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ABSTRACT
Despite more than a decade of effort, the genetic underpinnings of many
complex traits and diseases remain largely elusive. It is increasingly
recognized that a purely additive model, upon which most genome-wide
association studies (GWAS) rely, is insufficient. Although thousands of
significant trait-associated loci have been identified, they often explain little of
the inferred genetic variance. Several factors have been invoked to explain the
‘missing heritability’, including epistasis. Accounting for all possible epistatic
interactions is computationally complex and requires very large samples. Here,
we propose a simple two-state epistasis model, in which individuals show
either high or low variant penetrance with respect to a certain trait. The use of
this model increases the power to detect additive trait-associated loci. We
show that this model is consistent with current GWAS results and better fits
heritability observations based on twin studies. We suggest that accounting for
variant penetrance will significantly increase our power to identify underlying

additive loci.
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INTRODUCTION

We have been remarkably successful in identifying the genetic causes of Mendelian
diseases with pedigree and sequence analysis (Botstein and Risch 2003; Gilissen et
al. 2011). In contrast, the genetic underpinnings of multigenic heritable traits and
diseases remain largely unknown. Many complex diseases such as autism,
schizophrenia and cleft lip/palate have discrete, binary states (affected vs
unaffected), yet these discrete states are determined by whether an individual passes
some threshold in an underlying quantitative liability. This liability is both genetic and
environmental in origin (Stefansson et al. 2014; Lynch and Walsh 1998).

GWAS is the most commonly used approach to discover the multiple loci
underlying complex traits, relying on the assumption that risk alleles are more
common among affected individuals than unaffected individuals. As currently
implemented, GWA also assumes that loci contribute independently and additively to
the total genetic contribution of a complex trait. How successful this experimental
design has been is a matter of debate. Since 2007, GWAS have identified thousands
of novel loci with significant trait or disease association and implicated previously
unconnected pathways in disease processes (Visscher et al. 2012). Examples of
clear biological and clinical relevance include the autophagy pathway in Crohn’s
disease (Rioux et al. 2007; Hampe et al. 2007; Prescott et al. 2007; Yamazaki et al.
2007) and the JAK-STAT signaling pathway in rheumatoid arthritis (Stahl et al. 2010;
Diogo, Okada, and Plenge 2014), among others. However, many trait-associated loci

explain little of the inferred genetic variance. They are therefore of limited use for
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predicting the disease risk of specific individuals and for understanding the
mechanistic underpinnings of complex traits. It is widely acknowledged that there is
room for improvement (Wray, Goddard, and Visscher 2007; Wray et al. 2013).

Many hypotheses have emerged to explain the ‘missing heritability’ (Eichler et
al. 2010; Manolio et al. 2009; Gibson 2011). Some complex diseases such as autism
spectrum disorder represent likely insufficiently resolved pools of phenotypically
similar, but inherently rarer, disease traits with different genetic underpinnings. If so,
the observed odds ratios for significantly trait-associated SNP are low because the
common, trait-associated SNP is linked to a rare causative mutation that only
appears in a small subset of haplotypes (Mitchell 2012). Fine-grained phenotyping
rather than relying on discrete, binary diagnoses should help to explore this
hypothesis (Walter 2013). Some have suggested that the heritability of complex traits
is overestimated (Wilson 2008; Zuk et al. 2012). Studies accounting for all SNPs
genome-wide simultaneously, as opposed to individually associating SNPs with traits,
indicate that this explanation is unlikely for many traits (Yang et al. 2010; Zaitlen et al.
2013). Others have invoked currently inaccessible genetic or structural variants or
rare risk alleles of moderate effect as major factors in complex traits (McClellan and
King 2010; Eichler et al. 2010; Manolio et al. 2009). However, at least for autism,
recent studies suggest that common variants account for over 50% of the genetic risk
(Klei et al. 2012; Gaugler et al. 2014).

Finally, although additive genetics is certainly a major fodder for evolution and

selective breeding since even epistatic interactions present mainly as additive (James
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F Crow 2010; Maki-Tanila and Hill 2014), epistasis can have large influence on
complex traits (Lachowiec et al. 2014). A highly socially relevant example for the
importance of epistasis comes from plant breeding. As breeders increased seed yield,
presumably via additive genetic factors, seeds became far more numerous, larger,
and heavier. The increasing pressure on plant stalks required new mutations that
enabled plants to remain erect under the increased seed weight -- this epistatic
interaction enabled the Green Revolution (Hedden 2003) that vastly increased food
security in many poor parts of the world (Ramanathan 2009).

In humans, twin concordance rates indicate that at least some of the genetic
variation influencing complex diseases is non-additive. Experimental evidence
demonstrates that epistasis, i.e. the phenotypically relevant, and often non-reciprocal
interaction of non-allelic genes, is pervasive in complex traits in various model
organisms (Lehner et al. 2006; Queitsch, Carlson, and Girirajan 2012; Mackay 2014).
There is no reason to assume that the genetic architecture of complex traits differs
between humans and other highly complex eukaryotes. Therefore, the inclusion of
epistatic effects in statistical models has been increasingly suggested and even
attempted in some studies (Lachowiec et al. 2014; Hemani et al. 2014a; Hemani et
al. 2011). Although models that allow for all gene x gene (and gene x gene x gene,
etc) interactions will be more realistic, such a higher-order models require much
larger datasets and faster algorithms (Lippert et al. 2013; Hemani, Knott, and Haley
2013; Hemani et al. 2014a; Wood et al. 2014; Li, Horstman, and Chen 2011; Hemani

