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Abstract 35!
 36!
Projections from the substantia nigra and striatum traverse through the pallidum on the 37!

way to their targets. To date, in vivo characterization of these pathways remains elusive. 38!

Here we used high angular resolution diffusion imaging (N=138) to study the 39!

characteristics and structural subcompartments of the human pallidum. Our results 40!

show that the diffusion orientation distribution at the pallidum is asymmetrically oriented 41!

in a dorsolateral direction, consistent with the orientation of underlying fiber systems. 42!

Furthermore, compared to the outer pallidal segment, the internal segment has more 43!

peaks in the orientation distribution function and stronger anisotropy in the primary fiber 44!

direction, consistent with known cellular differences between the underlying nuclei. 45!

These differences in orientation, complexity, and degree of anisotropy are sufficiently 46!

robust to automatically segment the pallidal nuclei using diffusion properties. Thus the 47!

gray matter diffusion signal can be useful as an in vivo measure of the collective 48!

nigrostriatal and striatonigral pathways. 49!

Keywords: basal ganglia, diffusion imaging, nigrostriatal, striatonigral, globus pallidus   50!
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Introduction 51!

The basal ganglia are a crucial forebrain network associated with many cognitive 52!

functions, including reward processing, decision-making, and learning (Hollerman et al., 53!

2000; Haber, 2003).   Many aspects of basal ganglia function rely on dopaminergic 54!

inputs from the substantia nigra that serve as a modulatory signal for neurons in the 55!

subpallium (Haber et al., 2000). These dopaminergic inputs are conducted by a set of 56!

fiber bundles that originate in the pars compacta region of the substantia nigra, a portion 57!

of which migrate in a dorsolateral direction through the segments of the globus pallidus  58!

(Carpenter and Peter, 1972).  While a majority of these projections pass through the 59!

pallidum and terminate on cells in the striatal nuclei (Carpenter and McMasters, 1964), a 60!

significant number of them also terminate in the inner and outer segments of the globus 61!

pallidus, forming the nigropallidal pathway (Cossette et al., 1999). Two other major fiber 62!

systems traversing through the globus pallidus project from the striatum, including the 63!

striatopallidal fiber systems, which form the canonical direct and indirect pathways, and 64!

the striatonigral fiber system.  Breakdowns in these various pathways form the etiology 65!

of several neurodegenerative diseases. For example, axonal degeneration of the 66!

nigrostriatal pathway is the pathological hallmark of Parkinson’s Disease (Burke and 67!

O'Malley, 2013) while Huntington’s disease is characterized by a loss of medium spiny 68!

neurons within the striatum that project to the globus pallidus (Reiner et al., 1988). Thus 69!

in vivo characterization of these basal ganglia projections has clear clinical implications. 70!

 71!
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One problem with characterizing both the nigral and striatal efferents is that they are 72!

largely embedded within the gray matter of several basal ganglia nuclei, primarily within 73!

the globus pallidus. The globus pallidus is the primary output of the basal ganglia 74!

network, sending projections that relay signals from upstream nuclei to the thalamus 75!

(Alexander et al., 1986). In primates it is comprised of an external segment (GPe), 76!

which serves as an inhibitory relay nucleus within the indirect pathway, and the internal 77!

segment (GPi) that aggregates all information from all basal ganglia pathways.  While 78!

primarily defined by their connectivity and neurophysiological profiles, the GPe and GPi 79!

are also distinguishable at the cellular level by differences in cell density, cell type, and 80!

morphology (Hardman et al., 2002, Eid et al 2013, Difiglia and Rafols, 1988).  One of 81!

the most salient differences is that the GPi has a much lower overall neuronal density 82!

(see table 2 in Hardman et al., 2002). More importantly, given that the volume of the GPi 83!

is smaller than that of the GPe and that both nigrostriatal and striatonigral fibers pass 84!

through the globus pallidus on their way to their targets, the GPi also has a greater 85!

density of both nigrostriatal and striatonigral efferents than its external counterpart. 86!

 87!

