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ABSTRACT 

Organismal size depends on the interplay between genetic and environmental factors. 

Genome-wide association (GWA) analyses in humans have implied many genes in the 

control of height but suffer from the inability of controlling the environment. Genetic analyses 

in Drosophila have identified conserved signaling pathways controlling size; however, how 

these pathways control phenotypic diversity is unclear. We performed GWA of size traits 

using the Drosophila Genetic Reference Panel of inbred, sequenced lines and find that top 

variants are predominantly sex-specific; do not map to canonical growth pathway genes, but 

can be linked to these by epistasis analysis; and are enriched in homologs of genes involved 

in human height regulation. Performing GWA on well-studied developmental traits under 

controlled conditions expands our understanding of developmental processes underlying 

phenotypic diversity. 
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INTRODUCTION 

How animals control and coordinate growth among tissues is a fundamental question in 

developmental biology. A detailed mechanistic but global understanding of the processes 

taking place during normal physiological development is furthermore relevant for 

understanding pathological growth in cancers. Classical genetic studies in Drosophila have 

revealed core molecular mechanisms governing growth control and have shed light on the 

role of humoral factors and the environment on adult size (1,2,3,4). Two major pathways 

regulate size, the Insulin/TOR pathway, which couples systemic growth to nutrient 

availability; and the Hippo tumor suppressor pathway, which controls cell survival and 

proliferation in developing organs (5,6,7). However, growth control is complex (8,9,10), and 

the interactions between components of these pathways with each other and with unknown 

molecules and extrinsic factors remain poorly understood. Studies focusing on single or few 

genes can only capture individual aspects of the entire system of networks underlying this 

trait, which is especially problematic when individual alleles have subtle and context-

dependent effects (11,12). What is needed for a better understanding of the genetic control 

of size is therefore a global genome-wide approach. One possibility here is to study 

multifactorial natural genetic perturbations as they occur in a segregating population.  

 

GWA studies (GWAS) are a popular method for linking variation in quantitative traits to 

underlying genetic loci (13,14). GWAS have been pioneered (15,16) and widely applied in 

humans and are now a routinely used tool in model organisms such as Arabidopsis (17,18), 

Drosophila (19,20,21) and mouse (22) as well as in various crop (23,24) and domestic 

animal species (25,26,27,28,29), where they have substantially broadened our 

understanding of the genetics of complex traits. GWAS of height have revealed that many 

loci with small effect contribute to size variation in humans (9,10,30,31), which contrasts with 

a much simpler genetic architecture of size in domestic animals, where as a consequence of 

breeding few loci have relatively large effect sizes that jointly explain a large proportion of 

size variation (26,32). Although many loci affecting human height have been identified by 

GWAS, deducing the underlying molecular mechanisms by which they affect size is 

challenging. Larger genome regions and not single genes are mapped; uncontrolled 

environmental variability makes it difficult to identify causal links between genotype and 

phenotype; and functional validation cannot be performed in humans (12,16,33,34,35).  

 

In contrast to human studies, GWAS in model organisms benefit from the feasibility of 

functional validation, more stringent environmental control and, when using inbred strains, 

the possibility of measuring several genetically identical individuals to obtain an accurate 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 10, 2015. ; https://doi.org/10.1101/017855doi: bioRxiv preprint 

https://doi.org/10.1101/017855
http://creativecommons.org/licenses/by/4.0/


estimate of the phenotype for a given trait and genotype. All three factors can substantially 

improve the power of a GWAS. However, as slight environmental fluctuations occur even 

under controlled laboratory conditions and genotype-environment interactions often account 

for a large part of phenotypic variance (36), identifying potential confounders and addressing 

them, by elimination, randomization or accounting for the source of variation is crucial. 

 

The establishment of the inbred, sequenced lines of the Drosophila Genetic Reference Panel 

(DGRP) (37,38) has made GWAS in Drosophila widely applicable. The DGRP lines harbor 

the substantial natural genetic variation present in the original wild population and show 

copious phenotypic variation for all traits assayed to date (19,20,21,37,39,40). 

Here, we used the DGRP to perform single- and two-locus associations for size-related 

developmental traits in Drosophila. We find pervasive sex-specificity of top variants, validate 

a substantial number of novel growth regulators, link candidates to existing networks and 

show candidates are enriched for genes implied in variation for human height.  
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RESULTS 

 

Quantitative Genetic analysis of size 

We cultured 143 DGRP lines under conditions we had previously shown to reduce 

environmental influences on size (Supplementary Table 1, Fig. 1a) and measured five body 

and 21 wing traits. We chose two traits as representative measurements for size (wing and 

eye disc derived) for further analysis: centroid size (CS), and interocular distance (IOD), 

respectively (Fig. 1b). We observed extensive phenotypic and genetic variation in both traits 

(Fig. 2a, b, Supplementary Table 1, 2), with substantial broad-sense heritabilities (𝐻!"! =0.63, 

𝐻!"#! =0.69). Both traits showed significant genetic variation in sex dimorphism but similar 

heritability estimates for males and females and high cross-sex genetic (rMF) and phenotypic 

correlation (Supplementary Table 1). 15% of phenotypic variance in centroid size could be 

attributed to raising flies on different foodbatches, which only differed by the day on which 

they were prepared (according to the same protocol) (Supplementary Table 1). Though 

nutrition is a well-studied size-determining factor (41), we were surprised that even such 

small nutritional variation could have substantial phenotypic effects. Although the 

environmental effect of foodbatch was markedly lower for IOD (3%), we used batch-mean 

corrected phenotypes in all subsequent analyses to remove this effect.  

