxiv preprint 

https://doi.org/10.1101/017350
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

Schaafsma et al., 2015; Schurz et al., 2014; Spunt and Adolphs, 2014; van Overwalle, 
2009) and ‘non-canonical’ regions in the cerebellum (van Overwalle et al., 2014). 
 
Materials and Methods 
 
Participants 
 

This study was approved by the Essex 1 National Research Ethics committee. 
Parents gave informed consent for their child to participate and each child also gave 
assent to participate. Participants were 69 adolescents (34 males, 35 females, mean age = 
15.45 years, sd age = 0.99 years, range = 13.22-17.18 years) sampled from a larger cohort 
of individuals whose mothers underwent amniocentesis during pregnancy for clinical 
reasons (i.e. screening for chromosomal abnormalities). The main focus for sampling 
from this cohort was to study the fetal programming effects of steroid hormones on 
adolescent brain and behavioral development.  At amniocentesis, none of the individuals 
screened positive for any chromosomal abnormalities and were thus considered typically 
developing.  Upon recruitment for this particular study, we additionally checked for any 
self- or parent-reported neuropsychiatric conditions.  One individual had a diagnosis on 
the autism spectrum.  The remaining participants did not have any other kind of 
neurological or psychiatric diagnosis.  Analyses were done on the full sample of 69 
individuals, as analyses leaving out the one patient with an autism diagnosis did not 
change any of the results.   
 
Task Design 
 

Participants were scanned using two block-design fMRI paradigms. The first 
paradigm, which we call the ‘SelfOther’ task, is a 2 x 2 within-subjects factorial design 
which contains two contrasts that tapped either self-referential cognition and mentalizing 
and was similar in nature to previously published studies (Lombardo et al., 2011; 
Lombardo et al., 2010a; Lombardo et al., 2010b). Briefly, participants are asked to make 
reflective judgments about either themselves or the British Queen that varied as either a 
mentalistic (e.g., “How likely are [you/the Queen] to think that it is important to keep a 
journal?”) or physical judgment (e.g., “How likely are [you/the Queen] to have bony 
elbows?”).  Participants make judgments on a 1-4 scale, where 1 indicated ‘not at all 
likely’ and 4 indicated ‘very likely’.  All stimuli are taken from Jason Mitchell’s lab and 
have been used in prior studies on mentalizing and self-referential cognition (Jenkins et 
al., 2008; Mitchell et al., 2006). The SelfOther task is presented in 2 scanning runs (8:42 
duration per run; 261 volumes per run). Within each scanning run there are 4 blocks per 
condition, and within each block there are 4 trials of 4 seconds duration each. Task 
blocks are separated from each other by a 16 second fixation block. The first 5 volumes 
of each run are discarded to allow for equilibration effects. 

 
The second paradigm, which we call the ‘Stories’ task, is also a block-design and 

contains two contrasts tapping mentalizing and language domains.  The paradigm is 
identical to a study by Gweon and colleagues (Gweon et al., 2012), utilizing the same 
stimuli and presentation scripts provided directly by Gweon and colleagues. Briefly, 
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participants listen to a series of stories whereby the stories differ in content. The content 
of the stories vary in terms of mentalistic, social, or physical content.  The social stories 
contain descriptions of people and characters but make no statements that referenced 
mental states.  Physical stories are segments of stories that describe the physical setting 
but do not include people.  Mental stories are segments that include references to people 
as main characters and make references to mental states that those characters hold.  The 
paradigm also includes blocks for two other kinds of language control conditions that are 
not examined in this manuscript (i.e. stories read in a foreign language (e.g., Russian, 
Hebrew, and Korean) and blocks of music played by different instruments (e.g., guitar, 
piano, saxophone, and violin)).  After participants heard each story segment they were 
given a choice of whether a specific auditory segment logically came next.  This was 
introduced to verify that participants were paying close attention to the stories and the 
details inside each story segment.  The Stories task is presented in 2 scanning runs (6:36 
duration per run; 192 volumes per run) and within each scanning run there are 2 blocks 
per condition.  The first 6 volumes were discarded to allow for equilibration effects. 
 
 Resting state data was also collected on each participant with a 10 minute long 
‘eyes-open’ run (i.e. 300 volumes), where participants were asked to stare at a central 
fixation cross and to not fall asleep.  The multi-echo EPI sequence was identical to those 
used in the task paradigms. 
 
fMRI Data Acquisition 
 
 All MRI scanning took place on a 3T Siemens Tim Trio MRI scanner at the 
Wolfson Brain Imaging Centre in Cambridge, UK.  Functional imaging data during task 
and rest was acquired with a multi-echo EPI sequence with online reconstruction 
(repetition time (TR), 2000 ms; field of view (FOV), 240 mm; 28 oblique slices, 
descending alternating slice acquisition, slice thickness 3.8 mm; TE = 13, 31, and 48 ms, 
GRAPPA acceleration factor 2, BW=2368 Hz/pixel, flip angle, 90°).  Anatomical images 
were acquired using a T1-weighted magnetization prepared rapid gradient echo 
(MPRAGE) sequence for warping purposes (TR, 2300 ms; TI, 900 ms; TE, 2.98 ms; flip 
angle, 9°, matrix 256 × 256 × 256, field-of-view 25.6 cm). 
 
fMRI Preprocessing  
 
 Data were processed by ME-ICA using the tool meica.py as distributed in the AFNI 
neuroimaging suite (v2.5 beta10), which implemented both basic fMRI image 
preprocessing and decomposition-based denoising. For the processing of each subject, 
first the anatomical image was skull-stripped and then warped nonlinearly to the MNI 
anatomical template using AFNI 3dQWarp. The warp field was saved for later 
application to functional data. For each functional dataset, the first TE dataset was used to 
compute parameters of motion correction and anatomical-functional coregistration, and 
the first volume after equilibration was used as the base EPI image. Matrices for de-
obliquing and six-parameter rigid body motion correction were computed. Then, 12-
parameter affine anatomical-functional coregistration was computed using the local 
Pearson correlation (LPC) cost function, using the gray matter segment of the EPI base 
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image computed with AFNI 3dSeg as the LPC weight mask. Matrices for de-obliquing, 
motion correction, and anatomical-functional coregistration were combined with the 
standard space non-linear warp field to create a single warp for functional data. The 
dataset of each TE was then slice-time corrected and spatially aligned through application 
of the alignment matrix, and the total nonlinear warp was applied to the dataset of each 
TE. No time series filtering was applied in the preprocessing phase. Data were analyzed 
both with no spatial smoothing and with a 6mm full-width-half-maximum (FWHM) 
spatial filter. The effective smoothness from second-level group analyses are reported for 
each task and each analysis in Supplementary Table 2. 
 