Despite the clear morphological differences, in vivo characterization of these critical 88!

nuclei remains elusive by MRI-based neuroimaging technologies, particularly with 89!

conventional T1-weighted or T2-wighted images used in most human neuroimaging 90!

experiments. This is because T1-weighted and T2-weighted approaches have limited 91!

power to characterize the microscopic structure of the GPe and the GPi. This limitation 92!

can be compensated by the recent advances in high angular resolution diffusion MRI, 93!
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which offers a non-invasive approach to study microscopic structure. One advantage of 94!

diffusion MRI is that it is able to detect microscopic differences in underlying cellular 95!

morphologies, including spatial asymmetry in underlying axonal tracts, and it has shown 96!

great promise in quantifying variability in underlying tissue composition (Behrens et al., 97!

2003). With these unique features, diffusion MRI has emerged as an increasingly 98!

popular tool for characterizing the neural tissues (Abhinav et al., 2014). While most 99!

commonly used to study structural subcomponents of large white matter fascicles 100!

(Bastiani, 2012, Wang et al, 2013, Fernandez-Miranda 2014), diffusion MRI has also 101!

been shown to be useful for characterizing differences in microstructural cellular 102!

properties of gray matter (Wiegell et al., 2003; Mang et al., 2012), including sensitivity to 103!

both neural and glial distribution patterns (Blumenfeld-Katzir et al., 2011). For example, 104!

analysis of the diffusion MRI signal has been used to segment the different thalamic 105!

nuclei in humans (Behrens et al, 2003). 106!

 107!

Here we adopt an atlas approach to study the orientation distribution functions of the 108!

water diffusion, termed spin distribution functions (SDF; Yeh et al. 2010) within the gray 109!

matter of the globus pallidus in a stereotaxic space. An SDF provides a nonparametric 110!

representation of the diffusion pattern that cannot be offered by conventional tensor-111!

based analysis, thus allowing for characterizing and segmenting structural 112!

subcomponents. Here we used data from two high angular resolution diffusion 113!

sequences, diffusion spectrum imaging (DSI) and multi-shell imaging (MSI) and 114!

examined the diffusion characteristics in the nigral and striatal efferents. We also 115!

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 9, 2015. ; https://doi.org/10.1101/017806doi: bioRxiv preprint 

https://doi.org/10.1101/017806


! 6!

examined whether there are reliable differences in the SDFs between the GPe and the 116!

GPi that allows for accurate segmentation based solely on diffusion properties. These 117!

findings may identify a clear potential for using high angular resolution diffusion MRI as 118!

a novel in vivo characterization of the microarchitecture of the human globus pallidus, 119!

including the nigral and striatal efferents that break down in various neurological 120!

pathologies. 121!

 122!

Results 123!

Dorsolateral orientation of the pallidal diffusion signal 124!

The nigrostriatal and striatonigral fibers traverse the pallidum on the way to their targets, 125!

resulting in a primarily dorsolateral-ventromedial orientation of the collective axons (Fig. 126!

1A). In humans, the two segments of the pallidum are separated by a thin white matter 127!

band, called the internal medullary lamina, shown in coronal sections from the Big Brain 128!

atlas in Fig.1B and 1C (Amunts et al., 2013).  To characterize the orientations of the 129!

fibers in the inner and outer segment of the globus pallidus, we isolated the voxels 130!

corresponding to the two segments (Methods, Fig 2A). Within each of these region 131!

masks we estimated the SDFs from the diffusion signal of each voxel (Fig 2B-D), which 132!

is a 3D representation of the underlying diffusion orientation distribution. The first three 133!

peaks in each SDF were extracted and their orientation and anisotropy intensity, called 134!

quantitative anisotropy (QA; Fig. 2B, see Methods), were recorded for every voxel in 135!

each mask. Two representative SDFs from an example subject from the DSI dataset 136!
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show how the shapes of the SDFs differ between the inner (Fig. 2C) and outer (Fig. 2D) 137!

segments of the pallidum.   138!

 139!

Figure 3 shows the distribution of principal fiber angles across subjects in the DSI and 140!

MSI samples.  Each distribution was confirmed to be non-uniform using a Rayleigh’s 141!

test (z values > 36.12, p-values < 0.001) and exhibited consistent peaks in the 142!

orientations in the fibers in both region masks and both data samples. In both the DSI 143!

and MSI samples, the distribution of the angles in the inner segment is predominately 144!

concentrated in the dorsolateral direction, consistent with the known orientation of the 145!

major nigral and striatal efferents (Wilson 1914, Szabo 1967, Szabo 1962, Fox and 146!