Single-marker and gene based GWAS identify novel loci associated with size variation 

To identify common loci contributing to size variation in Drosophila, we performed single 

marker GWAS (42) for 1,319,937 SNPs for a wing disc derived (CS) and an eye disc derived 

(IOD) size measure. As the genetic correlation, the extent of genetic influence on two traits 

that is common to both, between CS and IOD was low (0.46 and 0.51 for females and males, 

respectively), we expected to map SNPs for the two traits separately with some variants 

common to both. To find loci that specifically affect variation in wing size unrelated to the 

overall organismal size variation we constructed an additional phenotype (rCS) that had the 

effect of IOD on CS removed via regression. Besides the foodbatch, two cosmopolitan 

inversions, In(2L)t and In(3R)Mo, were correlated with both CS and IOD, which we 

addressed by modeling their presence in the homozygous state, yielding the inversion 

corrected phenotypes CSIC and IODIC.  

Only for one trait (IOD in females) we observed significantly associated SNPs when applying 

a stringent Bonferroni corrected p-value threshold of 3.8x10-08. The six significant SNPs were 

all located in a cluster on chromosome 2L, 12-13kb upstream of the gene encoding the 

EGFR pathway regulator kek1 (Fig. 3a,b). As QQ-plots showed a departure from uniformity 

for p-values below 10-05 (Supplementary Figs. 1,2), we picked candidate loci using this 
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nominal significance threshold for further examination and functional validation. This yielded 

between 31 and 51 SNPs for females and between 17 and 36 SNPs for males, with little 

overlap in top associations and moderate correlation of overall SNP ranks between sexes 

(Supplementary Table 3,4; Supplementary Figs. 3-5).  

Correcting for inversion presence generally enhanced GWAS power, as was evident by more 

loci reaching nominal significance. Nevertheless, the majority (65-86%) of SNPs from the 

GWAS with uncorrected trait values remained candidates in the GWAS with corrected 

phenotypes. As could be expected based on the relatively low genetic correlation between 

CS and IOD, no candidate SNPs were shared between these phenotypes (Fig. 3c, 

Supplementary Table 4). In both sexes about one third of top SNPs was shared between the 

absolute and relative CS GWAS, suggesting variation in relative versus absolute organ size 

may be achieved through genetic variation at both shared and private loci.  

Nominally associated variants predominantly mapped to intergenic regions, but were 

nevertheless enriched in gene regions (p<0.001, hypergeometric test) (Fig. 3d, 

Supplementary Table 5), demonstrating that associations were not randomly distributed 

across the genome. For gene-level analyses we determined candidates for each phenotype 

as genes having a nominally significant SNP in or within 1kb of their transcribed region, 

yielding a total of 107 genes over all phenotypes. Only the candidate gene sets for rCS were 

enriched for STRING curated interactions (43) and none showed enrichment of specific 

functional groups (43,44,45), though growth was among the top categories for CSMIC (FDR 

corrected p=0.08). Surprisingly, we found that only few canonical growth genes contained or 

were close to nominally associated SNPs. Exceptions included several SNPs near or in the 

genes coding for Ilp8, TOR and EGFR pathway components and regulators of tissue polarity 

and patterning. However, some SNPs that narrowly missed the candidate reporting threshold 

localized to further growth regulatory genes, such as the Hippo pathway components ex and 

wts.  

The small number of detected canonical growth pathway genes might be explained by the 

lack of SNPs with large effects in these genes, which is plausible considering the essential 

role of many growth regulators. We therefore wanted to test whether the combined signal of 

SNPs with small effects (each too small to reach significance on its own) across known 

growth genes might be significant. To this end we determined gene-based statistics using the 

sum of chi-squares VEGAS method (46), which computes a p-value for each gene 

considering all SNPs within a gene while correcting for gene length and linkage 

disequilibrium between SNPs. None of the genes reached genome-wide significance (p < 

3.75x10-06) (Supplementary Table 6). The overlap between the 20 top-scoring genes from 

this analysis with our GWAS candidate genes was small for each individual phenotype and 
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even when combining the VEGAS analyses from all phenotypes only 11 of our 97 VEGAS 

top-scoring genes contained a SNP that reached significance on its own in one of our 

GWAS. We did not find GO or interaction enrichment (43,44,45) and as in the individual 

GWAS, top candidates were largely novel for a putative role in growth control.  

 

Functional validation of candidate genes reveals novel regulators of size  

We selected a subset (41% to 69%) of candidates identified by each of our wing size GWAS 

for functional validation by tissue-specific RNAi. A total of 64% to 79% of tested genes had 

significant effects on wing area (p<0.001, Wilcoxon rank sum test, Supplementary Table 7, 

Fig. 4a, Supplementary Fig. 6). We achieved similar validation rates for gene-based 

candidates. In contrast, only 42% of a set of 24 randomly selected genes had significant 

effects on wing size (Supplementary Table 7). The overall proportion of validated candidates 

versus random genes was significantly different (p=0.02, Fisher’s exact test) and Wilcoxon 

test p-values showed different distributions between candidate and random knockdowns 

(p=0.02, Wilcoxon test, Supplementary Fig. 7). This combined evidence suggests an 

advantage in power for identifying growth regulators by GWAS over randomly testing genes. 