 Multi-echo fMRI data enables analysis where time series of different TEs and 
thus different BOLD contrasts can be combined to synthesize time series of optimal 
contrast specific to each voxel, a process called “optimal combination.” For a given voxel 
with a particular T2* value, the signal acquisition of optimal BOLD contrast is at 
TE=T2*. While conventional fMRI involves data acquisition at a single TE (selected to 
reflect the average tissue T2*), some voxels have T2*>TE and others have T2*<TE, 
meaning BOLD contrast-to-noise ratio is not homogeneous throughout the brain. The 
greatest macro-inhomogeneities are near areas of high magnetic susceptibility such as 
orbitofrontal cortex or temporal bone, where conventional fMRI suffers substantial signal 
“drop-out.” However, with multi-echo fMRI, each voxel’s T2* can be estimated 
specifically, and a given voxel’s time series of different TEs can be averaged with 
weights to produce a computed signal time series with BOLD contrast approximating an 
acquisition of TE=T2*, done for every voxel. This procedure first involves computing an 
empirical map of magnetic susceptibility, where for each voxel, the TE-specific signal 
time series means are fit to an exponential decay model, with the rate constant parameter 
being the T2* estimate. The voxel-specific T2* values are then used to calculate weights 
for averaging time series across different TEs, with each voxel- and TE-specific weight 
being calculated as (Posse et al., 1999): 
 

 
 
This procedure implemented a matched-filter that produced a contrast-optimized or “high 
dynamic range” time series dataset where the functional contrast-to-noise at each voxel 
was maximized and thermal noise is attenuated. The “optimally combined” time series 
dataset (abbreviated TSOC) was used in all further analysis steps (i.e. ME-ICA, 
TSOC+MotReg, GLMdenoise). Note that the TSOC dataset is input into all denoising 
procedures (i.e. after basic preprocessing) to ensure a fair comparison across techniques. 
While ME-ICA denoises TSOC data by further exploitation of multi-echo data through 
TE-dependence/independence analysis, other pipelines instead attempt to remove noise 
primarily through the inclusion of noise regressors in the first-level GLM (i.e. motion 
regressors or global noise regressors).  
 
   
ME-ICA Denoising 

Brain Imaging and Behavior

Data acquisition

Data were acquired on a GE MR750 3T scanner using
a 32-channel GE receive-only head coil (Waukesha, WI).
Each imaging session first involved acquiring a whole-
brain anatomical MPRAGE scan with 1mm isotropic res-
olution. The resting state fMRI scan was 10 min long
and involved acquisition with multi-echo time course EPI
using the following parameters: 240mm field of view
(FOV), 64x64 matrix size yielding 3.75mm isotropic res-
olution, in-plane SENSE acceleration factor 2, flip angle
(FA)=77 degrees, repetition time (TR)=2.0s, and echo times
(TEs)=12.8,28,43ms. The multi-echo fMRI sequence uti-
lized vendor EPI excitation and a modified EPI readout,
and utilized online reconstruction. Each TR resulted in the
acquisition of 3 volumes, one for each TE. These volumes
are rearranged to yield one volumetric time series dataset
for each TE.

Computing a T ∗
2 parameter map

A map of estimated T ∗
2 parameters can be generated voxel-

wise from the time course means of different TEs. MRI sig-
nal from the BOLD contrast is generated by a T ∗

2 mediated
signal mechanism, whereby the amplitude of acquired sig-
nal varies with TE according to a simple monoexponential
decay:

S(T E) = S0 exp(−R∗
2T E) (1)

where S0 is the initial signal intensity reflecting the voxel’s
spin-density and R∗

2 is the susceptibility-weighted trans-
verse relaxation rate. The parameters S0 and R∗

2 can be
estimated by the log-linear transformation of Eq. 1. T ∗

2 is
computed as 1/R∗

2 . Representative T ∗
2 range for different

tissue classes were computed via a preliminary segmenta-
tion analysis (see Appendix). Gray and white matter were
estimated to have T ∗

2 values of 25 − 60ms, CSF T ∗
2 >≈

100ms or greater than double the median of gray/white mat-
ter T ∗

2 , and other tissues (i.e. meninges, skull, muscle, etc.)
T ∗
2 ≈<25ms. Notably, T ∗

2 estimates from log-linear fit-
ting assumes monoexponential decay and does not account
for through-plane dephasing, which has a sinc dependence
on TE. This leads to underestimation of T ∗

2 , particularly in
areas of high susceptibility artifact (Yip et al. 2006).

T ∗
2 weighted optimal combination

Different voxels across the brain have distinct T ∗
2 as a

function of their vascular density, partial volume of tissue
(notably, varying as a function of gray matter-to-CSF ratio),
as well as local magnetic field homogeneity. Optimal BOLD
MRI signal contrast for a given voxel is achieved when the

TE acquired is equal to the voxel’s T ∗
2 (T E ≈ T ∗

2 ). Given a
conventional single-echo fMRI acquisition, T ∗

2 is inevitably
higher than TE for some voxels, and is lower than TE in
other voxels. In other words, signals across the brain and
across subjects are not optimally comparable in amplitude
or contrast-to-noise ratio because different combinations
of TE and T ∗

2 represent different signal contrasts. When
acquiring multi-echo fMRI, however, at each voxel the time
series of the different TEs can be averaged with weights to
produce a new voxel time series with signal contrast bet-
ter approximating TE=T ∗

2 . In essence, multi-echo fMRI can
be utilized to implement a match-filtered or “high-dynamic
range” fMRI acquisition. Each voxel’s multi-TE time series
are averaged with normalized weights corresponding to the
respective BOLD contrast contributions at the different TEs:

ω(T ∗
2,v)n =

T En · exp(−T En/T
∗
2,v)

N∑
n
T En · exp(−T En/T

∗
2,v)

(2)

See Posse et al. (1999) and Poser et al. (2006) for more
detailed review of multi-echo combination schemes.