et al. 2014b).
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Studies in model organisms suggest that a simpler, two-state epistasis may
apply to complex traits and diseases (Gibson 2009; Mackay 2014). Certain genes
can act as strong genetic modifiers for many others loci resulting in highly significant
‘gene x genome’ interactions as opposed to the familiar, often small-effect, gene x
gene interactions. Known examples include the chaperone Hsp90 in plants, flies,
worms, fish, and yeast (Rutherford and Lindquist 1998; Jarosz and Lindquist 2010;
Queitsch, Sangster, and Lindquist 2002; Casanueva, Burga, and Lehner 2012;
Rohner et al. 2013) and several chromatin remodeling proteins in worms, among
others (Lehner et al. 2006; Levy and Siegal 2008). In addition to increasing the
penetrance of many genetic variants in genetically diverse populations, perturbation
of strong genetic modifiers can also vastly increase phenotypic variation in isogenic
populations (Richardson et al. 2013). Notably, the activity of strong genetic modifiers
can be modulated by environmental stress (Rutherford 2003). Based on studies in
plants, worms, and yeast, the number of strong genetic modifiers is small, possibly
~10% of all genes (Lehner et al. 2006; Levy and Siegal 2008; Fu et al. 2009).

There is some empirical support for strong genetic modifiers playing a role in
complex diseases. For example, exome sequencing of autism parent-child trios finds
disease-associated de novo mutations in CHD8, a chromatin remodeling factor
involved in beta-catenin and p53 signaling (O’'Roak, Vives, Girirajan, et al. 2012).
Other disease-associated de novo mutations also implicate chromatin remodeling
and beta-catenin signaling, which are both general developmental pathways, rather

than specific neurodevelopmental pathways (O’Roak, Vives, Fu, et al. 2012; Krumm
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et al. 2014). Chromatin remodeling is also implicated in schizophrenia, a distinct
neurodevelopmental disease (Koga et al. 2009; McCarthy et al. 2014). It seems
unlikely that perturbation of a general pathway like chromatin remodeling leads to two
distinct diseases; rather, these perturbations may increase penetrance of
disease-specific genetic variants. Similarly, network analysis of asthma GWAS hits
and interactome data (genomics, gene expression, drug response) found three novel
pathways that contribute to an ‘asthma disease module’: the AP1 family of
transcription factors, Trka Receptor Signaling, and the GAB1 signalosome (Sharma
et al. 2015). All three are general signaling pathways of growth and development,
involving canonical MAP kinase components; their specific relevance to asthma is
unclear. In short, complex diseases may arise through perturbed strong genetic
modifiers which epistatically enhance the penetrance of many other variants
genome-wide. Perturbations may occur either through mutation (as above) or
environmental stress (Thomas 2010; Tsuang et al. 2004; Gibson 2009). Assuming a
threshold model for complex diseases, this strong interaction would cause a large
shift of variant effect across the disease threshold.

Although the existence of differences in variant penetrance among individuals
is not a new concept, its effect on GWAS in humans has not been investigated. Here,
we present a simple two-state epistasis model, in which disease status of an
individual depends on a combination of additive alleles (as before) as well as their
penetrance in a given individual. Such a model might be called an AxP, or Additive x

Penetrance model. A population consisting of all individuals with increased
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penetrance of many different genetic variants will have higher phenotypic variation,
i.e. it will be less phenotypically robust, than an otherwise equivalent population
consisting of all robust individuals with low penetrance (Queitsch, Carlson, and
Girirajan 2012). Theoretical population genetics provides a strong argument for the
potential benefits of maintaining a population with a balance of robust and non-robust
individuals (Le Cunff and Pakdaman 2012; Hermisson and Wagner 2004;
Huerta-Sanchez and Durrett 2007; Wagner 2008; Ferrada and Wagner 2008; Draghi
et al. 2010; Wagner 2012). As we show, this model increases the power to detect
additive trait-associated loci and better fits heritability observations based on twin
studies. In the absence of robustness measures in humans, one may argue that such
model is of limited use to improve GWAS in humans. However, we argue that our
model’s success should inform our approach to finding disease-causing loci and we

discuss strategies how to apply it to existing and future GWAS data.

RESULTS

Heritability estimates imply substantial non-additivity of genetic factors
contributing to human disorders:

Geneticists refer to two types of heritability: additive (narrow-sense or h?) and
total (broad-sense or H?). Since broad-sense heritability (H?) is the fraction of
phenotypic variance explained by all genetic factors, and narrow-sense heritability
(h?) is the fraction of phenotypic variance explained by additive genetic factors, it is

tempting to deduce non-additive genetic effects (epistatic effects) by simply
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subtracting these two values. However, despite numerous references to heritability in
the literature, there remains some confusion on the methods of calculating H? in
humans (see Appendix I) (Zuk et al. 2012; Hemani, Knott, and Haley 2013).

The additive heritability of quantitative traits is simply a function of the slope of
the line of regression between pairs of related individuals (Fig. 1A) (Lynch and Walsh
1998; Visscher, Hill, and Wray 2008). However, complications arise for traits that are
observably discrete, but rely on thresholding of an underlying, unobserved
quantitative liability scale. Such traits are called threshold characters (Wright 1934;
Rendel 1962; Lynch and Walsh 1998). Using the same method to measure additive
heritability as before — doubling the slope of the line of regression between
parent-offspring pairs — results in a substantially smaller estimate of the additive
heritability (Fig. 1A, inset).