Rafols, 1976, Carpenter and Peter 1972). Compared to the inner segment, the 147!

distribution of the angles in the outer segment is rotated medially, clockwise in the left 148!

hemisphere and anticlockwise in the right hemisphere. Interestingly, this rotation is more 149!

pronounced in the DSI dataset, resulting in the majority of fibers pointing dorsomedially 150!

(towards the internal capsule).  One possibility is that the predominantly dorsal and 151!

dorsolateral fiber systems are not contributing to the strongest anisotropy pattern in the 152!

DSI sample, but are still present at lower anisotropy thresholds. To explore this, we 153!

looked at the orientation of the secondary fibers in both datasets (Fig. 4). Indeed, the 154!

secondary fiber in the DSI dataset was oriented in a more dorsolateral direction as 155!

predicted if it were reflecting the angle of the underlying nigral and striatal efferents (red 156!

histogram in Fig. 4 A,B).    157!

 158!
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These patterns of fiber peak orientations within the SDF are also clearly visible in the 159!

geometries of the extracted fibers at each voxel. Figure 5 shows a coronal slice from 160!

two representative subjects from the DSI and MSI samples.  A majority of the primary 161!

and secondary fibers overlap in the inner segment (blue voxels) and are generally 162!

oriented dorsolaterally, whereas the primary and secondary fibers in the external 163!

segment (red voxels) show less overlap and exhibit a greater abundance of dorsomedial 164!

orientations compared to the internal segment. Thus, the gray matter diffusion signal 165!

within the pallidal nuclei has asymmetries in peak anisotropy directions that are 166!

consistent with the orientation of nigral and striatal efferents running through the 167!

pallidum, suggesting that the diffusion signal is sensitive to these underlying pathways. 168!

 169!

Differential diffusion patterns between inner & outer pallidal segments 170!

Along with differences in fiber orientation, we also observed general differences in the 171!

sensitivity and intensity of the diffusion signal between the two pallidal segments. 172!

Tensor-based analyses have shown that the anisotropy patterns around the principal 173!

fiber direction tend to be highly sensitive to underlying cellular morphology differences 174!

(Wiegell et al., 2003). Figure 6, panels A through D, shows the across-subject 175!

probability distributions of the mean QA in the principal fiber direction, for both pallidal 176!

segments.  The peaks (arrows) of the distributions occurred at consistently higher 177!

thresholds in the inner segment in both hemispheres and both samples. Thus, the inner 178!

segment exhibited a mean shift in QA compared to the outer segment mask, suggesting 179!

a slightly stronger diffusion intensity for the inner pallidal segment.  180!
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 181!

Differences between the pallidal segments were also reflected in the complexity of the 182!

SDF geometry. The sensitivity curves in Figure 6, panels E through H, show the 183!

average number of resolved fibers (y-axis) with QA values above the value shown on 184!

the x-axis. Thus this measures the complexity of the diffusion geometry in each voxel by 185!

showing the robustness of the fiber peaks within the reconstructed SDF across a range 186!

of thresholds.  As expected, the number of resolved fibers decays rapidly as the 187!

threshold increases.  Notably, compared to the outer segment, in the DSI sample we 188!

detected more fibers in the inner segment at thresholds less than QA = 0.05 (Fig.6 E,F), 189!

and more fibers in the outer segment at thresholds higher than 0.05.  In the MSI sample, 190!

these distributions largely overlapped (Fig.6 G,H), although the inner segment in the 191!

right hemisphere showed a smaller shift in the same direction as was observed in the 192!

DSI dataset. Taken together, the differences in orientation, intensity and sensitivity 193!

between the structures suggest that the diffusion signal is picking up on reliable 194!

differences in the cellular content of the two nuclei.   195!

 196!

Reliable segmentation of pallidal nuclei 197!

If these differences are reflecting distinctive cellular architectures and local connectivity 198!

patterns then it should be possible to classify the two segments based purely on the 199!

properties of the DWI signal. To this end we used k-means clustering to segment all 200!

voxels within the globus pallidus using three voxel features as inputs: principle fiber 201!

orientation, anisotropy of the peak fiber, and number of detected fibers. Based on these 202!
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properties alone, we generated probabilistic maps of the inner and outer segments for 203!

both the DSI and MSI samples (Fig.7 A,B). Qualitative comparison of these maps shows 204!

a reliable and highly similar pattern of segmentation between the two pallidal regions. 205!