T ∗
2 weighted anatomical-functional coregistration

Anatomical-functional image coregistration is relevant to
the study of younger individuals in developmental cohorts
due to high likelihood of subject movement (especially for
patients), intra-session repositioning, or multi-day scanning.
Coregistration performance may vary in an age-dependent
way. Because CSF volume increases with age (Salat et al.
2004), and CSF and gray matter signals are more difficult to
distinguish in functional images than in anatomical images,
there is increased likelihood of misregistration between CSF
in functional images and gray matter in anatomical images
of older subjects. Such misregistration can occur, for exam-
ple, if rigid-body rotation aligns high-intensity CSF in the
arachnoid space (i.e. near gray matter) with a gray matter
region in anatomical image due to the overall computational
optimality of this solution. Standard affine coregistrations
may be even more susceptible to these misregistration errors
due to more degrees of freedom than required for optimiza-
tion. Tuning imaging parameters (flip angle, TE, TR) to
obtain better gray-CSF contrast in EPI images can trade off
signal stability (measured as temporal signal-to-noise ratio),
which is problematic for studying the unconstrained fluctu-
ations in brain activity associated with the resting state. EPI
images acquired with multi-element head coils (the current
standard) can also have intensity non-uniformity or “shad-
ing” artifacts due to greater proximity of some brain areas
to some head coil elements, resulting in local brightness.
The confounds accumulate and result in poor differentia-
tion of gray matter from CSF across the brain and across
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 Time series denoising with ME-ICA was based on ICA decomposition of 
optimally combined multi-echo data and component classification informed by signal 
models reflecting the BOLD-like or artifact-like signal decay processes. This has been 
detailed in our prior work (Evans et al., 2015; Kundu et al., 2013) and is summarized in 
Supplementary Table 1.	   The decomposition path utilized in ME-ICA is designed to 
elucidate components specifically with the BOLD TE-dependence pattern, but is 
implemented similarly to other ICA treatments: dimensionality is first reduced using a 
PCA step, then spatial ICA is applied to dimensionally reduced data to find sparse or 
statistically independent sources (e.g. in MELODIC PICA, dimensionality reduction is 
achieved with probabilistic PCA, followed by FastICA). Dimensionality reduction is 
important for reducing the complexity of the ICA problem (to an optimal number of 
components depending on the data), and concomitantly reducing the proportion of 
Gaussian-distributed noise (explained by many low-eigenvalue components) that would 
otherwise cause the ICA solution to fail in convergence. However, ME-ICA differs from 
other ICA treatments in the dimensionality reduction step. Conventional automatic 
dimensionality estimation cannot analyze individual principal components for their 
mechanisms of signal origin, and instead utilizes assumptions on the statistical 
distribution of noise. In contrast, ME-ICA implements ME-PCA, a model-based 
approach to distinguishing principal components representing MR contrast versus 
thermal noise as, respectively, those components with high Kappa, Rho, or variance 
relative to corresponding spectrum elbows vs. those with none of these properties. While 
high-variance principal components are preserved for subsequent ICA decomposition by 
both conventional and ME-PCA, the latter retains low-variance components with MR 
contrast. In this way, ME-PCA achieves higher dimensional ICA decompositions, 
indicating potentially greater sensitivity in elucidating BOLD components in ICA 
decomposition, while utilizing a more direct detection of Gaussian distributed thermal 
noise, indicating potentially greater specificity and ICA stability for higher dimensional 
(i.e. more comprehensive) ICA solutions. Following dimensionality reduction based on 
ME-PCA, ME-ICA applies spatial FastICA using the tanh contrast function to identify a 
spatial basis of statistically independent component maps, alongside a complementary 
matrix of time courses (the mixing matrix).  
 
The mixing matrix was fit to the time series of each separate TE, producing coefficient 
maps for each component at each TE. The signal scaling of each component across TEs 
was then used to compute Kappa (κ) and Rho (ρ), which were pseudo-F statistics 
indicating component-level TE-dependence and TE-independence, respectively. While it 
is understood that ICA separates data into statistically independent components, for 
multi-echo fMRI these metrics were evaluated to determine the segregation of signals 
into components of specifically BOLD-related or non-BOLD related contrasts (1 and 2, 
in Supplementary Table 1), indicating a higher order decomposition than the one 
achieved by ME-PCA which produced mixed-contrast components (5) versus thermal 
noise. In addition to BOLD and non-BOLD groups, a usually small group of mixed 
BOLD/non-BOLD components related to draining vein physiology (4) are elucidated and 
rejected as not neuronally related. Finally, for time series denoising, the full mixing 
matrix (including all component time courses) is fit to the optimally combined (i.e. the 
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source data for the ME-PCA/ICA decomposition pipeline) with multiple linear least 
squares regression, and the time series fit corresponding to rejected components sub-
model is subtracted from the optimally combined time series. The number of components 
selected for all subjects on all runs of both tasks can be found in Supplementary Table 2. 	  
 
Task-fMRI Data Analysis 
 
 All first and second level statistical modeling was performed in SPM8 
(http://www.fil.ion.ucl.ac.uk/spm/), using the general linear model (GLM). First level 
analyses modeled the hemodynamic response function (HRF) with the canonical HRF, 
and used a high-pass filter of 1/128 Hz.  In contrast to ME-ICA, we also ran denoising 
with two other prominent approaches; GLMdenoise (Kay et al., 2013) and via 
conventional task-based fMRI analysis that included motion regressors in the first-level 
GLM model (TSOC+MotReg). It is important to re-iterate that each pipeline (ME-ICA, 
GLMdenoise, and TSOC+MotReg) utilized TSOC data. For GLMdenoise, global noise 
regressors are identified with cross validation across runs and used as regressors of no 
interest in first-level individual subject GLMs. For TSOC+MotReg we mimicked 
conventional task-based fMRI analysis by using motion parameters as regressors of no 
interest in first-level individual subject GLMs. When running first-level GLMs on ME-
ICA denoised data, we did not include motion parameters as regressors of no interest 
because such artifact is already removed in principled manner at the prior denoising step.  
All first-level individual subject GLMs modeled the specific contrast of 
Mentalizing>Physical, and these contrast images were input into second-level random 
effects GLM analyses (i.e. one sample t-test).  Any whole-brain second-level group 
analyses we report are thresholded at a voxel-wise FDR q<0.05 (Genovese et al., 2002). 
 