The degree to which this observable discrete additive heritability (h?,) is
decreased relative to the heritability of the underlying additive liability (h?) depends on
where the diagnostic threshold is drawn — in other words, the fraction of individuals
that are affected (¢). Henceforth, we use h?,,, to refer to the observable heritability of
threshold traits (binary, affected/unaffected).

In 1950, Dempster and Lerner (Dempster and Lerner 1950) derived a formula
relating h? to h?,,, using a simplifying assumption that the quantitative trait (liability) is
normally distributed in the population (see Appendix Il). Here, we refer to this

Dempster-Lerner derivation as T(h?,,) as the maximum heritability of the binary

10
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character attainable if the underlying liability consisted purely of additive genetic
factors (h*=1) (Fig. 1B).

Expected values for h?,,, can also be determined via simulation, in which the
additive liability is binomially distributed (N is twice the number of additive loci; P is
the frequency of the risk allele at each locus). We refer to the maximum binary
heritability attained via simulation of a purely additive model with h?>=1 as S(h?,,).

In either case, binary heritability h?,, reaches a maximum (with respect to h?)
when half of the population is affected and drops off rapidly as the fraction of affected
individuals approaches values typical for common discrete complex traits, such as
autism, schizophrenia, and multiple sclerosis (Fig. 1B). However, empirically
determined h?,, values for these traits — O(h?,, ) — are much higher (Table 1), calling a
purely additive model into question.

To explore the implied non-additive factors, we developed a simulator that
designates a subset of the population as non-robust by incorporating a robustness
perturbation factor that increases the effect size of all additive risk alleles, i.e.
increases variant penetrance. Using this simulator, a purely robust population
maintains the theoretical relationship between the fraction of affected individuals (@)
and h?,, [here called S(h?,,)] (Fig. 1B, black curve). The inclusion of non-robust
individuals with increased variant penetrance results in an increase of h?,, [here
called S/(h?,,)] even when the binary trait is at very low frequency (Fig. 1B, gold

curve). Below, we explore the effect of varying this robustness factor, as well as the

11
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frequency of non-robust individuals in the population and the contribution of
non-genetic factors (H?<1).

Hill and colleagues (Hill, Goddard, and Visscher 2008) proposed a simpler
function to determine the extent of non-additive genetic effects: the correlation of
monozygotic twins minus twice the correlation of dizygotic twins (r,,,—2r,,). They use
this statistic to evaluate both quantitative traits, such as height, and threshold traits,
such as endometriosis. “r,,,>r,, implies that part of the resemblance is due to genetic
factors and r,,,>2r,, implies the importance of non-additive genetic effects”. This
metric makes intuitive sense, because monozygotic twins share 100% their alleles,
and dizygotic twins share 50% of their alleles. While most of the complex traits that
Hill and colleagues examine in their paper had r,,,—2r,, values close to or less than
zero, for many important complex diseases, r,,,~2r,,> 0 (Table 1).

Therefore, rather than relying on traditional heritability metrics, we quantify the
non-additive genetic component of complex traits and diseases by comparing
empirically determined heritability, O(h?,,), to binary heritability with and without
including a robustness perturbation factor [S(h?,,,), additive model, assuming equal
robustness in populations; S,(h?,), a two-state model, assuming differential
robustness in population]. Simulated populations that are a mixture of robust and
non-robust individuals produce levels of h?, that are more consistent with empirically

determined O(h?,,,) from twin studies (Table 1, Fig. 1C).

12
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Robustness as a two-state model of epistasis: Rather than expressing
liability as a deviation from the mean, here, we define a quantitative phenotype (y) as
a strictly positive value that is a linear combination of genetic factors and noise

(environmental factors):

where the a’s are the weights of each of the contributing genetic components, n is the
number of contributing genetic components, ¢ is the residual effect, which is assumed to
be normally distributed with mean zero and standard deviation o,, and g;is an indicator
variable, taking values 0 or 1 depending on whether the risk allele is present at the ith
locus. (Fig. 2A) The bi-allelic states can be thought of as intact (wild type) or broken
(risk) versions of the gene. With exome sequencing, such data are now readily available
(O’'Roak et al. 2011). For this and all further models (including populations consisting of
a mixture of subpopulations), we determine binary trait status of each individual using a
threshold drawn on the empirical population of y, such that the fraction of affected
individuals in the population is consistent with that of a given trait of interest ().
Note that if we assume that all risk alleles contribute equally to disease risk,

(all a/s are equal), the formula simplifies further to:

y=noteg (2)

where n is the number of risk-associated alleles.

13
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A non-robust subpopulation could be defined in several ways. We explored
four common manifestations of large-effect factors, represented by coefficients c,, c,,
¢, and c, that modify the base additive formula (Fig. 2), and evaluated their potential
for explaining observed information. Note that at this point, we make no assumptions
about whether robustness status is genetic or environmental in origin.