This is particularly evident in regions where outer and inner segments are divided along 206!

a curve approximately situated on the internal medullarly lamina in both hemispheres 207!

(Fig.7 A,B, and coronal slices Fig.7 D-E).    208!

 209!

While these segmentation maps are not as clean as the hand-drawn maps based on the 210!

T1 signal (Fig. 2A), the general pattern of clustering is much better than expectations 211!

from chance. To explicitly quantify this, we compared the automatic segmentations to 212!

the hand drawn maps against chance accuracies generated from a permutation test 213!

(see Methods). Random accuracies ranged from 22% to 77% and were consistently 214!

higher in the inner segment (37% to 77%) relative to the outer segment (22% to 62%) 215!

reflecting the fact that there were fewer voxels within the inner segment and thus a 216!

higher chance of randomly overlapping with the correct assignment. As can be seen in 217!

Fig. 8, our classification significantly outperformed chance in all cases except the right 218!

hemisphere of the outer segment in the MSI dataset (Fig. 8C). Furthermore, accuracies 219!

were generally higher in the DSI sample than the MSI sample, likely due to the fact that 220!

the DSI sample was separable along all three features included in the clustering, while 221!

the MSI sample was not clearly separable based on the sensitivity curve measure (Fig. 222!

6G-H).  223!

 224!

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 9, 2015. ; https://doi.org/10.1101/017806doi: bioRxiv preprint 

https://doi.org/10.1101/017806


! 11!

Consistency across data sets 225!

So far we have shown that both DSI and MSI samples exhibit similar differences in the 226!

pallidal segment diffusion signals and similar automatic parcellations of the internal and 227!

external pallidal masks. In order to quantify the similarity of the results between the two 228!

samples, we correlated the voxelwise probabilities between the DSI and MSI datasets 229!

(Fig. 9) for the internal and external segments separately. Overall, voxelwise 230!

probabilities between the two samples were moderately correlated in both hemispheres 231!

(r(138) =0.67 in left hemisphere vs. r(138) = 0.56 in the right hemisphere), suggesting 232!

that the SDF signal is capturing reliable topographic differences in underlying 233!

microstructural properties that is generally consistent across samples and the type of 234!

diffusion imaging approach used.    235!

 236!

Because both the DSI and MSI samples provided similar probability profiles, we 237!

aggregated both data sets to form a composite probabilistic map of the internal and 238!

external pallidal segments based on the underlying diffusion structure. These merged 239!

maps are shown in Figure 7C,F. Collapsing across the two acquisition methods 240!

revealed an even clearer distinction between the two pallidal nuclei. This confirms that 241!

classification-based purely on the properties of the diffusion signal is sufficiently robust 242!

across differences in acquisition approach and scan environments to capture the major 243!

divisions of the inner and outer segments of the globus pallidus.  244!

 245!

Discussion 246!
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For the first time we are able to show that the orientation distribution of the diffusion 247!

within the human pallidum is consistent with the presence of nigral and striatal efferents 248!

that run through these nuclei. Because a large portion of these pathways is buried within 249!

the pallidum, a region of high iron density, visualization of these efferents has been 250!

challenging with conventional imaging approaches.  If diffusion MRI proves to be a 251!

reliable method of assessing the integrity of these pathways and their degradation in 252!

movement disorders, then quantifying degradation within the pallidum will be necessary 253!

to obtain accurate measurements of associated changes. Here we show that the SDF 254!

was also able to pick up on established histological differences between the internal and 255!

external segment of the globus pallidus (Hardman et al., 2002, Eid et al., 2013, Difiglia 256!

and Rafols 1988), resulting in the first automatic segmentation of these two nuclei. 257!

Thus, these measures are sufficiently robust to detect known differences in the pallidal 258!

segments. Furthermore, these differences in the diffusion signal between the internal 259!

and external segments were mostly consistent regardless of the acquisition method 260!

used (i.e., DSI vs. MSI) and able to classify the separate segments with accuracies well 261!

above chance expectations.  262!

 263!