Resting State fMRI Connectivity Analysis 
 
 Resting state connectivity on ME-ICA processed data was estimated using the 
multi-echo independent components regression (ME-ICR) technique developed by 
Kundu and colleagues (Kundu et al., 2013). This analysis technique effectively controls 
for false positives in connectivity estimation by using the number of independent 
components estimated by ME-ICA as the effective degrees of freedom in single-subject 
connectivity estimation.  Once ME-ICA has the estimated number of components, these 
component maps are concatenated, and connectivity is estimated by computing the 
correlation of ICA coefficients between the seed and other brain voxels.  The seed 
regions we have chosen are the peak voxels from the NeuroSynth ‘mentalizing’ map in 
right and left hemisphere cerebellum (RH MNI x = 29, y = -82, z = -39; LH MNI x = -25, 
y = -78, z = -39).  Connectivity GLM analyses were implemented within SPM and the 
second-level group connectivity maps are thresholded with a voxel-wise FDR threshold 
of q<0.05. 
 
 To assess the similarity between whole-brain resting state connectivity and 
Mentalizing>Physical task-activation maps, we used robust regression (Wager et al., 
2005) to compute the correlation between the whole-brain connectivity and activation 
maps. Robust regression allows for protection against the effects of outliers that are 
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particularly pronounced in the connectivity maps, since voxels that contain or are 
proximally close to the seed voxel exhibit very large connectivity values.   
 
 In contrast to connectivity estimated via ME-ICA data with ME-ICR, we also ran 
conventional functional connectivity analyses on the TSOC data. Here we followed 
standard analysis procedures such as bandpass filtering and motion regression. These 
steps are achieved using AFNI 3dBandpass to bandpass filter the data between 0.01 and 
0.1 Hz, after orthogonalizing data with respect to a baseline (motion parameters, etc.) 
matrix (-ort argument) to additionally remove motion-related variability all in one step. 
No other steps were taken to denoise the data (e.g., global signal regression, white matter 
regression, etc). The bandpass filtered and motion-regressed data were then inserted into 
GLMs in SPM8. Note here that bandpass filtering was only applied in this analysis of 
conventional resting state connectivity analysis and was not done in ME-ICA and ME-
ICR connectivity analyses. 
 
 To compare the difference between activation-connectivity correlations for ME-
ICR vs TSOC+MotReg, we use the paired.r function within the psych R library 
(http://cran.r-project.org/web/packages/psych/) to obtain z-statistics to describe the 
difference between correlations.  However, no hypothesis tests (i.e. p-values) are 
computed for these analyses as they are not needed since the comparisons are on 
correlations estimated from the entire population of interest (i.e. all voxels within whole-
brain volume). 
 
Effect Size Estimation and Power Simulations 
  

All effect size and power estimates were computed with the fmripower MATLAB 
toolbox (http://fmripower.org) (Mumford and Nichols, 2008). Effect size is 
operationalized here as a standardized measure of distance from 0 expressed in standard 
deviation units (i.e. mean/sd) and is analogous to Cohen’s d. Here the mean refers to the 
contrast image (i.e. con*.img) produced by the second-level random effects analysis. The 
standard deviation is taken by computing the square root of the variance image (i.e. 
ResMS.img) produced by the second-level random effects analysis. We have made one 
change to the code within fmripower in how it computes effect size.  This change allows 
us to compute effect size at each voxel and then to average the effect size across ROI 
voxels. This is different from the current implementation in fmripower which will first 
compute the average mean and standard deviation values across ROI voxels and then 
computes effect size based on these average mean and standard deviation values. Within 
fmripower the Type I error was set to 0.05 and we computed power across a sample size 
range from n=5 to n=100.  All effect size and power estimates were estimated from 
independently defined meta-analytic ROIs identified by NeuroSynth 
(http://neurosynth.org) (Yarkoni et al., 2011) for the feature ‘mentalizing’.  This feature 
contained 98 studies and 4526 activations. The NeuroSynth ‘mentalizing’ mask was first 
resampled to the same voxel sizes as the current fMRI datasets. Because regions 
surviving the NeuroSynth analysis at FDR q<0.01 were large and contained multiple 
peaks (e.g., medial prefrontal cortex comprised both dorsal and ventral subregions), we 
constrained ROIs further by finding peak voxels within each region, and constructing a 
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8mm sphere around each peak.  This resulted in 11 separate ROIs. Eight of the 11 have 
been reported and heavily emphasized in the literature (dorsomedial prefrontal cortex 
(dMPFC): x = -2, y = 60, z = 22; ventromedial prefrontal cortex (vMPFC): x = -2, y = 48, 
z = -20; right temporo-parietal junction (RTPJ): x = 59, y = -55, z = 27; left temporo-
parietal junction (LTPJ): x = -48, y = -55, z = 26; posterior cingulate cortex/precuneus 
(PCC): x = 2, y = -52, z = 42; right anterior temporal lobe (rATL): x = 48, y = -6, z = -20; 
left anterior temporal lobe (lATL): x = -52, y = 6, z = -35; left temporal pole (lTP): x = -
40, y = 21, z = -24).  The remaining 3 regions are located in the cerebellum (right 
hemisphere cerebellar region Crus II (rCereb): x = 29, y = 82, z = -39; medial cerebellar 
region IX (mCereb): x = 2, y = -52, z = -47; left hemisphere cerebellar region Crus II 
(lCereb): x = -25, y = -78, z = -39) and have been relatively overlooked in the literature, 
with some exceptions that also rely on meta-analytic inference (van Overwalle et al., 
2014). 
 
 To get an indication of how big the effect size boost due to ME-ICA was, we 
computed a measure of effect size percentage increase operationalized as (ESME-ICA – 
ESTSOC or GLMdenoise/abs(ESTSOC or GLMdenoise) * 100. Bootstrapping (1000 resamples) was 
then used to re-run SPM second-level group analysis and fmripower computations in 
order to construct 95% confidence intervals around effect size and effect size percentage 
increase (i.e. ‘effect size boost’) estimates.  The calculation of confidence intervals for 
the effect size boost metric allowed us to determine which brain regions showed robust 
ME-ICA related effect size boosts compared to either GLMdenoise or TSOC+MotReg 
pipelines. Any region that showed a lower bound 95% confidence interval estimate above 
0 was considered a region whereby ME-ICA robustly improves effect size estimation 
over and above GLMdenoise or TSOC+MotReg pipelines. In addition to this strict set of 
criteria using confidence intervals, we also report descriptively the percentage of 
bootstrap resamples whereby ME-ICA provided a larger effect size than GLMdenoise 
and TSOC+MotReg.   
 
 To further describe the effects of ME-ICA over and above GLMdenoise 
TSOC+MotReg pipelines, we have computed the minimum sample size to achieve 80% 
power and the sample size and cost reduction due to using ME-ICA to achieve a study 
with 80% power, assuming a per subject scanning cost of $500. In cost savings 
computations, any regions that did not achieve requisite power before n=100 were 
excluded from such calculations. 
 