The first way in which the simple additive model could be modified is by
inclusion of a large factor that simply adds to the phenotypic liability independently of
other additive factors (Fig. 2B), where c,>>a. In this case the factor (c¢,) is not
epistatic to the other additive factors (g,), it is yet another, larger, additive factor.
These types of factors are relatively simple to detect with linkage analysis (if genetic)
or epidemiological studies (if environmental). Examples include a mutation in the
fibroblast growth factor receptor 3, which causes a decrease in height
(achondroplasia) (Shiang et al. 1994; Rousseau et al. 1994), and William’s syndrome,
which causes, among other things, a decrease in 1Q (Mervis and Becerra 2007). In
both these cases, the standard deviation of the trait (height and 1Q, respectively)
stays the same as that for typically developing populations. A population with a novel
factor of large effect, as described above, would have a different phenotypic
coefficient of variation, a common metric for robustness (Lempe et al. 2005), than a
population without that factor. However the difference is driven exclusively by a
change in mean phenotype, and the novel factor would not be considered as having a

robustness effect. We therefore exclude this model from further consideration.
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A second modification to the simple additive model, and one that would result
in an increase in phenotypic variance, is one in which the degree of stochastic noise
(¢) in determining the phenotype is increased, (Fig. 2C, where for robust individuals,
c.=1 and for non-robust individuals, ¢,>7). Such a change would affect the variance of
the phenotypic value in the population without changing the mean value, and
therefore such a large-effect factor would be considered a robustness factor.
However, because c, does not depend on the additive factors (g;), there is no epistatic
effect. Note that this is the same as decreasing the importance of genetics in
determining the phenotype (i.e. decreasing overall heritability). An example of a single
gene perturbation affecting trait robustness is the elf4 mutation that greatly increases
variance of the plant circadian period but maintains mean value (Doyle et al. 2002).
Another example would be the increased variation in normalized eye and orbit size
caused by perturbation of Hsp90 in surface-dwelling Astyanax mexicanus fish, which
did not change trait means (Rohner et al. 2013). As this type of epistasis decreases
the importance of genetics, is unlikely to underlie complex diseases with high
observed heritability and monozygotic twin concordance, and we therefore exclude it
from further consideration.

The final two types of single-factor epistatic effects are (i) those that increase
the effect size (a) of already-present additive alleles (Fig. 2D; c,), and (ii) those that
reveal cryptic risk-alleles, increasing the total number of loci (n) influencing the trait
(Fig. 2E, c,). In each scenario, populations consisting exclusively of either robustness

type (robust individuals: ¢,=7 and c¢,=7; non-robust individuals: ¢,>7 or ¢,>7) would
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differ in both the mean and the variance of the phenotype, and thus would satisfy the
classical definition of robustness (Queitsch, Carlson, and Girirajan 2012). Because
the robustness factor interacts with the additive factors (g;), ¢, and ¢, would also be
considered epistatic effects. We call these coefficients ¢, and c, robustness
perturbation factors.

Although the simplified versions of the equations for the two scenarios (Fig.
2D, E), wherein all weights are equal, are equivalent: y=(c,a)n+e and y=a(cn)+e, we
can distinguish them experimentally. First, trait mapping in non-robust individuals will
reveal additional loci, compared to a comparable study in robust individuals, if loss of
robustness exposes cryptic loci (Sangster, Salathia, Lee, et al. 2008; Sangster,
Salathia, Undurraga, et al. 2008; Jarosz and Lindquist 2010; Rutherford and Lindquist
1998). Second, loss of robustness can increase effect size (i.e. penetrance) of
individual mutations (Casanueva, Burga, and Lehner 2012; Burga, Casanueva, and
Lehner 2011). Third, methods based on comparing parent phenotypic variation to
sib-sib phenotypic variation have been developed to estimate the number of additive
loci affecting a trait (Slatkin 2013; Penrose 1969). Under a cryptic genetic variation
scenario, an all-robust population would appear to have more additive loci affecting a
trait than an all-non-robust population, whereas under an increased effect size
scenario, they would be the same.

Therefore, we implement these last two models, D&E, in our simulator (Fig. 3).
Our aim was to measure the effect of changing certain parameter values, such as n,

®, ¢, and c, on expected observable values, such as A,,;, A,,, and the odds ratio (OR)
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of a locus found in a typical GWAS, while holding noise (€) constant. Using a set of
input parameters, we first simulate a set of families each containing two parents and a
primary child (trio). We then simulate monozygotic and dizygotic twins of that primary
child, and assign quantitative phenotypes (y) to each child. To do so, we sample the
number of risk alleles per child, given the number of relevant loci and frequency of
risk alleles at each locus. Third, children are designated to be robust or non-robust,
based on the frequency of perturbed ‘robustness’ alleles, p,. If a child is non-robust,
its additive risk is multiplied by ¢, or ¢, and the noise factor € is added (y). Fourth,
using the liability (y) of primary children, we designate the top ¢ fraction (e.g. 1%) as
affected and thereby define a risk threshold for affected and unaffected individuals.
This threshold is used to determine affected/unaffected status of twins. Fifth, we
calculate the monozygotic and dizygotic concordance rates (A,, and Ap,
respectively), and perform in silico GWAS on affected vs unaffected primary children
(not including simulated twins) to determine the odds ratio of individual additive risk
loci (OR,,4)-

Our first result confirms intuition: in a mixed population, consisting of both
robust (c,=1, ¢,=1) and non-robust (c¢,>1, ¢,>7) individuals under either model D or E,
individuals crossing the clinical threshold will be disproportionately from the
non-robust subgroup. As c, or ¢, increase, total liability (y) increases. This is true for
both the non-robust subpopulation and the entire population, which is why we use a
percentile (¢) rather than an absolute threshold to determine affected/unaffected

status.
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Secondly, we find that a population in which just 1% of individuals are
non-robust can easily produce the range of empirically determined heritabilities of
binary threshold traits [Fig. 1B inset, S,(h%)] and reported twin concordances and
broad-sense heritabilities of several complex diseases (Fig. 1C, Table 1). This is due
to the fact that as c, or ¢, increase and € remains constant, the fraction of liability that
is determined by genetics (H?) increases for the non-robust subpopulation and, by

extension, for the entire population.

