Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Low levels of transposable element activity in Drosophila mauritiana: causes and consequences

Robert Kofler, Christian Schlötterer
doi: https://doi.org/10.1101/018218
Robert Kofler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christian Schlötterer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: schlotc@gmail.com
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Transposable elements (TEs) are major drivers of genomic and phenotypic evolution, yet many questions about their biology remain poorly understood. Here, we compare TE abundance between populations of the two sister species D. mauritiana und D. simulans and relate it to the more distantly related D. melanogaster. The low population frequency of most TE insertions in D. melanogaster and D. simulans has been a key feature of several models of TE evolution. In D. mauritiana, however, the majority of TE insertions are fixed (66%). We attribute this to a lower transposition activity of up to 47 TE families in D. mauritiana, rather than stronger purifying selection. Only three families, including the extensively studied Mariner, may have a higher activity in D. mauritiana. This remarkable difference in TE activity between two recently diverged Drosophila species (≈ 250,000 years), also supports the hypothesis that TE copy numbers in Drosophila may not reflect a stable equilibrium where the rate of TE gains equals the rate of TE losses by negative selection. We propose that the transposition rate heterogeneity results from the contrasting ecology of the two species: the extent of vertical extinction of TE families and horizontal acquisition of active TE copies may be very different between the colonizing D. simulans and the island endemic D. mauritiana. Our findings provide novel insights in the evolution of TEs in Drosophila and suggest that the ecology of the host species could be a major, yet underappreciated, factor governing the evolutionary dynamics of TEs.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted April 17, 2015.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Low levels of transposable element activity in Drosophila mauritiana: causes and consequences
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Low levels of transposable element activity in Drosophila mauritiana: causes and consequences
Robert Kofler, Christian Schlötterer
bioRxiv 018218; doi: https://doi.org/10.1101/018218
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Low levels of transposable element activity in Drosophila mauritiana: causes and consequences
Robert Kofler, Christian Schlötterer
bioRxiv 018218; doi: https://doi.org/10.1101/018218

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Evolutionary Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4224)
  • Biochemistry (9101)
  • Bioengineering (6749)
  • Bioinformatics (23935)
  • Biophysics (12086)
  • Cancer Biology (9491)
  • Cell Biology (13728)
  • Clinical Trials (138)
  • Developmental Biology (7614)
  • Ecology (11656)
  • Epidemiology (2066)
  • Evolutionary Biology (15476)
  • Genetics (10615)
  • Genomics (14292)
  • Immunology (9456)
  • Microbiology (22773)
  • Molecular Biology (9069)
  • Neuroscience (48840)
  • Paleontology (354)
  • Pathology (1479)
  • Pharmacology and Toxicology (2562)
  • Physiology (3822)
  • Plant Biology (8307)
  • Scientific Communication and Education (1467)
  • Synthetic Biology (2289)
  • Systems Biology (6170)
  • Zoology (1297)