 
Results 
 
ME-ICA Denoising on the Raw Time Series 
 

Before touching on quantitative comparisons of effect size and power due to ME-
ICA, it is helpful to convey properties of the images and time series acquired with ME 
acquisition, as well as the effect of ME-ICA denoising directly on the time series. ME 
sequences capture the decay of EPI images and (time series) with increasing TE, shown 
in Fig 1A. For example, ME data show the signal evolution of susceptibility artifact (i.e. 
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signal dropout) in areas such as ventromedial prefrontal cortex (vMPFC) - it is made 
clear from Fig 1A that signal dropout occurs at longer TEs, as affected regions have short 
T2* due to proximity to air-tissue boundaries. Additionally, gray/white signal contrast 
increases over longer TE due to T2* differences between these tissue types.  The T2*-
weighted optimal combination (TSOC) implements a matched-filter of TE images 
yielding a new image time series with optimized contrast (TE~T2*) and compensation of 
susceptibility artifact by weighting towards the early TE in areas with short T2*. In Fig 
1B we present time series data from ventromedial prefrontal cortex (vMPFC), posterior 
cingulate cortex/precuneus (PCC), and right cerebellum in order to demonstrate the effect 
of optimal combination on the time series, and then the effect of removing non-BOLD 
noise using ME-ICA relative to modeled task blocks. It is particularly apparent that ME-
ICA, without prior information on task structure, recovers task-based block fluctuations 
while much of the middle echo, TSOC, and non-BOLD isolated signals carrying complex 
artifacts including drifts, step changes, and spikes. 

 
Fig 1: Multi-Echo Signal 
Characterization. Panel A shows the 
signal decay captured in multi-echo 
EPI images, for a single 
representative volume. With longer 
TE, gray/white contrast increases. 
Susceptibility artifact (e.g. dropout) 
also increases, as regions near in 
proximity to air-tissue boundaries 
have shorter T2*. The T2*-weighted 
optimal combination (TSOC) 
implements a matched-filter of TE 
images yielding a new image with 
optimized gray/white contrast 
(TE~T2*) and mitigation of 
susceptibility artifact. Panel B shows 
comparisons of time series data 
across three regions of interest; 
ventromedial prefrontal cortex 
(vMPFC), posterior cingulate 
cortex/precuneus (PCC), and right 
cerebellum. Each comparison shows 
the time series before model-based 
filtering of the middle TE image 
(black), TSOC image (blue), BOLD 
signals isolated on the basis of TE-
dependence (green), and non-BOLD 
signals removed from the data (red).  
Purple and orange lines represent 
modeled mentalizing and physical 
blocks respectively. 
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ME-ICA Boosts Effect Size Estimation  
 
In evaluating ME-ICA-related effects on group-level inference, we examined the 

influence on non-BOLD denoising on effect size estimation. Effect size is operationalized 
here as a standardized measure of distance from 0 expressed in standard deviation units 
(i.e. mean/sd) and is analogous to Cohen’s d. As illustrated in Fig 2, with no smoothing 
(0mm) ME-ICA outperforms conventional methods for task-based fMRI analysis 
(TSOC+MotReg) and a prominent task-based denoising method (GLMdenoise) (Kay et 
al., 2013) (Fig 2B-C). This enhanced performance is evident across both mentalizing 
tasks and in nearly every single region investigated. Quantifying the magnitude of effect 
size boosting as the difference in effect size estimates, we find that the median ME-ICA 
induced boost for canonical mentalizing regions is around 24%. Boosts were much larger 
(nearly always greater than 50%) in areas such as vMPFC and left temporal pole (lTP) 
that characteristically suffer from signal dropout. Amongst cerebellar areas, right and left 
cerebellar Crus I/II areas showed evidence of even larger effect size boosts ranging from 
48-149% increases when compared to GLMdenoise and 40-101% increases when 
compared to TSOC+MotReg.  Under conditions where smoothing is done (i.e. 6mm 
FWHM) we see that many of the ME-ICA-related effect size boosts remain across 
several cerebellar and canonical cortical regions.  However, this effect size boosting is 
smaller and less consistent across bootstrap resamples at 6mm FWHM, particularly 
within the SelfOther task. This phenomenon suggests that ME-ICA is relatively less 
dependent on smoothing in order to gain high degrees of sensitivity. In contrast, other 
methods likely require smoothing in order to enhance sensitivity. For example, it is clear 
that there are much larger increases in effect size at 6mm in GLMdenoise and 
TSOC+MotReg in the SelfOther task and such increases are not as prominent when going 
from unsmoothed data to 6mm data in ME-ICA.  In other words, effect size estimates are 
more stable in ME-ICA in the SelfOther task, whereas in GLMdenoise and 
TSOC+MotReg, effect size estimates increase more (particular for cortical regions) 
simply due to smoothing. See Supplementary Tables 3-4 for full characterization of effect 
size estimates and effect size boosts. 
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Fig 2:  ME-ICA Effect Size Boosting.  This figure shows effect size estimates from all regions of 
interest (panel A). Panels B and C show effect sizes in unsmoothed data, while panels D and E 
are from 6mm FWHM smoothed data Effect sizes are expressed in standard deviation units and 
are analogous to Cohen’s d. Colored clouds in each plot represent density of estimates obtained 
from 1000 bootstrap resamples, while unfilled black circles represent estimates within the true 
dataset. Below each region label on the x-axis are descriptive statistics indicating the percentage 
of bootstrap resamples where ME-ICA performed better than the alternatives (blue M, ME-ICA; 
red G, GLMdenoise; green T, TSOC+MotReg).   
 

 
Because our operational definition of effect size is a standardized measure that 

incorporates both mean and variability measurements, we went further in decomposing 
how these boosts in effect size estimation manifested in terms of changes to either the 
mean and/or variability measurements.  It is clear from Fig 3 that ME-ICA induces these 
boosts primarily by reducing estimates of variability at the 2nd level group analysis. Given 
that at a within-subject level ME-ICA is working to remove non-BOLD noise from the 
time series, it is clear that one consequence of this for group-level modeling is clear 
reduction of between-subject variance which works to enhance standardized effect size 
estimates.  
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Fig 3:  ME-ICA Reduction in Variance in Group-Level Analyses.  This figure shows mean and 
standard deviation estimates from 2nd level group modeling that contribute to the standardized 
effect size calculations.  Panels A and B show mean estimates for all regions in both tasks.  
Panels C and D show standard deviation estimates.  Colored clouds in each plot represent 
density of estimates obtained from 1000 bootstrap resamples, while unfilled circles represent 
estimates within the true dataset. 
 