The validated candidates constitute 33 functionally diverse novel growth regulators 

(Supplementary Fig. 8).  

  

Two-locus association reveals novel interactions  

To place novel genes within the network of known growth pathways, we next performed tests 

for two-locus associations (47) to CSIC, IODIC and rCS in both sexes with SNPs in 306 growth 

genes as focal SNPs (Supplementary Table 8). Overall, 15 interactions reached Bonferroni-

corrected significance (p<7.9x10-13), but we observed none of our GWAS candidates among 

the significant epistasis partners. Generally, more interactions reached genome wide 

significance in males than in females. The most significant interaction (CSMIC, p=5.79x10-15) 

occurred between mask, a positive regulator of JAK/STAT signaling (48) and tutl, a 

JAK/STAT target gene during optic lobe development (49)(Fig. 5). Furthermore, among the 

top five interactions we found one between nkd, a downstream target of Dpp (50), and the 

tyrosine phosphatase Ptp99A (CSFIC, p=8.79x10-14), which has been shown to interact with 

InR and the Ras signaling pathway (51,52). Due to their already known growth-related 

functions we consider the interactions between these genes as prime candidates for 

functional validation.  

As Bonferroni correction is very conservative, we analyzed interactions passing a nominal 

significance threshold of p<10-09 for the presence of our GWAS candidates or previously 

known genes, counting only those interactions where the interacting SNP lay in or within 1kb 
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of a gene. All interactor gene lists (Supplementary Table 8) were enriched for development, 

morphogenesis and signaling categories (Bonferroni corrected p<0.001)(43). Notably, the 

rCSM list (Fig. 5) was additionally enriched for genes involved in regulation of metabolic 

processes. The 1353 epistasis partners (collected over all three phenotypes and both sexes) 

included 73 of the 306 known growth genes and 35 of our 107 overall GWAS candidates. 

However, these overlaps did not reach significance (p-value of 0.46 and 0.22, respectively). 

We next asked whether the candidate gene sets identified by normal GWAS and the 

epistasis approach were nevertheless biologically related to each other. To this end we used 

the STRING database (43), which revealed that the number of observed curated interactions 

between the two gene sets was much larger than expected by chance (p<<0.001). Analyzing 

pairwise interactions may thus help to place genes into pre-established networks. 

  

Intergenic SNPs are preferentially located in regions with enhancer signatures and 

overlap lincRNA loci 

Intergenic SNPs may be functional by changing the sequence of more distant regulatory 

elements or noncoding RNAs. We therefore tested whether intergenic GWAS candidate 

SNPs located to putative functional regions. We found enrichment (p<0.01, hypergeometric 

test) of SNPs lying in regions with H3K4Me1 or H3K27Ac, epigenetic signatures of active 

enhancers (Supplementary Table 5) (53), and in lincRNA loci (54), which have been implied 

in developmental regulation and are often enriched for trait-associated loci (55). Though only 

loci associated with IOD in females were enriched for SNPs localizing to lincRNA loci, we 

found one SNP lying in a lincRNA among the top variants for rCSF and IODFIC 

(Supplementary Table 5).  

A SNP 2kb upstream (position 2L: 429144) of the Hippo pathway regulator ex narrowly 

missed the candidate threshold (p=1.7x10-05, CSM). However, its genomic location suggests 

this variant could affect a novel regulatory region for this gene. The region surrounding it was 

annotated with the enhancer methylation signatures H3K4Me1 and H3K27Ac and had 

assigned state 4 of the 9 state chromatin model suggestive of a strong enhancer (53,56). 

Further annotations included H3K9Ac, a mark of transcriptional start sites, histone 

deacetylase binding sites and an origin of replication. To further assess functionality, we 

investigated whether the sequence around this SNP was conserved across taxa by 

performing multiple sequence alignment using BLAST (57) (Supplementary Table 9). Indeed, 

the region immediately upstream of the D. melanogaster ex gene showed high similarity to 

~3kb regions slightly more upstream of expanded orthologs in the genomes of D. sechellia, 

D. yakuba and D. erecta (Supplementary Table 9, Fig. 4b). This combined evidence 

suggests a putative functional region immediately upstream of the D. melanogaster ex gene, 
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but additional experiments are required to corroborate functionality and to establish a 

mechanism for influencing size. 

 

Human orthologs of candidate genes are associated with height, obesity and a variety 

of other traits 

To investigate conservation to humans and further elucidate putative functions of candidate 

genes, we searched for orthologous proteins in humans. We found human orthologs (58) for 

62 of our 107 GWA candidate genes, seven of which had a good confidence ortholog (score 

≥ 3) associated with height, pubertal anthropometrics or growth defects (Supplementary 

Table 10). Importantly, the GWAS candidates were enriched for human orthologs associated 

with height in a recent meta-analysis (p=	
   0.001) (10). The evidence for an involvement in 

growth control from GWAS in both organisms and experimental support from validation in 

Drosophila corroborates a biological function of these genes in the determination of body 

size.  

