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We propose a new readout architecture for echo state networks where multiple linear readout
modules are activated at distinct time points to varying degrees by a separate controller module.
The controller module, like the reservoir of the echo state network, can be initialized randomly. All
linear readout modules are trained through simple linear regression, which is the only adaptive step
in the modified algorithm. The resulting architecture provides modest improvements on a variety
of time series processing tasks (between 5 to 50% in performance metric depending on the task
studied). The novel architecture is guaranteed to perform at least as accurately as a conventional
linear readout. It can be utilized as a general purpose readout method when augmentations to
performance relative to the standard method is needed.

PACS numbers: 05.45.Tp, 07.05.Mh

I. INTRODUCTION

Function approximation methods seek to learn map-
pings from the input feature space x to the output fea-
ture space y. In parametric methods, a general mapping
function is used which can approximate a wide variety of
different functions depending on the precise value of its
parameters. The values of the parameters are learned
from example data. Perhaps the simplest parametric
mapping function is linear regression, where the output is
expressed as a linear combination of input signals. When
linear regression fails to provide adequate precision, a
common remedy involves calculating a nonlinear expan-
sion f(x) of the input feature space and performing lin-
ear regression between f(x) and y [1]. For time series
analysis, echo state networks (ESNs) provide one such
expansion function [2]. ESNs have been successfully ap-
plied to a wide variety of time series processing problems
such as chaotic time series prediction, nonlinear system
identification and classification.

In general, the precise conditions on the true map-
ping function from x to y for which a linear readout of
the nonlinear expansion is sufficient are not known for
many expansion methods (but see [3]). We first present
a heuristic argument that a single linear readout is ex-
pected to be insufficient for some classes of data streams.
Then, we propose an elaboration of the basic ESN de-
sign that provides greater expressive power than a single
linear readout while retaining the property that the only
adaptive step in the training process involves simple lin-
ear regression.
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A. Motivation

For concreteness, we consider the task of predicting
the future behavior of an animal. For many simple an-
imals such as worms, flies and fish, a large fraction of
their time is spent performing stereotypical behavioral
programs such as crawling, grooming, walking, eating,
just to mention a few examples [4]. Every class of stereo-
typed behavior is conceptualized as motion along a low-
dimensional manifold (typically 1D in the intrinsic co-
ordinate system). Switching between programs corre-
sponds to a switch from one manifold to another. The be-
havior of the animal can be described in terms of the mag-
nitudes of its intrinsic coordinates (muscle activities) or
some more easily observed proxies such as joint angles or
body postures. For motion along some one-dimensional
manifold, any intrinsic coordinate x evolves according to
x = X(t), where t represents both time and the natu-
ral manifold coordinate. Predicting future behavior dt
time steps ahead requires finding a mapping from X(t)
to X(t+ dt). By the inverse function theorem t is also a
function of x (t = X−1(x)) in the neighborhood of any
point of its domain and we can express t as a Taylor series
in x:

t(x) =
∞∑

n=0

xn

n!

dnX−1(0)

dxn
,

where X−1 is the inverse function from x to t. As x is
also a Taylor series of t:

x(t) =
∞∑

n=0

tn

n!

dnX(0)

dtn
,

we can write x(t+ dt) as a Taylor series of x:
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x(t+ dt) =
∞∑

n=0

(∑∞
m=0

xm

m!
dmX−1(0)

dxm

)n
n!

dnX(0)

dtn
. (1)

Such Taylor corresponds to a linear readout of a polyno-
mial expansion of x.

When motion of the animal switches from one mani-
fold to another, the predictive linear readout of the ex-
pansion generally changes, because the functional form of
the derivatives (which are directly related to the values
of the linear readout coefficients) also change. Thus, for
perfect prediction of the trajectories of an object whose
motion switches between manifolds, different linear read-
outs at different times are required.

II. THE ARCHITECTURE

Extending the polynomial expansion analogy to echo
state networks, we might expect mappings of complicated
dynamical systems to be better approximated by a com-
bination of linear readouts used to different extents at
different times. If the reservoir state at time t is row
vector R(t), we can write the predicted output yp(t) as a
linear sum of the predictions of individual readout mod-
ules yp(t) =

∑
i pi(t)ypi(t) where pi(t) is the time de-

pendent module weight which lies between 0 and 1, and
ypi(t) represents the prediction made by module i at time
t. We restrict ourselves to a scalar output yp(t) for no-
tational clarity, the generalization to a vector output is
straightforward.