 
Impact of ME-ICA on Statistical Power 

 
Because ME-ICA improves standardized effect size estimation, it necessarily 

follows that statistical power will also be boosted, as such estimates are critical in such 
computations. However, for assessing the practical impact that ME-ICA may have, it is 
necessary to assess the impact such effect size boosting has on statistical power and 
sample size. Here we describe power simulations that mainly inform what we could 
expect in future work given effect size estimates similar to what we have observed in the 
current study under ME-ICA versus other analysis pipelines. 

 
Power curves for each analysis pipeline across a range of sample sizes from n=5 

to n=100 are illustrated in Fig 4A-B.  Minimum sample size necessary for achieving 80% 
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power at an alpha of 0.05 are shown in Fig 4C.  Across all canonical regions and both 
tasks, the median minimum sample size to achieve 80% power at an alpha of 0.05 with 
ME-ICA is n=22.  Minimum sample sizes across nearly all regions were well within 
reach of current standards for sample size (e.g., n<45). In contrast, for both GLMdenoise 
and TSOC+MotReg the median minimum sample size for canonical regions is n=38.  

 
For cerebellar regions, the power benefits due to ME-ICA were even more 

pronounced. Aside from medial cerebellar region XI (mCereb) in the Stories task which 
did not result in a sizeable effect (e.g., effect size <0.14), the minimum sample size 
needed for the bilateral cerebellar Crus I/II areas (rCereb, lCereb) were always well 
within the range of sample size that is typical for today’s standards when using ME-ICA 
(e.g., n<45). This stands in contrast to the situation for GLMdenoise and TSOC+MotReg, 
where sample size always required n>40 and in many instances was not attained by 
n=100. 

   
For further illustration of practical impact, these boosts in statistical power and 

reduction in sample size necessary for achieving 80% power can be quantified into 
monetary savings.  Assuming a scan rate of $500 per individual, if one was only 
interested in canonical regions, using ME-ICA would amount to median savings of 
$8,750 compared to GLMdenoise and $5,750 compared to TSOC+MotReg.  If one was 
interested in cerebellar regions, using ME-ICA would amount to a median savings of 
$21,250 compared to GLMdenoise and $19,750 compared to TSOC+MotReg. 
 

Visual examination of the power curves in Fig 4A-B highlights a point of 
diminishing returns when power is greater than 95%, as the improvements in power for 
adding more subjects diminishes substantially.  We term this effect ‘saturation’. When 
using ME-ICA, many regions quickly reach these saturation levels at sample sizes that 
are practically attainable (e.g., n<45). In contrast, other pipelines like GLMdenoise and 
TSOC+MotReg typically require considerably larger sizes to hit these saturation levels.  
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Fig 4:  Power Simulations.  This figure shows power curves constructed for each processing 
pipeline across a range of sample sizes from 5 to 100 (panels A-B).  The minimum sample size 
necessary for achieving 80% power is shown in panel C for the Stories task (left) and SelfOther 
task (right). The dotted line indicates sample size of n=45. 
 
 
Functional Connectivity Evidence for Cerebellar Involvement in Neural Systems 
Supporting Mentalizing 
 

The improvements in effect size estimation particularly for cerebellar regions is 
important as it potentially signals the ability of ME-ICA to uncover novel effects that 
may have been undetected in previous research. To further test the importance of 
cerebellar contributions to mentalizing, we have examined resting state functional 
connectivity data and the relationship that cerebellar connectivity patterns may have with 
task-evoked mentalizing systems. Prior work suggests that specific cerebellar regions 
may be integral to the default mode network (Buckner et al., 2011). The default mode 
network incorporates many of the regions that are highly characteristic in task-evoked 
systems supporting mentalizing (Andrews-Hanna et al., 2014). Meta-analytically defined 
cerebellar regions associated with mentalizing show some overlap with these cerebellar 
default mode areas (van Overwalle et al., 2015). Therefore, if cerebellar regions for 
which ME-ICA systematically produces boosts in effect size are integral in neural circuits 
associated with mentalizing, we hypothesized that resting state connectivity patterns with 
such cerebellar regions would be highly involved in the default mode network.  Taking 
this hypothesis one step further, we also hypothesized that if these cerebellar nodes are 
truly important within the neural systems that support mentalizing, we should expect that 
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cerebellar resting state functional connectivity patterns highlighted with multi-echo EPI 
methods would recapitulate the patterns observed for activational topology observed 
during mentalizing tasks across the whole-brain and within the same participants. 
 

Confirming these hypotheses we find that bilateral cerebellar seeds involved in 
mentalizing show highly robust resting state functional connectivity patterns that 
resemble the default mode network within the same participants scanned on our task 
paradigms. Visually, the similarity between the ME-ICR connectivity maps and our 
Mentalizing>Physical activation maps are striking (Fig. 5A). Quantitatively we assessed 
this similarity through voxel-wise correlations (estimated with robust regression) across 
the whole-brain, and we confirm that the resting state functional connectivity maps are 
strikingly similar in patterning to what we observe for task-evoked mentalizing activation 
patterns (all r > 0.37) (Fig. 5B). Relative to the activation-connectivity similarity 
observed in TSOC+MotReg data, the activation-connectivity similarity obtained with 
ME-ICA and ME-ICR is much larger (i.e. z > 8.85) (Fig 5B-5D).  
 

 
Fig 5:  Resting state functional connectivity from cerebellar seed regions and pattern similarity 
with Mentalizing>Physical activation maps.  This figure shows resting state connectivity from 
right and left cerebellar seed voxels (i.e. peak voxels from the NeuroSynth ‘mentalizing’ map) and 
their similarity to Mentalizing>Physical activation maps.  Panel A shows activation and resting 
state functional connectivity maps when using ME-ICA and multi-echo independent components 
regression (ME-ICR).  All data are visualized at thresholded of voxelwise FDR q<0.05.  Panel B 
shows scatterplots and robust regression correlations between whole-brain activation and 
connectivity patterns when using ME-ICA and ME-ICR.  Robust regression was used to calculate 
the correlation in a way that is insensitive to the outliers in the connectivity map which are voxels 
that are proximally close to the seed region.  Panel C shows activation and cerebellar functional 
connectivity maps for data when using conventional analysis approaches on TSOC data.  
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Activation maps are thresholded at FDR q<0.05.  Connectivity maps are thresholded at the same 
t-statistic threshold for defining FDR q<0.05 in ME-ICR analyses (which were already much 
higher than the FDR q<0.05 cutoff estimated from TSOC data), and were shown in this manner 
to show connectivity at the exact same t-threshold cutoff.  Panel D shows activation and 
connectivity similarity estimated with robust regression in TSOC data. 
 

