Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Rich structure landscapes in both natural and artificial RNAs revealed by mutate-and-map analysis

Pablo Cordero, Rhiju Das
doi: https://doi.org/10.1101/017624
Pablo Cordero
1Biomedical Informatics Program, Stanford University, Stanford, CA 94305, USA
2, , CA , USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rhiju Das
1Biomedical Informatics Program, Stanford University, Stanford, CA 94305, USA
2, , CA , USA
3Physics Department, Stanford University, Stanford, CA 94305, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

ABSTRACT

Landscapes exhibiting multiple secondary structures arise in natural RNA molecules that modulate gene expression, protein synthesis, and viral infection, but it is unclear whether such rich landscapes are special features of biological sequences or whether they can arise without explicit selection. We report herein that high-throughput chemical experiments can isolate an RNA’s multiple alternative secondary structures as they are stabilized by systematic mutagenesis (mutate-and-map, M2) and that a computational algorithm, REEFFIT, enables unbiased reconstruction of these states’ structures and populations. In an in silico benchmark on noncoding RNAs with complex landscapes, M2-REEFFIT recovers 95% of RNA helices present with at least 25% population while maintaining a low false discovery rate (10%) and conservative error estimates. In experimental benchmarks, M2-REEFFIT recovers the structure landscapes of a 35-nt MedLoop hairpin, a 110-nt 16S rRNA fourway junction with an excited state, a 25-nt bistable hairpin, and a 112-nt three-state adenine riboswitch with its expression platform, molecules whose characterization previously required expert mutational analysis and specialized NMR or chemical mapping experiments. With this validation, M2-REEFFIT enabled tests of whether artificial RNA sequences might exhibit complex landscapes in the absence of explicit design. An artificial flavin mononucleotide riboswitch and a randomly generated RNA sequence are found to interconvert between three or more states, including structures for which there was no design, but that could be stabilized through mutations. These results highlight the likely pervasiveness of rich landscapes with multiple secondary structures in both natural and artificial RNAs and demonstrate an automated chemical/computational route for their empirical characterization.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted April 06, 2015.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Rich structure landscapes in both natural and artificial RNAs revealed by mutate-and-map analysis
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Rich structure landscapes in both natural and artificial RNAs revealed by mutate-and-map analysis
Pablo Cordero, Rhiju Das
bioRxiv 017624; doi: https://doi.org/10.1101/017624
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Rich structure landscapes in both natural and artificial RNAs revealed by mutate-and-map analysis
Pablo Cordero, Rhiju Das
bioRxiv 017624; doi: https://doi.org/10.1101/017624

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Subject Areas
All Articles
  • Animal Behavior and Cognition (4095)
  • Biochemistry (8786)
  • Bioengineering (6493)
  • Bioinformatics (23385)
  • Biophysics (11766)
  • Cancer Biology (9167)
  • Cell Biology (13287)
  • Clinical Trials (138)
  • Developmental Biology (7422)
  • Ecology (11386)
  • Epidemiology (2066)
  • Evolutionary Biology (15118)
  • Genetics (10413)
  • Genomics (14022)
  • Immunology (9145)
  • Microbiology (22108)
  • Molecular Biology (8793)
  • Neuroscience (47435)
  • Paleontology (350)
  • Pathology (1423)
  • Pharmacology and Toxicology (2483)
  • Physiology (3711)
  • Plant Biology (8063)
  • Scientific Communication and Education (1433)
  • Synthetic Biology (2215)
  • Systems Biology (6021)
  • Zoology (1251)