For each module prediction ypi(t) = R(t)Wi, where Wi

is the column vector of linear readout weights for module
i. The weights pi(t) are calculated by a separate softmax
control module: pi(t) = exp(R(t)∗wi)/

∑
exp(R(t)∗wj).

The lowercase wi denote the column vector of weights for
the softmax of each module. For a suitable choice of wi,
each module i will dominate the predicted output yp(t)
for those time periods where pi(t) has a high value. This
allows the individual readout modules Wi to de facto spe-
cialize on predicting the outputs at certain epochs, while
their possibly erroneous contributions will be ignored for
other epochs where their pi(t) acquires low values. See
Fig. 1 for a schematic of the architecture.

The overall aim of the architecture is to reduce the
squared error between the desired y and the predicted
output yp(t): C =

∑
(yj −yjp)2, where the sum runs over

all the training data examples. The weights wi and Wi

can in principle be trained by joint gradient descent to
reduce the cost function. However, a simpler approach
works just as well in practice where in wi are initialized
randomly and all the Wi are trained jointly as a least
squares problem.

If we fix the wi, minimizing the cost function can be
converted to an ordinary least square regression prob-
lem. The column vector yp(t) can be expressed as

FIG. 1. Schematic of the proposed architecture. Multiple
linear readouts of a single ESN are adaptively activated to
varying degrees by a separate controller module.

the matrix product RpW , where W is the column-
wise concatenation of the individual readout modules
W = [W ′1W

′
2 · · ·W ′n]′. Row t of the matrix Rp corre-

sponds to a row-wise concatenation of vectors pi(t)R(t):
Rp(t) = [p1(t)R(t) p2(t)R(t) · · · pn(t)R(t)]. The pi(t)
needed to form the matrix Rp(t) are calculated based
on the fixed wi and reservoir neuron activities. The soft-
max weights wi are initialized randomly from a uniform
distribution between -1 and 1 and then multiplied by
a constant. A good choice of the constant is critical
for effective results. For low values of the constant, all
weights pi(t) remain near the value 1/n during all time
points, thus preventing the readout modules from special-
izing. For very high values of the constant, the weights
pi(t) jump rapidly between 0 and 1, creating a lack of
smoothness. For a suitable initialization, where weights
pi(t) smoothly vary over time between values 0.1 and 0.9,
the network performance is very close to the best results
achieved by gradient descent, while the time required to
estimate the final Wi is dramatically shortened. Finally,
we note that the network is guaranteed to work as well
as a single module readout. If all Wi are set to equal the
single module readout Ws, then the prediction produced
by the new network is equivalent to the prediction pro-
duced by Ws, because weights pi(t) sum to unity for each
time step.

III. RESULTS

We first tested the performance of the new architec-
ture on a behavior prediction task. We created a simu-
lated lamprey, which switches between different behavior
modes of swimming, digging and struggling. The lam-
prey was chosen because its multisegment body shows
remarkably reliable behavior well-described by simple
mathematical equations [5–7]. The body of the model
lamprey consisted of 20 segments. The equation describ-
ing swimming was written as ai = sin(2πi/l − 2πt/T ),
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FIG. 2. Illustration of the three modes of worm behavior-
swimming (a translated sinusoid), digging (a vibrating string)
and struggling (a contracting deformation of the body). Dif-
ferent lines in a given mode correspond to different snapshots
of the amplitude of the different body segments. The delay
between the blue and red and the red and black traces is seven
time steps. In the prediction task, the prediction horizon was
10 time steps.

where i is the segment number, ai is the activity of
segment i and l and 1/T are the wavelength and fre-
quency of the wave respectively. Like in the real lam-
prey, the wavelength was kept fixed while the period T
varied between 20 and 200. The equation for digging
was ai = sin(2πi/40)sin(2πft), where f varied from
0.05 and 0.0125 cycles/s. In the real lamprey, strug-
gling consists of a periodic contortion of the body into a
convoluted shape, but is less well understood mathemat-
ically. We choose to model struggling using the equation
ai = sin(2πi − 10)/(20 + 10sin(2πft)); see Figure 2 for
a graphical summary of all modes. A small amount of
uniform random noise with amplitude 0.1 was added to
each ai at all time steps.