 

DISCUSSION 

We applied several GWAS methods to developmental traits that have been extensively 

studied by single gene analyses in Drosophila as a complementary approach for identifying 

loci underlying size variation. Our single-marker GWAS revealed only one SNP cluster close 

to the known growth gene kek1 to be significantly associated with body size when using a 

conservative Bonferroni correction. Yet, in contrast to human GWAS, which require 

independent replication, we exploited the fact that our model organism is amenable to direct 

validation strategies and tested candidates corresponding to a much lower significance 

threshold of 10-05 for an involvement in size determination. Using tissue-specific RNAi, we 

validated 33 novel genes affecting Drosophila wing size. Nominally significant intergenic 

associations were preferentially located in regions with an enhancer signature and 

overlapped lincRNA loci. A SNP upstream of the expanded locus was in an evolutionarily 

conserved region, indicating the presence of a putatively functional element. A two-locus 

epistasis screen identified several genome-wide significant interactions between known 

growth genes and novel loci, showing that targeted epistasis analysis can be used to extend 

existing networks. Finally, we showed that our GWAS top candidate set was enriched for 

homologs of genes associated with height variation in humans. Our study shows that despite 

limited statistical power, insights into the genetic basis of trait variation can be gained from 

analyzing nominal associations through functional and enrichment analyses and performing 

targeted locus-locus interaction studies. 
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Single-marker and two-locus GWA of size: Our study adds 33 novel growth genes and 15 

genomic loci that may interact with known growth genes to the extensive number of loci 

already implied in size regulation from single gene studies. That only a few bona fide growth 

genes were among the nominally significant candidates could be due to selection against 

functional variation in natural populations and/or during subsequent inbreeding and/or that 

the effect sizes of SNPs in these genes are too small to be detected in the DGRP. Our 

validation of a substantial number of novel genes underscores the complementarity of the 

GWAS approach to classical genetics and highlights the importance of probing natural 

variants. However, future studies would benefit from utilizing bigger population sizes in order 

to improve statistical power. 

While a cluster of SNPs lying 12-13kb upstream of the EGFR pathway regulator Kekkon-1 

was among the top associations in all body size GWA, all the most significant wing size 

associations mapped to putative novel growth genes: CG6091, a de-ubiquitinating enzyme 

whose human ortholog has a role in innate immunity, CG34370, which was recently identified 

in a GWAS for lifespan and lifetime fecundity in Drosophila (59) and, surprisingly, dsx, a gene 

well characterized for its involvement in sex determination, fecundity and courtship behavior. 

As genes affecting growth also impact on general and reproductive fitness of organisms it is 

not surprising that most of the candidate variants in or close to genes lie in regulatory 

regions, potentially modulating splicing, RNA turnover or RNA/protein abundance. Our data 

support the general notion that intergenic SNPs can impact phenotypes, either by affecting 

transcript abundance of protein coding genes (e.g. through distal enhancer elements) or via 

noncoding RNAs, which have been shown to regulate many biological functions including 

cellular processes underlying growth (60,61,62). 

Nonsense and missense SNPs are sparse among our candidates (one and six, respectively), 

and represent prime contenders for effects on protein function. However, confirming such 

effects requires testing the SNP in an isogenic background. Knockdown of most candidate 

genes resulted in a small change in median wing size (-19.4% to 10.1%), indicating a 

redundant or mildly growth enhancing or suppressing role in this tissue, which may explain 

why they were not discovered by classical mutagenesis screens. However, larger effects 

might be observed upon ubiquitous knockout, knockdown or overexpression.  

Epistasis analysis revealed 15 loci showing Bonferroni-significant interactions with SNPs in 

previously known growth genes, demonstrating the usefulness of this approach for extending 

existing biological networks. Furthermore, we found putative biological interactors for several 

GWAS candidates among the top interactions that did not reach genome-wide significance 

e.g. Lar with InR. Lar can phosphorylate InR (63), so polymorphisms at these two loci could 

act synergistically to modulate InR activity. The enrichment of annotated interactions 
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between our GWAS candidates and epistasis partners shows that different analyses yielding 

different top associations uncover common underlying genetic networks. A similar 

combinatorial approach has been successful in another DGRP study (21), underscoring that 

combinatorial approaches can help placing candidates from different analyses into a joint 

biological network, and provide a basis for further hypothesis driven investigation of the roles 

and connectivity of novel and known genes.  

 

Biological roles of novel growth genes: Apart from expected processes like signaling, 

transcription, translation and morphogenesis, we validated genes involved in transmembrane 

transport, planar cell polarity (PCP), metabolism and immunity. A total of 24 GWAS or 

epistasis candidate genes were discovered to be enhancers or suppressors of major growth 

pathways in another study (64, Supplementary Table 11) and 15 were associated with 

nutritional variation in Drosophila (65), supporting their role in growth control. Importantly, the 

enrichment of GWAS candidates for genes associated with human height not only supports 

their role in growth but also shows that results of GWAS studies in Drosophila can be 

translated to orthologous traits and genes in humans.  

The yeast ortholog of Mid1, is a stretch activated Ca2+ channel with a role in the polarized 

growth of mating projections (66,67). As mechanical tension plays a role during growth of 

imaginal discs, this channel could act in translating such signals to intracellular signaling 

pathways via the second messenger Ca2+. The human ortholog of another validated 

candidate, the transmembrane channel Trpm, showed association with anthropometric traits 

during puberty, indicating a role during the postnatal growth phase. The mucin Muc68Ca 

showed one of the largest knockdown effects. Mucins form a protective layer around vital 

organs, and the expression pattern of Muc68Ca in the larval midgut concurs with a putative 

effect on growth via the control of intestinal integrity (68).  