Although diffusion anisotropy measures are typically used to visualize pathways within 264!

core white matter regions of the brain, here we showed that tissue characteristics 265!

derived from the diffusion MRI signal, including differences in connectivity, intensity and 266!

sensitivity, can distinguish nuclear properties within the pallidum itself (see also Wiegell 267!

et al., 2003; Mang et al., 2012). We presume that orientations of the fibers in the two 268!
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pallidal nuclei along with differences in density and myelination contribute to the 269!

characteristics of the SDFs within these voxels (Beaulieu, 2002). The predominately 270!

dorsolateral orientation of the resolved fiber peaks within the pallidal segments is 271!

consistent with the primary orientation of the striatopallidal, striatonigral and 272!

nigrostriatal/pallidal tracts (Wilson 1914, Szabo 1967, Szabo 1962, Fox and Rafols, 273!

1976, Carpenter and Peter, 1972).  The more pronounced dorsolateral orientation of the 274!

internal segment compared to the external segment in both the primary (Fig. 3) and 275!

secondary fibers (Fig. 4) is consistent with the volumetric differences between the two 276!

segments, since the nigrostriatal and striatonigral fibers traverse both segments. The 277!

medial shift observed in the outer segment (Fig. 3) is likely reflecting a distinct fiber 278!

system, possibly projections from the subthalamic nucleus. This open question can be 279!

resolved by a direct comparison of SDFs with postmortem histological analysis, which 280!

should be a goal of future work. 281!

 282!

We should point out that the orientation of the peak fibers may not be completely 283!

consistent across diffusion imaging approaches. For example, there is a more 284!

pronounced medial shift in the external segment orientations in the DSI sample (Fig.3 285!

A,B) than in the MSI sample (Fig.3 C,D). This may be due to the fact that the DSI 286!

sample is more sensitive to underlying microarchitectural features that contribute to a 287!

medial bias in the SDF signal. However, the secondary fiber in this sample was oriented 288!

in a more dorsal and dorsolateral direction (Fig. 4). This suggests that these nigral and 289!

striatal efferents are also present in the DSI sample, but to a weaker degree than in the 290!
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MSI sample. This difference is likely due to the diffusion sampling scheme used in DSI 291!

and MSI. The DSI used a stronger diffusion sensitization strength (i.e. higher b-value) 292!

than the MSI, and it is more sensitive to restricted diffusion in gray matter. 293!

 294!

Being able to detect signatures of the underlying cellular content of the pallidal nuclei in 295!

vivo has enormous potential as a biomarker for the integrity of basal ganglia pathways 296!

and their pathology. Many movement disorders involve degradation of specific pathways 297!

within the GPe and the GPi. In Parkinson’s disease for example, dopaminergic neurons 298!

within the substantia nigra degenerate which leads to a loss of the nigrostriatal fibers.  299!

Degradation of the nigrostriatal efferents in Parkinson’s patients have been recently 300!

identified using diffusion MRI (Ziegler et al., 2014). Given that the nigrostriatal fibers 301!

travel through the pallidum, degradation of these pathways may be reflected in the 302!

integrity of the microstructural architecture exhibited by the SDFs within the pallidum. 303!

Future comparative and clinical studies are needed in order to validate this assumption. 304!

 305!

Beyond clinical implications, our results also have relevance to the investigation of basal 306!

ganglia function in neurologically healthy individuals. In the canonical direct-indirect 307!

pathway model of motor facilitation (Albin et al., 1989, DeLong 2000), activity in the GPe 308!

is correlated with inhibiting movement initiation, through disinhibition of the sub-thalamic 309!

nucleus, which in turn excites the GPi/SNr. Conversely, during movement facilitation, 310!

activity within the GPi decreases. Dysfunction of the direct and indirect pathways results 311!

in an imbalance between the two circuits, which causes impaired motor production as 312!
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seen in Parkinson’s and Huntington’s disease. If the efficiency of processing with 313!

striatopallidal pathways is reflected in their microstructural integrity, then individual 314!

variation in performance on tasks may be correlated with the QA distributions of the 315!

striatopallidal fiber systems.   316!

 317!

While our present results show promise for using the diffusion imaging signal as a 318!

measure of cellular architecture within sub-cortical nuclei, this approach still has some 319!

inherent limitations. First, as mentioned previously, diffusion imaging provides an 320!

indirect measure of cellular architecture. While validation work in non-human animals 321!

has provided insights into the underlying cellular properties for white matter using 322!

tensor-based reconstruction approaches (Wang et al., 2011, Wang et al., 2014, Thomas 323!

et al., 2014), model-based approaches have not been validated against histological 324!

models, particularly in gray matter (Blumenfeld-Katzir et al., 2011).  Therefore, we do 325!

not know for sure what properties of the SDF reflect what properties of the underlying 326!

tissue. Future studies could probe precisely how changes in SDF properties are 327!

associated with variations in density, number of fibers, and myelination, by combining 328!

histological analysis and diffusion imaging in animal models and post mortem tissue 329!

analysis of the pallidum.   330!