Each behavioral mode had a duration of 300 time steps.
After the completion of 300 time steps, the lamprey
switched between the modes randomly. For each 300 step
epoch, the equation control parameters 1/T or f remained
fixed, but between epochs the parameters switched ran-
domly. The task of the echo state network was to pre-
dict the body posture of the model lamprey 10 time steps
ahead of the present posture of the lamprey. For this task
the network was trained with a randomly initialized time
series of 10000 time steps and test error was measured
on a differently initialized time series of equal length,
and a linear model was fitted to relate R(t) (calculated
at each time step using R(t−1) and all the ai(t)) to each
ai(t+ 10). For a reservoir with 100 neurons (connection
probability 0.05, largest connectivity matrix eigenvalue
0.95), which was augmented with a further set of 100
features found by calculating the square of each reser-
voir neuron activation at every time step [8], the echo
state network achieved a normalized mean square pre-
diction error 0.360+/-0.014 (for worm motion prediction
all nmse reported as the averages of 50 random reser-
voir initializations +/- s.e.m), while a 2-module readout

give an improvement of 30% (nmse 0.25+/-0.0065) and a
3-module readout give an improvement of 35% (0.234+/-
0.007) compared to the single module prediction.

A 3-module readout has 600*20 adjustable free param-
eters compared to the 200*20 free parameters of a single
module architecture. Another possible comparison can
thus be made to a 300 neuron reservoir with quadratic
feature augmentation, a model which also has 600*20 ad-
justable parameters. The mean test set nmse on 50 trials
(both input and reservoirs randomly reinitialized at each
trial) gave a prediction improvement of 35% (0.233+/-
0.009) relative to the 100 neuron single-readout reservoir-
a result statistically indistinguishable from the improve-
ment given by the 3-module readout with a 100 neuron
reservoir. However, the 100 neuron reservoir with 3 read-
out modules has a considerably smaller run-time com-
plexity. To get the next reservoir state, 300*300 multi-
plications must be carried out at run time for 300 neuron
reservoir compared to the 100*100 multiplications that
must be carried out for use of the 100 neuron 3-module
method.

Three methods (feature augmentation with polynomi-
als of reservoir activities, increasing the reservoir size or
introducing multiple readout modules) give complemen-
tary improvements to each other. For equivalent number
of introduced adjustable parameters, they provide com-
parable improvements to performance. For another ex-
ample, a 100 neuron reservoir without feature augmenta-
tions gives a test-set nmse of 0.44+/-0.0095, which is im-
proved by quadratic feature augmentation to 0.36, while
a 2-module readout (without quadratic augmentation)
gives an nmse of 0.38+/-0.015 and a 200-neuron reser-
voir with a single readout module and no quadratic aug-
mentation gives an nmse of 0.35+/-0.012. Conceptually,
the three methods of improving ESN performance pro-
vide different benefits. While they all increase the num-
ber of adjustable parameters, larger reservoirs provide a
larger working memory [9], while multi-module readouts
allow prediction modules to fine tune their predictions
for distinct phases of behavior. Both quadratic augmen-
tation and multiple readout modules provide improved
performance with only marginal increases in model run-
time complexity, especially when compared to increases
in reservoir size.

Next, we tested the new architecture on the standard
Mackey-Glass (MG) chaotic time-series prediction task
[10]. For MG(17) with reservoir size 1000, no signif-
icant improvements were found when comparing a 2-
module method with the standard single module method.
When the reservoir size was reduced to 500, the 2-module
method gave significant improvements. We measure the
performance of the method by calculating the time when
the difference between the predicted and actual contin-
uation became larger than 0.1, which we call the diver-
gence time. The divergence time rose from 990 to 1500
when comparing the 1-module case with the 2-module
system. Also, the standard deviation of the divergence
time decreased significantly from 500 to 350 for the 2-
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FIG. 3. Example of performance on the Mackey-Glass time
series prediction (blue traces) for a 500 neuron reservoir with
1 and 2 readout modules, respectively. The 2-module readout
system clearly tracks the correct continuation (red traces) for
a longer duration. The zero time point marks the end of
training and the beginning of the prediction phase.

module readout, this despite an increase of the divergence
time itself for the 2-module case. A re-implementation of
Jaeger 2004 (where ESN prediction of the MG system was
first reported) with 1000 reservoir neurons found diver-
gence time of around 1640 with a standard deviation of
400. Thus, a 2-module readout method is able to achieve
performance that is only 10% inferior to a 1000 neuron
reservoir but has a 4 times lower run-time complexity.