A dual role in PCP, the establishment of cell polarity within a plane in an epithelium, and 

growth control has been shown for many genes, which regulate these two processes via 

distinct but coordinated downstream cascades (69,70). Lar, aPKC, the Fz target Kermit (71) 

and the motor proteins Dhc64C (nonsense SNP) and Khc-73, whose human ortholog is 

significantly associated with height, are implied in PCP establishment. Kermit and motor 

proteins act downstream in the PCP cascade and likely have specialized roles for this 

process, but PCP can itself impact on growth, as proper establishment of polarity provides 

the orientation of cell division, and loss of a PCP component in zebrafish causes a reduction 

in body length (72). Interestingly, kermit was a candidate interactor of EGFR, which acts in a 

combinatorial manner with Fz signaling in PCP (73), providing a biological basis for this 

interaction.  
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Metabolic genes are prime candidates for improving our understanding of growth, which 

depends on the amount of energy and precursors available for biosynthesis, and thus to 

metabolic coordination. The recent findings that the growth and PCP regulator Fat can 

couple growth and metabolism and mitochondrial proteins can causally affect growth 

pathway activity (74) underscore the importance of metabolic coordination. A missense SNP 

in the validated candidate Cep89, a gene involved in mitochondrial metabolism and growth in 

Drosophila and humans (75) was associated with most wing phenotypes. Elucidating the 

function of Cep89 and other validated candidates with putative roles in metabolism, e.g. 

CG3011, CG6084 and Fbp2, whose human ortholog has been linked to growth defects and 

cancer (e.g. 76), may provide further insight into this coordination.  

 

Sexual dimorphism of size: Of the top 100 SNPs for each trait only 25% - 43% are shared 

between the sexes, a surprisingly small overlap given the high genetic and phenotypic 

correlations between sexes. With respect to genes, only 50% of the top 1000 SNPs in or 

near annotated genes are shared. Interestingly, an intronic SNP in the sex determination 

gene dsx had the lowest p-value in the female relative wing size GWAS but had a smaller 

effect size in males. Dsx is a transcription factor with sex-specific isoforms, and has many 

targets with sex- and tissue specific effects (77). These data suggest there may be marked 

differences in the genetic networks underlying size determination in males and females in 

natural populations, a possibility that is neglected in single gene studies. 

 

Conclusions & Outlook: Growth control has been well studied, particularly in Drosophila, 

where many genes and pathways affecting growth have been documented by mutational 

analyses. However, such screens are far from saturation and do not scale well to 

investigating effects of combinations of mutations. Here we took advantage of naturally 

occurring, multifactorial perturbations genome-wide to identify novel genes affecting growth 

and to place them in genetic interaction networks. Rather than deepening our understanding 

of growth control, the identification of ever more growth regulators raises new questions 

about how all these loci interact to govern growth. The challenge for the future will be to shift 

our focus from studying genes in isolation towards investigating them in the context of 

developmental networks, and to assess the effects of network perturbations on intermediate 

molecular phenotypes of transcript, protein and metabolite levels.  
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ONLINE METHODS 

Drosophila medium and strains 

Fly food was prepared according to the following recipe: 100 g fresh yeast, 55 g cornmeal, 10 

g wheat flour, 75 g sugar, 8 g bacto-agar and 1 liter tap water. 

Experiments were performed with 149 of the DGRP lines. RNAi lines used are listed in 

Supplementary Table 7. 

 

Standardized culture conditions 

 Lines were set up in duplicate vials, with five males and five females per vial. After seven 

days, the parental flies were removed. From the F1, five males and five females were put 

together in duplicate vials and discarded after seven days of egg laying. From the F2, thirty 

males and thirty females were mated in a laying cage with an apple juice agar plate plus a 

yeast drop as food source and allowed to acclimatize for 24 hours. A fresh plate of apple 

juice agar plus yeast drop was then applied and flies were left to lay eggs for another 24 

hours. From this plate, F3 L1 larvae were picked with forceps and distributed into three 

replicate vials, with 40 larvae per vial. The food surface in the vials was scratched and 100µl 

of ddH2O added prior to larvae transfer. The adult F3 flies were pooled from the three vials 

and frozen at -20°C approximately 1-2 days after eclosion. The whole experiment was 

performed in a dedicated incubator (DR-36VL, CLF Plant Climatics GmbH) with a 12-hour 

day-night cycle, constant humidity of 65 - 68% and constant temperature of 25.5°C +/- 1°C. 

Vials were shuffled every two days during the first and second round of mating but left at a 

fixed position in the incubator for the duration of the development of the F3 generation. 

For the parental generation, lines were all set up on the same day on the same foodbatch. 

For the F1 matings, different foodbatches had to be used due to different developmental 

timing of the lines. F2 matings were set up using the same batch of apple agar plates and 

yeast for all lines. F3 larvae were distributed on four different foodbatches and the batch 

number was recorded for each line. 

The control experiment (Supplementary Table 1) was performed using the same procedure 

as above, except that the same foodbatch was used for all flies of a generation. We used the 

DGRP lines 25176 (RAL 303), 25203 (RAL 732), 28220 (RAL 721) and 28263 (RAL 908) for 

this experiment because they had comparable generation times and set up ten replicates of 

each of these lines according to the standardized culture conditions.  

 

Phenotyping and morphometric measurements 

Depending on the number of flies available, between five and twenty-five flies per sex and 

line were measured for the dataset (median 25 flies per sex and line, mean 23 (CSfemales, 
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CSmales, IODmales) and 24 for IODfemales ; exact numbers are given in Supplementary Table 2). 