Controlling for robustness status adds power to GWAS: Regardless
whether robustness is modeled as hiding cryptic variation or reducing penetrance of
variants, if the goal is to find additive risk-loci (i.e. which may be good therapeutic
targets), it is best to use only robust individuals for both affected and unaffected
groups (Fig. 4B). Of course, controlling for a hidden robustness state, which modifies
the effect of many alleles, returns the experiment to the situation for which GWAS
was designed -- a purely additive model. It is less intuitive why using only robust
(rather than all non-robust) individuals improves our ability to detect additive risk
alleles in GWAS, which is a result we explore below.

In the case of cryptic variation, robust individuals have fewer available additive
loci than non-robust individuals, so there are fewer ways to cross the threshold
number of risk-alleles; the risk alleles are concentrated at the non-cryptic loci.

Alternatively, affected robust individuals may carry additive risk alleles of larger effect
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size, i.e. a different type of risk alleles than non-robust affected individuals. Here we
assume that non-robust and robust individuals carry the same additive alleles.

In the case of increased penetrance, the explanation is similar to that given for
why common risk alleles are more easily found than rare alleles that increase risk by
the same amount (Gibson 2011): effect size is a function not only of the case:control
ratio of allele frequency, but also of the magnitude of the frequency of the alleles in
affected and unaffected individuals (Fig. 4A). If all affected and unaffected individuals
are robust (as compared to non-robust), more risk alleles are required to cross the
threshold (for affected individuals) and more risk alleles are allowed for individuals not
crossing the threshold (for unaffected individuals). Therefore, while the ratio of allele
frequencies between affected and unaffected individuals is the same for both all
robust and all non-robust groups, the magnitude of the allele frequencies is different,

making those loci easier to find in robust populations.

Robustness status may be genetically-determined, but difficult to
pinpoint. We state earlier that robustness status need not be genetically determined;
however, we wish to explore reasonable scenarios in which it is.

Were robustness status encoded by a single genetic factor, this factor would
be readily discernible, either by GWAS or linkage analysis because, under our model,
affected individuals in mixed populations are disproportionately non-robust. However,
robustness status is highly unlikely to be encoded by a single gene. Model organism

studies suggest that a significant fraction of total number of genes — possibly up to
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10% — can affect robustness (Lehner et al. 2006; Levy and Siegal 2008; Fu et al.
2009).

To model the scenario of multiple ‘robustness’ genes, we use a simple yet
plausible house-of-cards model of robustness, in which all n, ‘robustness’ loci must be
functional for an individual to be robust. We observe that the odds ratio for any one
‘robustness’ locus (OR,) decreases to within the range often seen in GWAS as n,>50
(Fig. 4C). In other words, since there many possible ‘robustness’ loci, specific ones
will be hard to find in GWAS.

With this result in mind, it may appear that models D and E are similar to the
model that includes an additional additive factor of large effect (model B) in that
affected individuals are disproportionately either non-robust (models D&E) or carriers
of a large-effect alleles (model B) — particularly since multiple factors of large additive
effect that result in indistinguishable phenotypes could conceivably work in a
house-of-cards model. However, we argue that models D and E explain the marginal
penetrance of some seemingly large effect factors and concomitant lack of Mendelian
inheritance in pedigrees (Rosenfeld et al. 2013) as well as the presence of the

multitude of other lesser risk-associated loci much more readily than model B.

DISCUSSION
We conclude that (i) a model that includes a house-of-cards robustness state
explains the observed data for several complex diseases better than one without, (ii)

when looking for loci with additive risk alleles it is best to use all robust individuals for
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both cases and controls, and (iii) ‘robustness’ loci are unlikely to be identified in
GWAS.

In any given family, a faulty ‘robustness’ allele passed on from parent to child will act
as a large-effect risk allele with Mendelian inheritance. This explains both high
concordance among relatives and missing heritability in GWAS.

An obvious challenge is how to identify robust and non-robust humans; this
challenge is met in several ways in model organisms (Queitsch, Carlson, and Girirajan
2012; Lempe et al. 2005). In humans, one may identify ‘robustness’ genes by
comparing individuals with high comorbidity of complex diseases to those with none;
however, to our knowledge, this has yet to be done. Another currently available
approach would be to pool individuals that are affected by distinct complex diseases
and compare these to their pooled unaffected controls. As we expect non-robust
individuals to be overrepresented among affected individuals for any complex disease,
this GWAS approach may identify ‘robustness’ loci because the frequency of perturbed
‘robustness’ loci is increased. Indeed, this approach has shown promise for
neurological disorders (“ldentification of Risk Loci with Shared Effects on Five Major
Psychiatric Disorders: A Genome-Wide Analysis” 2013). Similarly, the distinct diseases
autism spectrum disorder and schizophrenia converge on chromatin remodeling as a
general pathway that is disrupted in affected individuals (O’'Roak, Vives, Girirajan, et al.
2012; O’Roak, Vives, Fu, et al. 2012; Krumm et al. 2014; Koga et al. 2009; McCarthy et
al. 2014). We suggest that perturbation of chromatin remodeling leads to increased

penetrance of different additive risk alleles (i.e. at different loci), hence resulting in
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distinct diseases. In fact, perturbation of chromatin remodeling genes increases the
penetrance of many genetic variants in worms (Lehner et al. 2006).