 331!

In addition, although we demonstrated that the boundaries of the pallidal nuclei are 332!

resolvable based solely on diffusion information, the segmentations are imperfect. In 333!

particular, there is a cluster of voxels in the anterior region of the pallidum that was 334!
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misclassified in a significant number of subjects, and the parcellations were less 335!

accurate in the MSI data set as a whole. The proximity of the globus pallidus to the 336!

major white matter tracts of the internal capsule may contribute to partial voluming 337!

problems that contaminate the SDF signal in these voxels, resulting in classification 338!

errors. Future work could adaptively cluster using more sophisticated approaches to 339!

allow for noise clusters that could arise from errors in masking. 340!

 341!

Despite this partial voluming problem, the segmentation results reported here still 342!

provide evidence of robust differences between the segments of the human pallidum. 343!

For example, unlike most subcortical parcellations (e.g. Behrens et al., 2003), we are 344!

not supplementing the clustering features with additional distance information that adds 345!

a strong prior on expected location of the nuclei. Such spatial priors would dramatically 346!

clean up the underlying maps; however, the distance from the expected nuclear location 347!

would become the dominant clustering feature.  Although omitting these priors may lead 348!

to noisier segmentations, our approach provides a more robust measure for future 349!

studies to assess the pallidal cellular integrity in clinical populations. 350!

 351!

Regardless of these limitations we have shown that the inner and outer segments of the 352!

globus pallidus not only express common asymmetries in their underlying SDFs, 353!

consistent with major efferent pathways, but also reliably differ among several 354!

properties of the diffusion signals. This was reliable enough that a simple and automatic 355!

clustering approach, based on properties of the SDF, resolved the inner and outer 356!
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segments better than chance, regardless of the imaging acquisition used (i.e., DSI or 357!

MSI). This population atlas based analysis approach enables future studies to quantify 358!

the extent to which microstructural variability correlates with functional properties of the 359!

system, such as individual differences in inhibitory control ability and or clinical 360!

pathologies of the underlying fiber systems, providing a powerful new tool for 361!

investigating the cellular architecture of basal ganglia systems in vivo.  362!

 363!

Materials and Methods 364!

Participants and Acquisition 365!

Two separate types of diffusion imaging were used for our analysis. 366!

 367!

Diffusion Spectrum Imaging (DSI: CMU-60 Dataset): Twenty nine male and thirty 368!

one female subjects were recruited from the local Pittsburgh community and the 369!

Army Research Laboratory in Aberdeen Maryland. All subjects were 370!

neurologically healthy, with no history of either head trauma or neurological or 371!

psychiatric illness. Subject ages ranged from 18 to 45 years of age at the time of 372!

scanning, with a mean age of 26 years (+/- 6 standard deviation). Six subjects 373!

were left handed (3 males, 3 females). 374!

All participants were scanned on a Siemen’s Verio 3T system in the 375!

Scientific Imaging & Brain Research (SIBR) Center at Carnegie Mellon University 376!

using a 32-channel head coil. We collected a 50 min, 257-direction DSI scan 377!

using a twice-refocused spin-echo EPI sequence and multiple q values (TR = 378!

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 9, 2015. ; https://doi.org/10.1101/017806doi: bioRxiv preprint 

https://doi.org/10.1101/017806


! 18!

9,916 ms, TE = 157 ms, voxel size = 2.4mm3, FoV = 231 x 231 mm, b-max = 379!

5,000 s/mm2, 51 slices). Head-movement was minimized during the image 380!

acquisition through padding supports and all subjects were confirmed to have 381!

minimal head movement during the scan prior to inclusion in the template. 382!

 383!

Multi-shell Imaging (MSI; HCP-80 Dataset): The data were from the Human 384!

connectome project at WashU-Minnesota Consortium (Q1 release). Thirty six 385!

male and forty two female subjects were scanned on a customized Siemens 3T 386!

“Connectome Skyra” housed at Washington University in St. Louis. Subject ages 387!

ranged from 22-36 years of age at the time of scanning, with a mean age of 388!