For the experimental generation we distributed a total of 19200 larvae in four batches spaced 

throughout 1.5 weeks according to developmental timing, and the final dataset consisted of 

morphometric data of 6978 flies, 3500 females and 3478 males.  

For the control experiment we phenotyped 25 flies per replicate, sex and line, resulting in a 

total of 2000 flies (1000 males, 1000 females). 

Flies were positioned on a black apple agar plate and photographed using a VHX-1000 

digital light microscope (KEYENCE). Morphometric body traits were measured manually 

using the VHX-1000 dedicated measurement software. If intact the right and otherwise the 

left wing was removed and mounted in water on a glass slide for wing image acquisition. 

Morphometric measurements were extracted from the wing images using WINGMACHINE 

(78) and MATLAB (MATLAB version R2010b Natick, Massachusetts: The MathWorks Inc.)  

Centroid size was measured as the square root of the summed squared distances of 14 

landmarks from the center of the wing (Fig. 1). Interocular distance was measured from eye 

edge to eye edge along the anterior edge of the posterior ocelli and parallel to the base of the 

head.  

 

Quantitative genetic analysis 

All analyses were performed in R Studio using the R statistical language version 2.15 

(http://www.R-project.org). 

The total phenotypic variance in the control experiment was partitioned using the mixed 

model Y = S + L + SxL + R(L) + ε, where S is the fixed effect of sex, L is the random effect of 

line (genotype), SxL is the random effect of line by sex interaction, R is the random effect of 

replicate and ε is the within line variance. The brackets represent that replicate is implicitly 

nested within line. The total phenotypic variance in the dataset was partitioned using the 

mixed model Y = S + L(F) + SxL(F) + F + ε, where S is the fixed effect of sex, L is the 

random effect of line (genotype), SxL is the random effect of line by sex interaction, F is the 

random effect of foodbatch and ε is the within line variance. The random effects of line and 

line by sex are implicitly nested within foodbatch, as each line was raised only on one of the 

four foodbatches. Models of this form were fitted using the lmer() function in the lme4 

package in R. We also ran reduced models separately for males and females. The rand() 

function in the lmerTest package was used to assess significance of the random effects 

terms in the dataset.  

Relative contributions of the variance components to total phenotypic variance (σ2 
P) was 

calculated as σ2 
i / σ2 

P where σ2 
i represents any of σ2 

L, σ2 
LxS, σ2 

F, σ2 
R, σ2 

E, and σ2 
P = σ2 

L + 

σ2 
LxS + σ2 

C + σ2 
E. σ2 

C stands for σ2 
R in the control dataset and for σ2 

F in the analysis of the 
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GWAS dataset. σ2 
L = variance due to genotype, σ2 

LxS = variance due to genotype by sex 

interactions, σ2 
F = variance due to food, σ2 

R = variance due to replicate and σ2 
E = residual 

(intra-line) variance. The broad sense heritability for each trait was estimated as  

H2 = σ2 
G / σ2 

P = (σ2 
L + σ2 

LxS ) / ( σ2 
L + σ2 

LxS + σ2 
C + σ2 

E). The cross-sex genetic correlation 

was calculated as rMF = σ2 
L/ (σ 

LF σ 
LM) where σ2 

L is the variance among lines from the 

analysis pooled across sexes, and, σ 
LF and σLM are, respectively, the square roots of the 

among line variance from the reduced models of females and males. Similarly, cross-trait 

genetic correlations were calculated as rAB = σ2 
G(AB)/(σ 

GA σ 
GB) where σ2 

G(AB) is the genetic 

covariance between traits A and B, and σGA and σ 
GB are the square roots of the genetic 

variance for traits A and B, respectively. The phenotypic correlation between sexes was 

determined using the cor() function with method = “spearman” in R. 

 

Phenotypes for GWAS 

We found a large effect of foodbatch on CS, and inversions In(2L)t and In(3R)Mo were 

associated with IOD and to a lesser extent CS. We modeled these covariates using a mixed 

model. The foodbatch was modeled by a random effect and the rearrangements were coded 

as (0,1,2) depending on whether both, one or no inversion was present in the homozygous 

state. We did not observe correlation between Wolbachia infection status and any trait and 

thus did not include this as a covariate in the model. 

Specifically, the models used were: CSraw = α + X1β1 + X2β2 + Fu+ ε, where X1 refers to the 

sex covariate, X2 refers to the inversion covariate,  ε~Νn(0,σε In2) with n being the number of 

lines, u~Nk(0, σu
2Ik) with k being the number of foodbatches and F an (n,k)-indicator matrix, 

associating each line to its respective foodbatch. The GWAS analyses were performed using 

the estimated residual of this model (CS = ε).  

 

To find loci that specifically affected variation in wing size unrelated to the overall body size 

variation we constructed an additional phenotype (rCS) that had the effect of IOD on CS 

removed via regression: CSraw = α + IOD + X1β1 + Fu + ε, where X1 and Fu refer again to the 

sex-effect and the foodbatch effect. We did not model the inversions because the residuals of 

this model were not correlated with the inversions.  The residuals ε from this regression were 

used as relative size phenotypes. 