The cited autism studies also point to a promising path towards identifying
‘robustness’ loci: whole-genome sequencing of parent-child trios (unaffected parents,
affected child) (O’'Roak et al. 2011; O’Roak, Vives, Girirajan, et al. 2012). This approach
will capture the hypothesized large-effect risk alleles, which are either inherited in
families or arise de novo in affected children. Notably, exome sequencing of autism
parent-child trios finds significantly associated de novo mutations in CHDS8, a chromatin
remodeling factor with roles in beta-catenin and p53 signaling (O’'Roak, Vives, Fu, et al.
2012). Other de novo mutations in affected children also implicate chromatin
remodeling and beta-catenin signaling, both general developmental pathways, rather
than specific neurodevelopmental pathways (O’Roak, Vives, Fu, et al. 2012; Krumm et
al. 2014).

A third approach possible with current data would be to assume that the
GWAS loci associated with the highest disease risk represent ‘robustness’ genes —
particularly if there is no obvious association between gene function and a specific
disease. One would then proceed by controlling for these additive risk allele. As a
community, we have been reluctant to stray from additive models because of the
rapidly rising complexity involved in accounting for interactions between genes. Also,
multiplicative models assuming many interactions will yield lower concordance rate
between first-degree relatives than is typically observed. This approach contrasts with

ours as we assume ‘gene x genome’ epistasis (i.e. strong genetic modifiers
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epistatically interact with many other loci). Note that statistical additivity is often an
emergent property of underlying epistatic interactions (Song, Wang, and Slatkin 2010;
Mackay 2014; Maki-Tanila and Hill 2014). Nevertheless, from the viewpoint of
developing predictive diagnostics and effective therapeutics, it is important to identify
the mechanistic underpinnings of complex diseases. If ‘gene x genome’ epistasis
contributes to complex disease as we suggest, we need to think of ways to identify
‘robustness’ genes or markers for robustness in humans.

One plausible proxy for robustness could be the level of genome-wide
heterozygosity. For many traits in many organisms F, hybrids show less phenotypic
variance and indeed hybrid vigor compared to their parental inbred lines P, and Pg
(Robertson and Reeve 1952; Festing 1976; Becker and Léon 1988; Phelan and
Austad 1994; Klempt et al. 2006). Plant breeders have been using this simple
principle for almost a century (J F Crow 1998). Hybrids show decreased phenotypic
variance and increased vigor despite the fact that all three populations (F,, P, and Pg)
are isogenic and therefore all phenotypic variation within each population should be
environmental in origin. Because phenotypic variation due to environment is
apparently reduced by heterozygosity, the fraction of phenotypic variation due to
genetics should be greater in increasingly heterozygous populations. Hence, a good
proxy for robustness status may be a genome-wide heterozygosity score (Campbell
et al. 2007; Govindaraju et al. 2009; Lie, Simmons, and Rhodes 2009; Gage et al.
2006), which is often readily calculated from the same type of data collected for

GWAS.
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The relationship between heterozygosity and disease is reflected in the sex bias
of neurodevelopmental disorders (Jacquemont et al. 2014), with many more males than
females affected (~30% to 50% excess, autistic male/female ratio of 4:1). Autistic
females tend to carry a higher load of copy number variants (CNV) and single
nucleotide variants (SNV) than affected males, arguing that a greater genetic liability is
required for females to cross the disease threshold. A likely explanation for this “female
protection” is the second X chromosome, which ‘buffers’ otherwise deleterious
mutations (Jacquemont et al. 2014). Moreover, autistic females are often much more
severely affected; many fewer girls (one in seven) than boys have highly functioning
ASD (autism spectrum disorder). Taken together, increased ASD severity, decreased
occurrence, and higher mutational burden in females strongly implicate non-additive
genetic effects in ASD.

Ideally, we would have readily accessible and affordable DNA-, RNA-, protein- or
cell-based markers to determine robustness levels across many individuals and apply
robustness as a covariate in GWAS. Without extensive studies in model organisms,
which offer orthogonal measures to determine robustness (Lempe et al. 2005), the
identification of such markers seems not easily feasible. Some have suggested that
levels of somatic genetic variation may be a read-out of robustness and mutation
penetrance with higher levels of somatic variation indicating lower robustness
(Queitsch, Carlson, and Girirajan 2012; Press, Carlson, and Queitsch 2014; Heng
2010). Single-cell sequencing and phenotyping may offer insights into an individual’s

robustness with greater cell-to-cell variation indicating lower robustness and higher
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mutation penetrance (Steininger et al. 2014; Altschuler and Wu 2010). Simpler
alternatives may rely on identifying individuals that are outliers in expression or
methylation. Similar to using genotype data to elucidate population structure (Pritchard,
Stephens, and Donnelly 2000), expression (and methylation) data could be used to find
subpopulations with different patterns of covariance between gene expression
(methylation) levels (Satoh et al. 2006). Admittedly, none of these suggestions are
exactly affordable; yet, compared to the vast resources committed to GWAS, exploring
these potential markers in model organism studies seems worthwhile. Notably, as
robustness status can be environmentally-determined, we believe that such markers
would detect environmentally-dependent robustness defects. Although a single
environmental risk-factor should be readily identified through epidemiological studies,
there could be a time lag between the environmental insult and the disease or a
house-of-cards mechanism for multiple environmental insults that make them difficult to
pinpoint. Even without knowing the etiology of robustness status, we need to separate
individuals into robust and non-robust categories.

Are there indeed robust and non-robust individuals as we argue? Population
genetics theory suggests that it is evolutionarily advantageous to maintain a balance of
robust and non-robust individuals within a population, mainly due to the fact that
non-robust individuals supply a broader phenotypic range on which selection can act
under extreme circumstances (Le Cunff and Pakdaman 2012; Hermisson and Wagner
2004; Huerta-Sanchez and Durrett 2007; Wagner 2008; Ferrada and Wagner 2008;

Draghi et al. 2010; Wagner 2012).
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Medical professionals intuitively agree. Drawing on their experience, they
evaluate the full “Gestalt” of a patient and predict a patient’s risk for a negative
outcome with often great precision. Applying ‘robustness’ markers may turn a
physician’s intuition into diagnostics. Because of the potential for increasing predictive
power and identifying effective drug targets, the possibility that robustness is a major

player in the etiology of complex disease should be carefully considered.