29.44 (+/- 3.5 standard deviation).  All subjects were healthy, with no history of 389!

neurological or psychiatric illness. The two subjects that have subsequently been 390!

found by the HCP to exhibit gray matter heterotopia have been excluded from 391!

this analysis. The HCP DWI session was acquired using a spin-echo EPI 392!

sequence and (TR = 5520 ms, TE = 89.5 ms, voxel size = 1.25 mm3, FoV = 210 393!

x 180, 3 shells of b = 1000, 2000, 3000 s/mm2, 111 slices, 90-directions for each 394!

shell). 395!

 396!

Diffusion MRI Reconstruction 397!

All images were processed with a q-space diffeomorphic reconstruction method 398!

described previously (Yeh and Tseng, 2011) using DSI Studio (http://dsi-399!

studio.labsolver.org/). The SDFs were reconstructed to a spatial resolution of 1 mm3. 400!
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The white matter surface is rendered independently from an externally supplied 1 mm3 401!

resolution white matter template. The quantitative anisotropy (QA; Yeh et al., 2010) and 402!

fiber orientation of the two major fibers in each voxel were exported into a separate file 403!

for analysis. 404!

 405!

SDF Analysis 406!

Masks of the inner and outer segments of the pallidum were manually drawn by 407!

identifying the internal medullarly lamina in each hemisphere on the high resolution T1 408!

ICBN MNI template.  In each hemisphere, the GPe was drawn by including those voxels 409!

between the anterior and posterior limbs of the internal capsule, the putamen, and the 410!

internal medullary lamina (outer left/right in Fig.2A). Similarly, the GPi was drawn by 411!

including the voxels between the internal medullary lamina, the posterior limb and genu 412!

of the internal capsule (inner left/right in Fig.2A). All region of interest masks were drawn 413!

in MRICron (Rorden and Brett, 2000) and exported as NifTI images.   414!

 415!

We then isolated the SDFs within each voxel of both region masks for analysis. For 416!

illustration, Fig. 2B shows a schematized version of a SDF illustrating three resolved 417!

fibers, with their independent magnitude (i.e., lengths, reflecting QA) and orientation. 418!

Two representative 3D SDFs from a voxel within the left GPi and a voxel within the left 419!

GPe are shown in Fig. 2 C,D. For each voxel, we took three independent measures of 420!

the SDF structure: the principal fiber orientation, the number of resolved fibers across a 421!

range of QA thresholds, and QA magnitude of the principal fiber. To generate the 422!
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angular distribution histograms (Figs. 3,4), we used the circstat toolbox (Berens 2009) 423!

and computed the circular mean of the voxel orientations across subjects. The internal 424!

capsule orientation (green arrows in Fig. 3,4) was calculated by averaging the 425!

orientations across a 4mm3 voxel cube situated prominently within the internal capsule 426!

in the left and right hemispheres. For plotting purposes, a gaussian smoothing kernel 427!

was applied to the QA maps (Fig. 6 A-D) for each subject (2 FWHM).  428!

 429!

We extracted the primary fiber orientation, the number of fibers in each voxel, and the 430!

QA of the primary fiber from all voxels in each mask.  Then we clustered the combined 431!

data across both masks using these diffusion features with a standard clustering 432!

approach in Matlab (R2014a).  We specified two clusters, used squared euclidean 433!

distance as the distance metric and the k-means++ algorithm for cluster center 434!

initialization (replicates = 10).  The clusters to the inner and outer segment were 435!

assigned based on the number of correctly assigned voxels relative to the hand drawn 436!

masks. This algorithm generated inner and outer segment maps for each subject and 437!

hemisphere in each dataset. To generate the probabilistic maps of each segment 438!

across all subjects in a sample (Fig. 7), voxel probabilities were estimated by averaging 439!

the binary categorization of each voxel in the inner and outer segment maps. Separate 440!

probability masks were calculated for in the DSI and MSI data sets, as well as across 441!

both samples (Merged). In order to quantify accuracy, we defined the classification 442!

accuracy as the number of voxels correctly assigned to the inner/outer segment from 443!
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the k-means analysis using the manual segmentation as the correct assignment divided 444!

by the total number of voxels in that segment (Fig. 8). 445!

 446!