  
Discussion  
 

Task-based fMRI studies are characteristically of small sample size and thus 
likely underpowered for all but the largest and most robust effects. Furthermore, typical 
task-based fMRI studies do not apply advanced methods to mitigate substantial non-
BOLD noise that is generally known to be inherent in such data. Combining small 
underpowered studies with little to no consideration of pervasive non-BOLD noise that is 
present in the data even after typical pre-processing and statistical modeling creates a 
situation where most task-based studies are potentially missing key effects and makes for 
somewhat impractical conditions for most researchers where massive sample sizes are 
required to overcome such limitations. In this study we show that ME-ICA results in 
robust increases in effect size estimation and statistical power in task-based block-design 
studies and these benefits tend to be most prominent without smoothing. These 
improvements are empirically demonstrated against other conventional and prominent 
analysis pipelines and denoising alternatives. As a consequence of these improvements in 
effect size and statistical power, we also demonstrate application of this method towards 
identification of novel effects in the cerebellum involved in the neural systems supporting 
mentalizing. Assuming similar effect sizes in future work, power simulations suggest that 
discovery of these novel cerebellar effects will remain nonetheless hidden at 
characteristically small sample sizes and without the multi-echo denoising innovations 
we report here. 

 
ME-ICA-related benefits to effect size and statistical power are most prominent 

when data are unsmoothed. When utilizing standard smoothing kernels such as 6mm 
FWHM, boosts are still apparent but the gap between ME-ICA and other methods is 
smaller.  This subtle effect related to smoothing may mean that other methods that do not 
benefit from ME-ICA denoising are less sensitive at higher spatial resolutions and will 
require some degree of smoothing in order to make up for that lack of sensitivity. On the 
other hand, one of the unique benefits with ME-ICA are the substantial increases in 
sensitivity even without smoothing and this may suggest that the powerful denoising ME-
ICA implements could allow for much more sensitivity at finer-grained resolutions and in 
part may eliminate some need for smoothing. This advantageous characteristic may yield 
advantages in applying ME-ICA to other types of task-fMRI analysis such as multi-voxel 
pattern analysis (MVPA) (Norman et al., 2006) and representational similarity analysis 
(RSA) (Kriegeskorte et al., 2008), whereby added sensitivity at higher resolution is 
important and whereby the choice of smoothing is an important analytic consideration 
(Kamitani and Sawahata, 2010; Kriegeskorte et al., 2010; Op de Beeck, 2010). Given the 
potential for ME-ICA to enhance sensitivity without smoothing, it will be important in 
future work to explore whether ME-ICA to could enhance such applications of task-based 
fMRI analysis. 
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There are several practical points of impact that these results underscore. First, 

addressing the problem of statistical power in neuroscience, particularly fMRI studies 
(Button et al., 2013; Yarkoni, 2009), is a complicated matter as most recommendations 
for this problem rely on increasing the amount of data collected both at the within- and 
between-subject levels. A practical barrier for most research labs however, is that 
increasing the scale of data collection (e.g. massive sample size studies) is typically cost 
prohibitive. Our innovations here take a different perspective on the problem of low 
statistical power, by addressing from the bottom up, the problem of non-BOLD noise, 
which directly has impact on the sensitivity of fMRI, and thus statistical power. In 
practical terms, we show that ME-ICA allows for such substantial boosts in effect size 
estimation and consequently statistical power whereby in most cases (i.e. canonical and 
cerebellar regions investigated here), requisite levels of statistical power are attainable at 
sample sizes that should not be out of reach for most research laboratories. Therefore, if 
in the future researchers were to take up our multi-echo innovations in combination with 
uptake of already prominent considerations to generally collect more data, we could 
envision that the situation for fMRI research could substantially improve.  

 
It is particularly important to underscore here that we are not suggesting that ME-

ICA is the panacea to the small sample size problem and that as a result, researchers 
could continue the tradition of small sample size studies. Rather, we advocate that there 
are always compelling reasons to collect more data and that if funds permit, researchers 
should go above and beyond data collection that will ensure that their studies are highly 
powered at traditional sample sizes. Such a situation will ensure that canonical large 
effects are robust and replicable. Moreover, boosts in the sensitivity of fMRI can open up 
a range of previously practically unattainable possibilities for new discoveries. Such new 
discoveries could take the form of much more enhanced sensitivity for detecting smaller 
and more subtle effects in brain regions that are currently not well understood or which 
are methodologically hampered by being continually veiled underneath blankets of non-
BOLD noise. New discoveries could also be enabled with parsing apart further variability 
such as subgroups that may have important translational implications (Lombardo et al., 
2015), parsing apart heterogeneity mapped onto individual differences (Laumann et al., 
2015), and/or more fine grained hypotheses/methods that result in much smaller effects 
than could be detected in the typical and more basic activation mapping paradigm. All of 
these situations could be substantially improved with a methodological approach that 
dramatically improves statistical power, but at the same time promotes and motivates 
researchers to collect larger samples than what is typically characteristic. 
 
 As an empirical demonstration of ME-ICA’s ability to enhance new discoveries for 
human brain functional organization, we have uncovered robust evidence that there are 
discrete cerebellar regions that should hold more prominence in discussions about the 
neural systems supporting mentalizing/theory of mind and the ‘social brain’. The 
cerebellum is already a neglected and not well-understood brain area, particularly in the 
context of its potential role in higher-level cognition (Buckner, 2013; Schmahmann, 
1997; Stoodley and Schmahmann, 2009; van Overwalle et al., 2014; Wang et al., 2014). 
Prior indications that these cerebellar regions may be plausible candidates for neural 
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systems supporting mentalizing come from meta-analytic evidence (van Overwalle et al., 
2014). However, while meta-analytic evidence alone might suggest plausibility for these 
regions, it was still unclear as to the exact reasons for why these cerebellar regions have 
not been the topic of more extensive focus. 
 

