Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

CRISPR with independent transgenes is a safe and robust alternative to autonomous gene drives in basic research

Fillip Port, Nadine Muschalik, Simon L Bullock
doi: https://doi.org/10.1101/017384
Fillip Port
1Cell Biology Division, MRC-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: fport@mrc-lmb.cam.ac.uk sbullock@mrc-lmb.cam.ac.uk
Nadine Muschalik
1Cell Biology Division, MRC-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Simon L Bullock
1Cell Biology Division, MRC-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: fport@mrc-lmb.cam.ac.uk sbullock@mrc-lmb.cam.ac.uk
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

CRISPR/Cas technology allows rapid, site-specific genome modification in a wide variety of organisms. CRISPR components produced by integrated transgenes have been shown to mutagenise some genomic target sites in Drosophila melanogaster with high efficiency, but whether this is a general feature of this system remains unknown. Here, we systematically evaluate available CRISPR/Cas reagents and experimental designs in Drosophila. Our findings allow evidence-based choices of Cas9 sources and strategies for generating knock-in alleles. We perform gene editing at a large number of target sites using a highly active Cas9 line and a collection of transgenic gRNA strains. The vast majority of target sites can be mutated with remarkable efficiency using these tools. We contrast our method to recently developed autonomous gene drive technology for genome engineering (Gantz & Bier, 2015) and conclude that optimised CRISPR with independent transgenes is as efficient, more versatile and does not represent a biosafety risk.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Back to top
PreviousNext
Posted April 01, 2015.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
CRISPR with independent transgenes is a safe and robust alternative to autonomous gene drives in basic research
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
CRISPR with independent transgenes is a safe and robust alternative to autonomous gene drives in basic research
Fillip Port, Nadine Muschalik, Simon L Bullock
bioRxiv 017384; doi: https://doi.org/10.1101/017384
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
CRISPR with independent transgenes is a safe and robust alternative to autonomous gene drives in basic research
Fillip Port, Nadine Muschalik, Simon L Bullock
bioRxiv 017384; doi: https://doi.org/10.1101/017384

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genetics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4395)
  • Biochemistry (9619)
  • Bioengineering (7111)
  • Bioinformatics (24915)
  • Biophysics (12642)
  • Cancer Biology (9979)
  • Cell Biology (14387)
  • Clinical Trials (138)
  • Developmental Biology (7968)
  • Ecology (12133)
  • Epidemiology (2067)
  • Evolutionary Biology (16009)
  • Genetics (10937)
  • Genomics (14764)
  • Immunology (9889)
  • Microbiology (23719)
  • Molecular Biology (9493)
  • Neuroscience (50965)
  • Paleontology (370)
  • Pathology (1544)
  • Pharmacology and Toxicology (2688)
  • Physiology (4031)
  • Plant Biology (8680)
  • Scientific Communication and Education (1512)
  • Synthetic Biology (2403)
  • Systems Biology (6446)
  • Zoology (1346)