Accuracy of the clustered segments was compared against the hand-segmented region 447!

of interest masks and a chance null distribution was estimated using a permutation 448!

procedure. On each iteration of the permutation test, every pallidal voxel was 449!

pseudorandomly assigned to either the inner or outer segment. The voxel’s permuted 450!

assignment was then compared to the voxel’s real assignment in the manually 451!

segmented pallidum masks and counted as correct if it matched that assignment. All of 452!

the correct assignments were counted for each iteration of the permutation test 453!

(n=1000). Chance accuracies were tallied across all iterations and the number of 454!

instances that the random assignment performed better than k-means classification was 455!

divided by the total number of iterations to generate the p-value for how well the 456!

automated classification performs against a classification based purely on chance. 457!
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 602!
Fig. 1 603!
A. Schematic of fiber systems traversing the internal (GPi) and external (GPe) segments 604!
of the pallidum, including projections to and from the substantia nigra. Labeled 605!
pathways include nigrostriatal (green) striatopallidal (red, cyan), striatalnigral (purple) 606!
and nigropallidal (yellow (red, blue), striatonigral (purple) and nigropallidal (yellow).  B 607!
and C. Coronal images from the Big Brain atlas, showing the putamen, GPe, and GPi, in 608!
the left (B) and right (C) hemispheres; black arrows point to the approximate center of 609!
the internal medullary lamina (I.M.L) separating the two segments (slice 3894, Amunts 610!
2013).  611!
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 612!
Fig. 2 613!
A. The inner (blue) and outer (red) segments of the left and right pallidum were 614!
manually drawn on the high resolution T1 ICBM 152 template. B. Schematized version 615!
of an SDF illustrating three resolved fibers (QA0, QA1, QA2), their magnitude (i.e., 616!
lengths, reflecting QA) and orientation. C,D Representative SDFs from the left internal 617!
segment (C) and left external segment (D) in the coronal plane from a single subject 618!
from the DSI dataset. Gray lines indicate direction of fiber orientations.  619!
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 620!
 621!
Fig. 3 622!
Angular distributions of primary fibers from DSI (A,C) and MSI (C,D) datasets.  Blue, 623!
red, and green arrows indicate the mean of the distributions in the inner, outer and 624!
internal capsule respectively.  625!
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 626!
Fig. 4  627!
Angular distributions of secondary fibers from DSI (A,C) and MSI (C,D) datasets.  Blue, 628!
red, and green arrows indicate the mean of the distributions in the inner, outer and 629!
internal capsule respectively.  630!
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 631!
Fig. 5 632!
Voxelwise geometries of the primary and secondary fibers, inner (blue) and outer (red), 633!
segments of two example subjects from the DSI (A) and MSI (B) datasets. Slices are 634!
both from y = -1 (MNI).  (Putamen (Put.), Internal capsule (I.C.). Fiber orientations are 635!
color coded according to their orientation. 636!
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 637!
 638!
Fig. 6 639!
A-D. Probability density functions of the primary fiber QA of the inner (blue) and outer 640!
(red) segments in the DSI(A,B) and MSI(C,D) datasets. E-H The number of resolved 641!
fibers thresholded by QA in the inner and outer segments in the DSI (A,B) and MSI 642!
datasets (C,D). Arrows indicate peaks of the distributions. Lines indicate mean and 643!
shaded regions are 95% confidence intervals. 644!
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 645!
 646!
Fig. 7 647!
A-C. Probabilistic maps, across subjects, of the inner and outer segments in the DSI 648!
(A), MSI (B), and merged (C) datasets.  Maps are thresholded between 33-77% 649!
probability. The background image in each image is the T1 ICBM template.  Axial 650!
images span z coordinates [-6,0]. D-F. Coronal images of the same probabilistic maps 651!
at y  = -2.  652!
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 653!
Fig. 8 654!
A-D. Mean accuracy results from k-means classification in the DSI (A,B) and MSI (C,D) 655!
datasets. Dotted lines show random accuracies obtained from 1000 iterations of a 656!
permutation test where clustered categories were scrambled. Error bars indicate 95% 657!
confidence intervals across subjects.  658!
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 659!
Fig. 9 660!
The voxelwise MSI probability (averaged across individual subjects) plotted against 661!
voxelwise DSI probability for each voxel in the left (A) and right (B) hemispheres. Each 662!
point corresponds to an individual voxel in either the outer (red) or inner (blue) segment.  663!
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