Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Cancer stem cell plasticity as tumor growth promoter and catalyst of population collapse

Jan Poleszczuk, Heiko Enderling
doi: https://doi.org/10.1101/018184
Jan Poleszczuk
Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: jan.poleszczuk@moffitt.org
Heiko Enderling
Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

It is increasingly argued that cancer stem cells are not a cellular phenotype but rather a transient state that cells can acquire, either through intrinsic signaling cascades or in response to environmental cues. While cancer stem cell plasticity is generally associated with increased aggressiveness and treatment resistance, we set out to thoroughly investigate the impact of different rates of plasticity on early and late tumor growth dynamics and the response to therapy. We develop an agent-based model of cancer stem cell driven tumor growth, in which plasticity is defined as a spontaneous transition between stem and non-stem cancer cell states. Simulations of the model show that plasticity can substantially increase tumor growth rate and invasion. At high rates of plasticity, however, the cells get exhausted and the tumor will undergo spontaneous remission in the long term. In a series of in silico trials we show that such remission can be facilitated through radiotherapy. The presented study suggests that stem cell plasticity has rather complex, non-intuitive implications on tumor growth and treatment response. Further theoretical, experimental and integrated studies are needed to fully decipher cancer stem cell plasticity and how it can be harnessed for novel therapeutic approaches.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Back to top
PreviousNext
Posted April 16, 2015.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Cancer stem cell plasticity as tumor growth promoter and catalyst of population collapse
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Cancer stem cell plasticity as tumor growth promoter and catalyst of population collapse
Jan Poleszczuk, Heiko Enderling
bioRxiv 018184; doi: https://doi.org/10.1101/018184
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Cancer stem cell plasticity as tumor growth promoter and catalyst of population collapse
Jan Poleszczuk, Heiko Enderling
bioRxiv 018184; doi: https://doi.org/10.1101/018184

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Cancer Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (3504)
  • Biochemistry (7346)
  • Bioengineering (5321)
  • Bioinformatics (20259)
  • Biophysics (10013)
  • Cancer Biology (7742)
  • Cell Biology (11298)
  • Clinical Trials (138)
  • Developmental Biology (6437)
  • Ecology (9950)
  • Epidemiology (2065)
  • Evolutionary Biology (13318)
  • Genetics (9360)
  • Genomics (12581)
  • Immunology (7700)
  • Microbiology (19016)
  • Molecular Biology (7439)
  • Neuroscience (41028)
  • Paleontology (300)
  • Pathology (1228)
  • Pharmacology and Toxicology (2135)
  • Physiology (3157)
  • Plant Biology (6860)
  • Scientific Communication and Education (1272)
  • Synthetic Biology (1895)
  • Systems Biology (5311)
  • Zoology (1089)