In this study, one of the novel findings that may help explain why these cerebellar 
regions are missed, is that they are typically veiled in substantial amounts of non-BOLD 
noise that obscure a researcher’s ability to detect such effects with traditional types of 
methods and analysis pipelines. Effect sizes for these regions under more traditional 
analysis approaches (e.g., TSOC+MotReg) are typically small and the sample size 
necessary for detecting those effects with high power are much greater than what is 
typical for fMRI research.  However, after acquiring multi-echo data and applying ME-
ICA, these effects are boosted by greater than 40%. As we show in this study, ME-ICA 
primarily boosts effect size estimation via noise reduction at the within-subject level and 
consequently has impact for reduction of variance at the group level. Therefore, it is clear 
that these regions are typically highly saturated in non-BOLD noise and this problem 
helps to obscure these effects from traditional research practices of using small sample 
sizes and conventional fMRI acquisition and denoising procedures that do not fully 
identify and remove such non-BOLD noise variability.  

 
The ME-ICA application we present here should help researchers to gain a more 

stable foothold on cerebellar effects in the context of mentalizing and enable better 
circumstances for parsing apart how their role can further our understanding of such 
complex social cognitive processes. A promising avenue for future work on this topic 
would be to further understand the computational role the cerebellum plays in simulative 
processes that may be important in mentalizing (Ito, 2008; Mitchell et al., 2006). 
Translationally, the link between cerebellum and mentalizing is also particularly 
intriguing, given the longstanding, yet independent, literatures in autism regarding the 
cerebellum (Courchesne et al., 1988) and mentalizing (Baron-Cohen et al., 1985). Wang 
and colleagues have recently argued that atypical developmental processes within the 
cerebellum may be particularly important for understanding autism (Wang et al., 2014).  
Autism is well known for hallmark deficits in the domain of social-communication (Lai 
et al., 2014) and impairments in the development of mentalizing/theory of mind and self-
referential cognition in autism (Lombardo and Baron-Cohen, 2010, 2011) as well as 
atypical functioning of neural mechanisms that bolster such processes (Lombardo et al., 
2011; Lombardo et al., 2010a) are thought to be important as explanations behind social-
communication deficits in autism.  Thus, the intersection of developmental abnormalities 
in cerebellar development and their relationship to the development of mentalizing in 
autism will be an interesting new avenue of research enabled by these kinds of novel 
discoveries.  
  

An important caveat for this study is that our findings are based on block-design 
activation paradigms, utilizing relatively long-duration changes in susceptibility 
weighting. This differs from event-related paradigms, whereby activations may be 
associated with a significant inflow component that is S0-weighted. Future studies will 
involve assessing the suitability of ME-ICA for the analysis of event-related studies as 
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well as other more novel task-designs. With regard to novel task-designs such as 
temporally extended tasks, we have previously shown that ME-ICA also has the ability to 
separate ultra-slow BOLD effects from slow non-BOLD effects (Evans et al., 2015), and 
this opens up a range of possibilities for new paradigms that may be particularly well-
suited for temporally-extended and continuous tasks, such as more naturalistic paradigms 
for social cognition (Schilbach et al., 2013; Zaki et al., 2009).  

 
One limitation of the current study is the lack of comparison between multi-echo 

and traditional single-echo fMRI as well as emerging single-echo multi-band data. While 
our prior publications suggest that optimally combined multi-echo data is at least a fair 
proxy to single-echo data, there is some chance that the present comparison is 
conservative regarding the benefits of ME-ICA. We have previously shown that 
optimally combined time series data (TSOC) can readily double signal-to-noise ratio 
relative to unaccelerated single-echo fMRI (Kundu et al., 2013), via homogenizing 
functional contrast across the brain while attenuating thermal noise (combination is a 
weighted average implementing a matched- filter). Thus, in our view the most 
conservative comparison to make against ME-ICA should also be multi-echo data that 
benefits from enhanced tSNR over and above single-echo data.  Recent work by Kirilina 
and colleagues provides direct comparisons of single- and multi-echo data in a task-fMRI 
context. These authors found that both kinds of acquisitions produced very similar group-
level results in a task-fMRI context (Kirilina et al., 2016). This suggests that there is little 
benefit in group-level analyses for multi-echo acquisition (without ME-ICA) over and 
above traditional single-echo acquisitions. Applied to our work, these observations would 
suggest that analyses on TSOC data (i.e. TSOC+MotReg, GLMdenoise) are a useful 
approximation of what would be expected if we also compared ME-ICA directly to 
single-echo data.  However, given all these important caveats, it will be important for 
future work on this topic to directly make this comparison of ME-ICA to single-echo data 
in task-fMRI contexts to confirm this prediction. Our prediction would be that given there 
is a boost in tSNR simply by acquiring multi-echo data and utilizing our T2* optimal 
combination method (Kundu et al., 2013) that ME-ICA would similarly outperform 
single-echo data.  
 
 The multi-echo innovations we provide here offer substantial improvements that 
can largely affect how the field conducts fMRI research. All of the tools for 
implementing these innovations are open source and most contemporary imaging 
facilities possess all the requisite requirements to enable actively taking up these 
innovations as standard practice. We hope that the community will actively take up these 
new innovations, as they are likely to have massive benefits for improving major issues 
that hamper the field and may further enable potential for new discoveries about human 
brain function.   
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Legends for Supplementary Figures and Tables 
 
 
Supplementary Table 1:  Classes of signal sources decomposed by ME-ICA.  Signal 
sources elucidated through combination of multivariate decomposition (PCA, ICA in 
order) and T2* decay analysis of multi-echo fMRI data as implemented in ME-ICA. κ is 
pseudo-F statistic component-level TE-dependent scaling suggesting network BOLD 
origin. ρ is pseudo-F statistic component-level TE-independent scaling suggesting 
artifact. 
 
Supplementary Table 2:  Number of BOLD-related components identified by ME-ICA 
for all subjects across both tasks.  Effective smoothness of 2nd-level group analyses for 
each task, each analysis, and under 0mm or 6mm. 
 
Supplementary Table 3:  Effect size, power, and effect size boosting statistics for 
data with no smoothing.  This table provides effect sizes and 95% CIs for all analysis 
pipelines and all regions when data is not smoothed.  It also provides estimates of sample 
size needed to achieve 80% power.  This table also provides information about effect size 
boosting statistics and 95% confidence intervals, impact on sample size estimates to 
achieve 80% power and impact on monetary savings. 
 
Supplementary Table 4: Effect size, power, and effect size boosting statistics for 
data with 6mm FWHM smoothing.  This table provides effect sizes and 95% CIs for all 
analysis pipelines and all regions when data is smoothed at 6mm FWHM. This table also 
provides information about effect size boosting statistics and 95% confidence intervals 
for all regions in both tasks. 
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