APPENDIX
(I) Broad-sense, or Total Heritability: The definition of total, or broad-sense

heritability is straightforward:

where cﬁ, is the phenotypic variance due to genetic factors and csi is the phenotypic
variance due to environmental factors. In model organisms, such as yeast, these
values can be measured directly using replicates (Bloom et al. 2013). In humans,
however, we must rely on an often slim set of naturally-occurring replicates —
monozygotic twins.

Multiple different methods of calculating total heritability are still used, most of
which are simple functions of monozygotic and dizygotic similarity, but the most

common was proposed by Holzinger in 1929 (Holzinger 1929):
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= Doz (4)
Dz

where r,,, and r,, stand for the correlation between the phenotypes of pairs of

monozygotic and dizygotic twins, respectively.

Adding to the complexity of these calculations is the fact that traits can be
either continuous (quantitative) or discrete (affected or unaffected). In the case of
Holzinger's formula for total heritability (H?), the same formula can be used. The
following is a useful simplification of the original formula for the case of discrete traits,

where unaffected and affected individuals assume values of 0 and 1 respectively:

P = et (5)
where A,,;and Ay, are concordance rates between monozygotic and dizygotic twins,
respectively.

Despite known problems surrounding the calculation of broad-sense
heritability, specifically over-simplifying assumptions of (i) non-linkage between risk
loci, and (ii) similarity of environment for monozygotic and dizygotic twins (Jacquard
1983; Schonemann 1997; Lynch and Walsh 1998), the above formula for H? remains
a common method for calculating the “heritability” reported for many complex
diseases. To side-step confusion surrounding heritability calculations, we use simple
monozygotic and dizygotic twin concordance as an output measurement.

Other methods of calculating include Falconer’s formula, 2(r,, —-rp;) and

Nichols’s formula 2(r,,, — rp;)/r,,z» however these methods clearly fail in an essential
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criteria of the H? statistic: that H?> must have a value between zero and one, as it is,
after all, a fraction — specifically, the fraction of phenotypic variance due to genetic
effects. For example, for Autism Spectrum Disorders, the concordance of
monozygotic twins is 0.95 and the concordance of dizygotic twins is 0.04, and an
overall population prevalence of 0.5 implies r,,,=0.97 and r,,=0.20, which would make
H?1.55 and 1.59 for Falconer’'s and Nichols’s formulas, respectively. It is safe to say

that calculating the broad-sense heritability in humans is an intractable problem.

() Narrow-sense, or Additive Heritability of Threshold Traits: The
relationship between the observable heritability of a discrete threshold trait (h?,,,) and
the additive heritability of the underlying, often hidden quantitative trait (h%) was
derived as follows by Dempster and Lerner in 1950 (Dempster and Lerner 1950;
Lynch and Walsh 1998), under the assumption that the underlying additive liability is

normally distributed:

= 1 ©
where p(x,) is the height of the standardized normal distribution at the diagnostic
threshold (above which, an individual would be “affected”) and ¢, is the fraction of
affected individuals in the population. h?,,, reaches a maximum value of 2/ = 0.637
when all of the underlying liability is genetic and additive (h?’=7) and half of the
population is affected (¢=0.5). When ¢=0.01, a typical value for more common

discrete complex traits such as autism and schizophrenia, observable heritability
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(h?,;,,) based purely on underlying additive genetic liability is expected to be 0.072.
The maximum value for h?,, decreases as the fraction of the population affected ¢
decreases.

In our simulations, genetic liability is described by a binomial distribution, with
the number of trials being twice the number of risk loci, or 2n (for a diploid individual)
and the probability of success being the frequency of a risk allele at any given locus,
or p. Using this distribution, we get values of h?, that are slightly higher than those
predicted by Dempster and Lerner based on a normal distribution for all values of ¢

other than a small window around ¢=0.5 (roughly 0.4 < ¢ <0.6) (Fig. 1B, Table 1).
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Figure 1: Comparison of narrow-sense heritability of quantitative liability,
observable heritability of discrete traits, and empirically determined heritability
of certain complex threshold traits. (A) Each symbol in the large scatter plot
represents the genetic liabilities for one parent-child pair. Each symbol in the inset
scatter plot represents the disease state for one parent-child pair (disease state must
be O=unaffected or 1=affected; points were jittered for visual clarity). Green pluses
indicate cases in which the child is affected (i.e. has crossed the diagnostic threshold)
and the parent is not affected; blue crosses indicate cases in which the parent is
affected and the child is not; red filled circles indicate cases in which both are
affected; black open circles indicate cases in which neither is affected. Input
parameter values for the simulation were as follows: number of additive risk-loci (n) =
100; frequency of additive risk-allele (p) = 0.1; frequency of non-robust state (p,) = 0.
(B) The relationship between frequency of affected individuals in the population (¢)
and the maximum possible observable binary heritability (h%,,) when the underlying
liability is entirely determined by additive genetic factors (h?* = 1) as predicted by
theory (Dempster and Lerner 1950), T(h?,,), as determined by simulation, S(h?,,,), or
as determined by simulation of a population that includes two types of individuals,
robust and non-robust, at a ratio of 99:1, S(h?,,), where H? = 1. In the inset, we
display the relevant ¢ range where 1% or less of the population is affected, which is
common for many complex diseases. For the diseases shown, empirically
determined heritability O(h?,,)) is up to twice as high as predicted under the models
that do not include an epistatic robustness factor. (C) In a population containing just
1% non-robust individuals, increasing the robustness perturbation factor (c,), i.e. the
fold-change of the additive genetic liability, increases both heritability and twin