 

Association Analysis 

We performed GWAS using male and female line means. Genotypes for 143 of the 149 lines 

were obtained from the DGRP Freeze 2 (http://dgrp2.gnets.ncsu.edu). Only SNPs that were 

missing in a maximum of ten lines and occurred in at least ten lines (7% of the measured 
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lines, 1,319,937 SNPs in total) were used. GWAS was performed using FaST-LMM (42) for 

separate sexes.  Association results were visualized using the manhattan() function in the R 

package qqman (79). To determine correlation between SNPs for a given phenotype we 

extracted the genotype of the top n SNPs (p<10-05) and calculated the correlation between 

genotypes at these loci across all DGRP lines used in the GWAS. We used the FaST-LMM 

SNP p-values to apply the sum of chi-squares VEGAS method (46) to calculate gene wise 

statistics. Gene boundaries were defined using annotation from popDrowser 

(http://popdrowser.uab.cat/gb2/gbrowse/dgrp/), but we included also SNPs lying within 1000 

bp up- or downstream of these margins. The correlation matrix was calculated from the 

genotypes themselves.  

 

GO annotation and interaction enrichment 

To determine enrichment of functional classes, annotate genes with functions and curated 

interactions among our candidate genes, we used the functional annotation chart function 

from DAVID (44,45) and the functional annotation and protein interaction enrichment tools 

from STRING (43). 

 

RNAi validation 

SNPs with an association p-value <10-05 lying in a gene region or +/- 1kb from a gene were 

mapped to that gene. From the gene based VEGAS analysis, we chose the top 20 genes 

from each list as candidates. RNAi lines for a subset of candidate genes for each wing 

phenotype were ordered from VDRC. For one gene, chinmo, there was no appropriate line 

available from VDRC and we instead tested two Bloomington lines (26777 and 33638, 

indicated in Supplementary Table 7 with (BL)). For the random control knockdowns we tested 

a set of 24 genes that did not contain a significant SNP in or within 1kb of their transcribed 

region. All lines are listed in Supplementary Table 7. For wing size candidates, validation was 

performed by crossing males of the respective RNAi line to virgin females carrying the GAL4 

transcriptional activator under the control of the nubbin (nub) promoter. The VDRC line 

47097 containing a UAS-RNAi construct against the CG1315 gene served as a negative 

control for the knockdowns. We decided to use this line as reference because it was in the 

same background as most of our tester lines, an essential factor to consider when assessing 

genes that presumably only have a small effect on size upon knockdown. The CG1315 

knockdown had so far never shown an effect in any setting and it allowed us to evaluate 

unspecific effects of RNAi knockdown on wing size. Prior to the experiment, driver lines were 

bred under controlled density to eliminate cross-generational effects of crowding on size. 

Wings were phenotyped as described above and wing area used as a phenotypic readout. 
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Change in median wing area relative to the control was tested with a Wilcoxon rank sum test 

(function wilcoxon.test() in R) for each line and for separate sexes. If possible, 25 flies per 

cross and sex were phenotyped for statistical analysis, however sometimes the number of 

progeny was lower. The number of phenotyped flies per cross and sex is given in 

Supplementary Table 7. We used the fisher.test() function in R to determine if the proportion 

of validated genes was different among candidates and random lines, and the wilcoxon.test() 

function to test for a difference in median p-value between candidates and random lines. 

Both these analyses were done in females exclusively as only this sex was measured for the 

random lines. Only genes not previously implied in wing development or growth control were 

included in the analysis, which excluded chinmo, aPKC, tws and Ilp8 from the candidates 

and EloA and spz5 from the random list. Furthermore, we only used one line (the more 

significant one) per gene where more than one line was tested for a given candidate gene. 

 

Epistatic analysis 

We explored epistatic interactions between SNPs lying within and 1kb around genes that 

were previously found to be involved in growth or wing development in Drosophila against all 

DGRP SNPs with missingness <11 and present in at least 10% of the lines. We compiled a 

list of SNPs within and 1kb up- or downstream of genes that were previously known to play a 

role in growth control (14,137 SNPs) or wing development (43,498 SNPs) and used these as 

focal SNPs (Supplementary Table 8). All phenotypes were normalized to follow a standard 

normal distribution. We used FasT-Epistasis (47) calculating interactions for all pairs 

between the focal SNPs and the set of all SNPs satisfying the above criteria (1,100,811 

SNPs). Bonferroni corrected significance would thus require p<7.9x10-13 (0.05 divided by 

total number of tests ((14,137+43,498)*1,100,811 = 63,445,241,985). Interactions were 

visualized using Circos (80). To calculate significance for the overlap between genes found 

via epistasis and a given gene list, we first positionally indexed all n SNPs that were used in 

the epistasis analysis. We recorded the set of indices of SNPs with p<10-09) yielding set K: K 

= {k: SNPk is an epistasis hit}. We then generated random samples.  

For random sample j, do: 

For all elements in K, add a random integer rj between 0 and n-1. Define new index as the 

modulo n: ki
j = mod(ki + rj, n), which yields Kj = {ki

j; j = 1, .., m}. Given the shifted positions Kj, 

we look up the SNP positions PKj. For a given gene list, we record the number xj of gene 

regions that overlap a position in PKj. Let x be number of gene regions overlapping an 

epistasis hit. Our p-value estimate is then Papprox ≈ 1/m ∑1{xj ≥ x}. 
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Intergenic element enrichment analysis 

We determined the number of SNPs from each GWA candidate list and the overall number of 

SNPs that located within modENCODE elements annotated with Histone 3 lysine 4 

monomethylation (H3K4Me1) or Histone 3 lysine 27 acetylation (H3K27Ac) or lincRNA loci. 