Another time series prediction problem involves fore-
casting electricity loads. We obtained freely available
data from the 2012 Global Energy Forecasting Competi-
tion on the data science competitions website kaggle.com.
The dataset contained 20 timeseries of hourly loads for
20 different utility zones spanning a period of four years.
Hourly temperature data was available for 11 stations as
well. We used ESNs to predict the summed load of the
20 utility stations using as inputs the time of day, the
month, and temperature signals. Table 1 shows the test
set nmse values (average of 50 reservoir initializations) for
a reservoirs with 100, 200 and 400 neurons and compares
these to a 2-module readout and quadratic augmenta-
tion for N=100 and N=200 neuron reservoirs. For this
dataset-comparing methods with equal numbers of free
parameters- quadratic augmentation gives the largest im-
provements, followed by the 2-module architecture. In-
creasing the reservoir size performs worst in this dataset.

On the Santa Fe time series prediction task D, the 2-
module readout gave a modest 5% improvement over the
1-module method for prediction delays between 2 to 5
time steps.

Finally, we tested the new architecture on a motor co-
ordinate transformation task. Here, a model human with
two joints had to move his arm between randomly cho-
sen points on the (x,y) plane. A sequence of 500 points
were chosen randomly within a circular quadrant that
was within reach of the model arm. The task was to
move the arm with uniform speed from one point to the
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FIG. 4. Prediction (blue) versus actual signal shown for test
data for a 3-module readout system in the coordinate trans-
formation task.

next in 10 time steps, then hold the hand steady for 10
steps until moving forward to the next point. The in-
put positions were specified in normalized x,y coordinates
normalized to the 0 to 1 range, whereas the output was
specified in radian joint angle coordinates from which 1.4
was subtracted to remove most of the mean. Performance
of a single module ESN with 500 neurons gave a small
NMSE of 0.017. A 3-module ESN improved performance
by 50%. Note that in this task the inertia of the model
arm was not modeled, so the task could in principle have
been solved by a feed forward, not a recurrent neural net.
It was studied primarily because its sequences of dynam-
ics and stability might pose problems for an echo state
network whose neurons can show ongoing dynamics also
during stable phases of the task.

IV. DISCUSSION

Many simple tricks have been proposed to augment
the performance of ESNs. These include increasing non-
linearity by augmenting the non-linear expansion with
polynomial functions of reservoir activities [8], increas-
ing the reservoir size [10], averaging predictions from
many reservoirs [10], introducing delay lines into the
read out system [11], providing neurons with a diver-
sity of time constants and having the reservoir adapt
to input statistics via intrinsic plasticity [12]. The new
multi-module readout architecture proposed is in its sim-
plest form equivalent to introducing an additional layer
of fixed non-linearity into the readout layer for improved
performance. However, in principle, the new layer of non-
linearity is trainable and it might still be the case that
for certain tasks, gradient descent of the softmax weights
wi produces far superior results to the random initializa-
tion. In its randomly initialized form, it is most likely
useful as an out-of-the-box non-linearity which can be
tried when the traditional tricks run short of providing
the required performance. It is guaranteed to work as
well as a single readout module or better with very little
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additional training cost. We have demonstrated its mod-
est usefulness on a variety of data series processing tasks.
We also note that the idea of training a controller for
multiple ESN readouts can be understood as an adapta-
tion of ensemble methods to reservoir computing. Future
work will focus on robust architectures for learning while

coping with slowly-varying non-stationary signals.
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Method Reservoir size Number params. NMSE S.D.

Standard 100 100 0.168 0.0043

Standard 200 200 0.1526 0.0065

Standard 400 400 0.1373 0.0067

Quad. augment. 100 200 0.111 0.0041

Quad. augment. 200 400 0.107 0.003

2-module 100 200 0.1365 0.01

2-module 200 400 0.125 0.009

TABLE I. Results for different methods.
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