concordance to levels observed in several complex diseases.
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Figure 2: Base additive model and modifications. (A) Base additive model. (B)
Additive model plus single large-effect factor (c,). (C) Additive model with increased
noise, i.e. increased residual effect (c,). (D) Additive model assuming existence of
non-robust state that increases effect size of additive risk alleles (c,). (E) Additive model
assuming existence of non-robust state that reveals previously phenotypically silent
(cryptic) risk alleles (c,), represented by the additional blue triangles. [Note: y is some
quantitative phenotype, a/s are the weights of each of the contributing genetic
components, n is the number of contributing genetic components, c, is the residual
effect, which is assumed to be normally distributed with mean zero and standard
deviation o,, and g;is an indicator variable, taking values 0 or 1 depending on whether

the risk allele is present at the i-th locus.]
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Figure 3: Simulator schematic. Using given INPUT parameters, we performed a
simulation to generate a set of families consisting of two parents, a primary child (in bold
box), and both a monozygotic and a dizygotic twin for each primary child. Each
individual was assigned two alleles at random (either a risk allele (red), with probability
p, or a non-risk allele, with probability 7-p) for each of the n loci simulated. Each
individual was also assigned a robustness status in the following way: if either of the two
alleles at any of the n, ‘robustness’ loci were nonfunctional, each with probability p,, the
individual was non-robust (indicated by gold diamond). Trait threshold is determined
such that a fraction ¢ of primary children is affected. We then performed twin
concordance calculations (using the simulated twins) and GWAS (using only primary
individuals) to produce a set of OUTPUT values that we compared to empirically

observed values.
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Figure 4: Effect size of an additive risk locus is determined by both the total
number of additive risk loci and the presence/absence of ‘gene x genome’
epistasis. (A) In a robust population, where genetic liability is fully determined by the
number of additive alleles, both affected and unaffected individuals will have more
risk alleles than individuals of a non-robust population. Therefore the odds ratio
(OR,,y) for any given additive allele in the robust population (2.33) will be greater than
in non-robust populations (2.06), even if risk allele ratios are the same (2). (B) Within
a population consisting of 99% robust (model A) and 1% non-robust (model D or E),
the effect size of an additive allele is highest when GWAS is performed in a
subpopulation consisting of only robust individuals (black line) and lowest when
GWAS is performed in a subpopulation sampled without regard to robustness state
(green line), with subpopulations consisting of only non-robust individuals of either
type D or E performing at intermediate levels (blue lines). Input parameter values for
the simulations were as follows: number of additive risk loci 20 < (n) < 200; frequency
of additive risk allele (p) = 0.02; frequency of non-robust state (p,) = 0.01; robustness
perturbation factor (c,) = 2. (C) Increasing the number of genes in which perturbation
causes a non-robust state decreases the effect size of any one such ‘robustness’
gene to levels comparable to that most commonly found for additive risk alleles in
which the risk allele is the minor allele (1 < OR,; < 2, indicated by grey horizontal
bar). Input parameter values for the simulations were as follows: number of additive
risk-loci (n) = 100; frequency of additive risk-allele (p) = 0.02; frequency of non-robust

state (p,) = 0.01; robustness perturbation factor 1 < ¢, < 3.
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Table 1: Heritability of select Complex Traits

Trait AMZ ADZ (p T(hzbin) S(hzbin) O(hzbin) rMZ - 2I' Dz H2
Autism Spectrum 0.92 0.1 0.5% 0.042 0.1 0.2 0.33 0.91
Disorder (Bailey et al.  (Bailey et
1995) al. 1995)
Schizophrenia 0.4-0.7 (Onstad 0-0.26 1% 0.072 0.16 0.26 0.11 0.44
etal. 1991; (Onstad et
Cardno and al. 1991;
Gottesman Cardno and
2000) Gottesman
2000)
Multiple sclerosis 0.24 0.03 0.1% 0.011 0.04 0.06 0.14 0.22
(Hansen et (Hansen
al. 2005) et al.
2005)
Type | diabetes 0.53 0.11 0.3% 0.028 0.07 0.22 0.07 0.47
(Kyvik, (Kyvik,
Green, and Green,
Beck-Nielsen and
1995) Beck-Niels
en 1995)
Cleft Lip/Palate 0.50 0.08 0.15% 0.016 0.06 0.16 0.14 0.46
(Grosen et (Grosen et
al. 2011)
al. 2011)
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A,z = monozygotic twin concordance; A,, = dizygotic twin concordance; ¢ = frequency in
population; T(h?,,) = maximum h?, attainable when h?> = 1 and assuming that the
liability of the trait follows a normal distribution (Dempster and Lerner 1950); S(h?,,) =
h?,, attained when h? = 1 and simulating the liability of the trait influenced by 100
additive risk loci as a binomial distribution, where N = 2x100 and p = 0.5; O(h?,,) =
observed heritability of a binary threshold trait; r,,, — rp,is the statistic used by Hill and
colleagues (Hill, Goddard, and Visscher 2008) [Note: r (correlation) is related but not
identical to A (concordance).]; H? is Holzinger's broad-sense heritability (Holzinger

1929).
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