For the H3K4Me1/H3K27Ac enrichments we restricted ourselves to three developmental 

stages (L2, L3, pupae), which we considered to be the most relevant interval for gene activity 

affecting growth of imaginal discs. We obtained a table with lincRNAs in the Drosophila 

genome from the study of Young et al. (54) and searched for enrichment of SNPs located in 

those lincRNA loci. Enrichment was tested using a hypergeometric test (function phyper()) in 

R). 

 

BLAST alignment 

We downloaded the sequence of the region 10 kb upstream of the annotated transcription 

start site of the expanded locus (2L: 421227..431227) from FlyBase (81), as well as the 

sequence of the same relative region for seven of the twelve Drosophila species (82), which 

contained the ortholog of the expanded gene in the same orientation in the genome. We 

performed multiple sequence alignment using the discontiguous megablast option on NCBI 

BLAST (57).  

 

Annotation with human orthologs 

We combined candidate genes from GWAS for all phenotypes and searched for orthologs in 

humans using DIOPT-DIST (58). Enrichment of GWAS candidates for genes with human 

orthologs associated with height (10) was determined with a hypergeometric test (function 

phyper() in R). We determined Drosophila orthologs of gene annotations of all associated 

SNPs (total 697), resulting in 374 ortholog pairs supported by at least 3 prediction tools, and 

searched for overlap of these orthologs with the 62 of our GWAS candidate genes that had a 

human ortholog supported by at least 3 prediction tools, which resulted in 12 matches. Of 

those, only five matches were supported by three or more prediction tools (score >=3) and 

we used only those for enrichment calculation. Population size was determined as the total 

number of Drosophila-Human ortholog relationships (= 28,605) (58). 
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FIGURE LEGENDS 

 

Figure1. Standardized Drosophila culture conditions for the quantification of 

morphometric traits. a) The protocol extends over three generations and efficiently controls 

known covariates of size, such as temperature, humidity, day-night-cycle and crowding. 
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Additionally, effects of other environmental covariates, such as intra-vial environment, light 

intensity and incubator position, are randomized. b) Illustration of the two phenotypes used 

for GWAS: interocular distance (IOD) and the 14 landmarks that were used in the calculation 

of centroid size (CS). 
 

Figure 2. Phenotypic variation in the DGRP for two size traits. Plots show mean 

phenotypic values for a) centroid size and b) interocular distance. Each dot represents the 

mean phenotype per line of males (black) and corresponding females (red), with error bars 

denoting one standard deviation. Lines are ordered on the x-axis according to male trait 

value, from lowest to highest, meaning that the order of lines is different for each plot. Line 

means are listed in Supplementary Table 2.  
 

Figure 3. GWAS for wing and body size shows nominally associated loci (p<10-05) are 

distributed across the genome and most abundant in intergenic and regulatory 

regions. a) Manhattan plot of the SNP p-values from the IOD GWAS in females shows that 

nominally associated SNPs are distributed over all chromosomes. Negative log10 p-values 

are plotted against genomic position, the black line denotes the nominal significance 

threshold of 10-05 and the circle marks the cluster of Bonferroni-significant SNPs upstream of 

kek1 on 2L. b) Correlation between SNPs nominally associated with female IOD. The cluster 

of Bonferroni-significant SNPs on 2L shows high correlation among individual SNPs over a 

larger region, whereas most other SNPs except a few in a narrow region on 3L represent 

individual associations. Blue = No correlation, orange = complete correlation. Pixels 

represent individual SNPs and black lines divide chromosomes. c) Overlap in the number of 

nominally associated SNPs for different wing traits in females. The overlap is bigger between 

the absolute wing size phenotypes and only a few SNPs are candidates for all traits. d) 

Nominally associated SNPs are most abundant in the intergenic space and in regulatory 

regions. Boxes show the distribution of negative log10 p-values of the SNPs nominally 

associated to rCS in females among site classes. Numbers of SNPs belonging to each site 

class are denoted above the boxes. As a SNP can fall into multiple classes, the sum of SNPs 

from all site classes is higher than the total number of nominally associated SNPs. 
 

Figure 4. Associated SNPs overlap 33 functionally diverse novel candidate genes for 

wing size determination and localize within putative enhancer elements. a) Percent 

change in median wing area compared to CG1315 RNAi upon wing-specific knockdown of 

candidate genes in females. Only the lines yielding a significant wing size change (p<0.001, 

Wilcoxon rank sum test) are depicted. b) Alignment of the 2kb region on chromosome arm 2L 
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upstream of the D. melanogaster ex locus that shows sequence conservation across 

Drosophila species. The position of the SNP is indicated by the vertical blue line. The D. 

melanogaster sequence is represented by the dark grey bar at the top (“Sequence”). The 

respective sequences of each compared species are represented below. Light grey regions 

are matches to the D. melanogaster sequence, red regions are mismatches, gaps in the 

alignment are denoted by horizontal red lines and insertions by black lines and arrows.  

 

Figure 5. Pairwise interactions between focal genes and DGRP SNPs for male wing 

size (rCSM). The plot shows the focal genes annotated in black and the interactors in red. 

Interaction lines are colored according to the chromosome the focal gene is located on and 

the thick black lines denote Bonferroni-significant interactions. The outer circle demarks the 

chromosome arms (2L = orange, 2R = yellow, 3L = green, 3R = purple, X = blue). The 

colored bars inside the inner circle demark the locations of cosmopolitan inversions (orange: 

In(2L)t; yellow: In(2R)NS; purple: In(3R)K, In(3R)P, In(3R)Mo). 
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